A New Scheme on Kinetics of Nickel(II)-Y-L-glutamyl-L-cysteinylglycine

H. C. MALHOTRA*, YOGESHWAR SHARMA and AMITABH K. JAIN

Department of Chemistry, University of Delhi, Delhi-110 007

Manuscript received 22 September 1989, revised 22 January 1990, accepted 6 February 1990

Kinetics of complexation of Ni^{II} by γ_{-L} -glutamyl-L-cysteinylglycine have been investigated in the pH range 6.23 – 7.18, I=0.15~M KNO, and at temperatures 25, 30, 35 and 40° ($\pm 0.05^{\circ}$) using stopped flow spectrophotometer. The values of k_{obs} vary from 36.0 to 962 M^{-1} s⁻¹. Kinetics of the complexation reaction has been studied in terms of a mechanism in which water loss from the metal ion is an important rate-determining step. Overall rate constants have been resolved into specific rate constants and there is good agreement between the calculated and experimentally obtained values for k_{obs} at various pH's. The values of activation parameters have been evaluated.

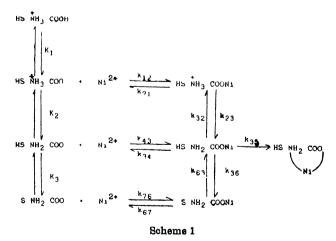
 γ -L-Glutamyl-L-cysteinylglycine is involved in numerous cellular processes¹, in the transport of amino acids and peptides across cell membranes via the γ -glutamylcycle². Because of its biological importance, it was thought desirable to investigate the kinetics of interaction of Ni^{II} with γ -L-glutamyl-L-cysteinylglycine, having NH₂, COOH and SH sites available for reaction. A number of kinetic studies⁸ of amino acids with metal ions have been carried out, but no clear information is available regarding the complexation of γ -L-glutamyl-L-cysteinylglycine with Ni^{II}. Letter and Jordan⁴ found the results irreproducible at higher pH's. Keeping this in view, a comprehensive kinetic study on interaction of Ni^{II} with γ -L-glutamyl-L-cysteinylglycine in the pH range 6.20 - 7.18 and at temperatures 25, 30, 35 and 40° ($\pm 0.05^{\circ}$) was carried out. It has been found by us that results were reproducible within 2% if freshly prepared solution is taken every time.

Experimental

 γ -L-Glutamyl-L-cysteinylglycine (B.D.H.), KNO_a (Sarabhai, G.R.), bromothymol blue (B.D.H.) and Ni(NO_a)₂.6H₂O (Merck) were used as such.

The pH of solution was adjusted using 2,6-lutidine (Merck-Schuchardt) and HCl (Glaxo, A.R.) and the final pH was taken on a Radiometer pHM 26 pH-meter.

The temperature of the system in the stopped flow assembly was maintained constant at the desired temperature. An Aminco Morrow stopped flow spectrophotometer along with matching electronic console was used for rate studies. The transmittance changes were monitored at 620 nm by pH indicator method². The total transmittance change was kept small using linear log photometer so that relative voltage changes (ΔV) could be observed on the


oscilloscope. Blank experiments in which (i) indicator and metal ion solution and (ii) indicator and ligand solutions were mixed showed no transmittance change to interfere with the results.

Results and Discussion

The dissociation of γ -L-glutamyl-L-cysteinylglycine can be represented as

$$HS - \dot{N}H_{3} - COOH \stackrel{K_{1}}{\longrightarrow} HS - \dot{N}H_{3} - COO \stackrel{K_{3}}{\longleftarrow} HS - NH_{3} - COO \stackrel{K_{3}}{\longleftarrow} S - NH_{3} - COO^{-}$$

These forms can react with Ni^{II} stepwise as presented in Scheme 1.

The interaction of Ni^{II} with y-L-glutamyl-L-cysteinylglycine follows the overall differential equation,

ſ

(8)

 $Rate = -d/dt [Ni^{II}]$ = -d/dt [\nu-L-glutamyl-L-cysteinylglycine] (1) = k_{obs} [Ni^{II}] [\nu-L-glutamyl-L-cysteinylglycine] = k'_{obs} [\nu-L-glutamyl-L-cysteinylglycine] (2)

where
$$k'_{obs} = k_{obs} [Ni^{II}]$$
 (3)

Rate can also be written as

Rate =
$$k'_{obs}$$
 {[HS - $\dot{N}H_s$ - COOH] +
[HS - $\dot{N}H_s$ - COO⁻] + [HS - NH_s - COO⁻] +

$$[-S - NH_{3} - COO^{-}]\}$$
 (4)

where $[HS - \dot{N}H_s - COOH]$, $[HS - \dot{N}H_s - COO^-]$, $[HS - NH_s - COO^-]$ and $[-S - NH_s - COO^-]$ are triprotonated, diprotonated, monoprotonated and deprotonated forms of the γ -L-glutamyl-L-cysteinyl-glycine respectively.

Rate from Scheme 1 can be given as

$$Rate = k_{ss}[HS - NH_2 - COONi]$$
⁽⁵⁾

Using the steady state approximation for the inter-

mediates [HS – \dot{NH}_{s} – COONi], [HS – NH₂ – COONi] and [^{-}S – NH₂ – COONi],

$$d/dt[HS - NH_{s} - COONi] = k_{1s}[HS - NH_{s} - COO^{-}]$$

[N1^{II}] - $k_{1s}[HS - \dot{NH}_{s} - COONi] + k_{s2}[HS - \dot{NH}_{s} - COONi] - k_{2s}[HS - \dot{NH}_{s} - COONi][H^{+}] = 0$
(6)

$$d/dt[HS - NH_{g} - COONi] = k_{48}[HSNH_{g} - COO^{-}] [N_{1}^{II}] - k_{34}[HS - NH_{g} - COONi] + k_{gs}[HS - ^{+} NH_{s} - COONi] + k^{\circ}s[^{-}S - NH_{g} - COONi] - k_{s6}[HS - NH_{g} - COONi] - k_{s9}[HS - NH_{g} - COONi] - k_{s6}[HS - NH_{g} - COONi] = 0$$
(7)
$$d/dt[^{-}S - NH_{g} - COONi] = k_{r6}[^{-}S - NH_{g} - COO^{-}] [N_{1}^{II}] - k_{67}[^{-}S - NH_{g} - COONi] + k_{s6}[HS - NH_{g} - COONi][H^{+}] - k_{6s}[^{-}S - NH_{g} - COONi] = 0$$

From the scheme it can be written that

$$[HS - \dot{N}H_{s} - COON_{1}] = \frac{k_{3.2}}{k_{3.3}}[H^{+}][HS - NH_{2} - COON_{1}]$$
(9)

$$[-S - NH_{2} - COONi] = \frac{k_{86}}{k_{63}} [H^+] [HS - NH_{2} - COONi]$$
(10)

Adding equations (6), (7) and (8) and substituting the values of $[HS - \dot{N}H_8 - COONi]$ and $[-S - NH_8 - COONi]$ from equations (9) and (10) and on rearrangement we get,

 $[HS - NH_{2} - COONi] =$

$$\frac{k_{23}k_{63}k_{13}[\text{HS}-\text{NH}_{3}-\text{COO}^{-}][\text{Ni}^{II}]}{k_{21}k_{32}k_{63}[\text{H}^{+}]+k_{23}k_{34}k_{63}}$$

$$\frac{+k_{23}k_{43}k_{63}[\text{HS}-\text{NH}_{3}-\text{COO}^{-}][\text{Ni}^{II}]}{+k_{23}k_{36}k_{63}}$$

$$\frac{+k_{33}k_{63}k_{76}[^{-}\text{S}-\text{NH}_{3}-\text{COO}^{-}][\text{Ni}^{II}]}{+k_{23}k_{36}k_{67}}$$
(11)

From the dissociation of γ -L-glutamyl-L-cystelnylglycine, the concentration of [HS – \dot{NH}_{s} – COO⁻], [HS – NH₂ – COO⁻]and [-S – NH₂ – COO⁻] can be written as

$$[HS - \dot{N}H_{s} - COO^{-}] = \frac{K_{1}[HS - \dot{N}H_{s} - COOH]}{[H^{+}]}$$
(12)

$$[HS - NH_2 - COO^-] = \frac{K_1 K_2 [HS - \dot{N}H_3 - COOH]}{[H^+]^3}$$
(13)

$$[-S - NH_{2} - COO^{-}] = \frac{K_{1}K_{2}K_{3}[HS - NH_{3} - COOH]}{[H^{+}]^{3}}$$
(14)

Substituting the value of equations (12), (13) and (14) into equation (11) and on rearrangement, the rate equation (5) becomes,

Rate =
$$\frac{k_{0.3}k_{1.2}k_{2.5}k_{3.5}K_1[H^+]^3}{k_{2.1}k_{3.2}k_{6.5}[H^+]}$$

 $\frac{+k_{2.5}k_{3.5}k_{4.3}k_{6.5}K_1K_3[H^+]}{+k_{2.5}k_{6.5}(k_{3.4}+k_{3.5})}$

$$\frac{+k_{\mathfrak{g}\mathfrak{g}}k_{\mathfrak{g}\mathfrak{g}}k_{\mathfrak{g}\mathfrak{g}}k_{\mathfrak{g}\mathfrak{g}}k_{\mathfrak{g}\mathfrak{g}}K_{\mathfrak{f}\mathfrak{g}}K_{\mathfrak{f}}K_{\mathfrak{g}}K_{\mathfrak{g}}}{+k_{\mathfrak{g}\mathfrak{g}}k_{\mathfrak{g}\mathfrak{g}}k_{\mathfrak{g}\mathfrak{g}}}\cdot\frac{[\mathrm{HS}-\mathrm{NH}_{\mathfrak{g}}-\mathrm{COOH}][\mathrm{Ni}^{\mathrm{II}}]}{[\mathrm{H}^{+}]^{\mathfrak{g}}}$$

Substituting $[HS - NH_s - COO^-]$, $[HS - NH_s - COO^-]$ and $[-S - NH_s - COO^-]$ from equations (12), (13) and (14) respectively in equation (4) we obtain,

Rate =
$$k_{obs}\{[H^+]^{s} + K_1[H^+]^{s} + K_1K_2[H^+] + K_1K_2K_s\}$$

$$\times \frac{[\text{HS} - \dot{\text{NH}}_8 - \text{COOH}][\text{Ni}^{\text{II}}]}{[\text{H}^+]^8}$$
(16)

Comparing equations (15), (16), assuming that $k_{35} \gg k_{84}$ and at high pH's,

$$k_{s1}k_{s2}k_{68}[H^+] \ll k_{s3}k_{68}(k_{84}+k_{85}) \text{ and} k_{s8}k_{86}k_{67} \ll k_{28}k_{68}(k_{84}+k_{85}), we get k_{obs}\{1+K_s/[H^+]\} = k_{43}+k_{76}K_s/[H^+]$$
(17)

Plot of $k_{obs}\{1+K_8/[H^+]\}$ vs $[H^+]^{-1}$ was found to be linear, and the values of k_{43} , k_{76} were evaluated from intercept and slope respectively of this plot (Table 2). The value of K_8 was taken from literature⁵. At the temperature of our investigation, the corrected values of K_s^T were evaluated using the thermodynamic relation,

$$pK^{T_2} = \Delta H(T_2 - T_1)/4.6 \ T_1 T_2 + pK^{T_1}$$
(18)

The values of activation parameters are also reported in Table 2. The values of activation parameters corresponding to specific rate constants (k_{43} and k_{76}) were obtained from the linear plots of log k/T vs 1/T and these values are reported in Table 2.

TABLE 1—SECOND ORDER RATE CONSTANTS (kobs) FOR THE COMPLEXATION OF NII WITH γ-L-GLUTAMYL-L-CYSTEIN- VLGLYCINE AT DIFFERENT pH'S AND TEMPERATURES				
$I = 0.15 \ M(KNO_s), [Ni^{II}] = 0.012 \ M, [7-L-Glutamyl-L-cysteinylglycine] = 1.26 \times 10^{-5} \ M$				
pH	k_{obs}	[H ⁺] ⁻¹ ×10 ⁻⁶		
	Temp. == 25°			
6.33	36.0 ± 0.2	2.13		
6.45	41.2 ± 0.1	2 18		
6.67	82.5 ± 0.8	4.67		
6.82	130 ± 1	6.60		
7.18	270±2	15.1		
Temp. == 30°				
6.23	481+0.2	1.69		
6.36	57.7 ± 0.1	2.29		
6.63	115 + 1	4.26		
6.79	144 ± 1	6.02		
7.07	265 ± 2	11 7		
	Temp. = 35°			
6.20	641±06	1.58		
6.85	82.5 ± 0.5	2.28		
6 54	144 + 1	3.46		
6 7 8	180 ± 2	5.87		
7.09	885 ± 1	12.3		
Temp. == 40°				
6 17	72.1 ± 0.2	1 47		
6.81	115+0.6	2 04		
6 50	180 + 0.8	3 16		
6 69	240+1	4 89		
7.02	480 ± 2	10.4		
	-			

TABLE 2—VALUES OF k_{48} , k_{76} and k_{6} for the Complexation of N¹¹ with γ -L-GLUTAMYL-L-CYSTBINYLGLYCINE

L'CISIGINI LOLICINA				
Temp. °O	${}^{k_{4,3}}_{M^{-1}}{}^{s^{-1}}$	$k_{76} \times 10^{-4} M^{-1} s^{-1}$	$\times \frac{k_0}{8^{-1}}$	
25 80 35 40 △ <i>H</i> ≠(kJ mol ⁻¹ △ <i>S</i> ≠(JK ⁻¹ mol		$\begin{array}{c} 1.38 \pm 0 \ 02 \\ 1.89 \pm 0.04 \\ 1 \ 46 \pm 0 \ 04 \\ 1 \ 50 \pm 0.06 \\ 3 \ 57 \pm 0.03 \\ - 184 \pm 4 \end{array}$	6.71 7.02 7.87 7.57	

Calculation of water exchange rate constant (k_0) : The rate of substitution on metal ion is controlled by the rate of water-exchange, and rate-determining step is the loss of water molecule from inner coordination sphere⁶,

$$M_{aq}^{2+} + L_{aq}^{n-} \xleftarrow{K_{os}}_{fast} M_{aq}^{2+} L^{n-} \xrightarrow{k_{o}}{slow} \rightarrow ML^{(2-n)+} + H_{s}O$$
(19)

The rate law in terms of outer sphere complex formation constant (K_{os}) and the rate constant of water loss (k_o) can be written as

$$Rate = d/dt [Ni^{II}L] = K_{os}k_o[Ni^{II}][L]$$
(20)

Diprotonated, monoprotonated and deprotonated forms of the ligand can be considered to react with Ni^{II} in the following ways :

$$HS - \overset{\dagger}{N}H_{s} - COO^{-} + Ni^{s} + \overset{k_{1s}}{\longrightarrow}$$
$$HS - \overset{\dagger}{N}H_{s} - COONi \qquad (21)$$

$$HS - NH_{2} - COO^{-} + Ni^{2+} \xrightarrow{k_{4}} \rightarrow HS - NH_{2} - COONi$$
(22)

$$-S - NH_{3} - COO^{-} + Ni^{3+} \xrightarrow{k_{76}} \rightarrow \\ -S - NH_{3} - COONi \qquad (28)$$

Using these three equations, the rate can be written as

$$Rate = k_{19}[HS - \dot{N}H_8 - COO^-][Ni^{II}] + k_{48}[HS - NH_9 - COO^-][Ni^{II}] + k_{76}[-S - NH_9 - COO^-][Ni^{II}]$$
(24)

In equation (24), k_{19} appears with $K_1[H^+]^{a}$ which is very small, so first term from equation (24) will disappear. As can be seen from Table 2 that $k_{48} \ll k_{76}$, therefore equation (24) reduces to

$$Rate = k_{7.6}[-S - NH_2 - COO^{-}][Ni^{II}]$$
(25)

On comparing equations (20) and (25) we get,

$$k_{76} = K_{os}k_0$$

 $[-S-NH_{g}-COO^{-}]$ being the only reactive form can be taken as the concentration of ligand L In order to calculate the value of k_{0} , we must know the value of K_{os} . The value of K_{os} was calculated using the equation which was given by Fuoss^{*} on statistical grounds,

$$K_{os} = 4\pi Na^{3}. \quad e^{-u/K_{b}T}/3000$$

$$u = z_{1}z_{2}e_{0}^{2}/aD - z_{1}z_{2}e_{0}^{2}x/D(1+xa)$$

where $x^{2} = 8\pi N. e_{0}^{2}\mu/1000 DKT$

where *a* is distance of closest approach of ions and other symbols have their usual significance. If the value of *a* is taken as 5A then the value of K_{os} can be approximated to 1.98 mol dm^{-s} at all temperatures. The values of k_0 are reported in Table 2. The high values of ΔH^{\pm} corresponding to k_{48} further confirm that the monoprotonated form of γ -L-glutamyl-L-cysteinylglycine is non-reactive, whereas low value of ΔH^{\pm} corresponding to k_{76} supports the high reactivity of deprotonated form of γ -L-glutamyl-L-cysteinylglycine. The negative value of entropy corresponding to k_{76} can be attributed to the fact that the transition state for this complex is highly charged and clearly shows that the reaction is between two oppositely charged ions.

Acknowledgement

Two of the authors (Y.S. and A.K.J.) are thank-ful to C.S.I.R. and U.G.C., New Delhi, respectively, for the award of Senior Research Fellowships.

References

- L. FLOHE, H CH. BENOHR, H. SIES, H. D. WALLER and A. WENDEL, "Glutathione", Academic, New York, 1974; I. M ARIAS and W. B JAKOBY, "Metabolism and Function", Raven, New York, 1976.
- 2. A. MEISTER, "Metabolism and Function", Raven, New York, 1976
- 3. R. G. WILKINS, Acc. Chem. Res., 1970, 3, 408, K. KUSTIN and J. SWINEHART, Prog Inorg. Chem., 1970, 13, 107, J. O CASSATT and R. G WILKINS, J. Am Chem Soc., 1968, **90**, 6045, **J**. C. CASSATT, A. W. JOHNSON, L. M. SMITH and R. G. WILKINS, *J. Am. Chem. Soc.*, 1972, 94 8399.
- 4. J E. LETTER, JR. and R. B. JORDAN, J Am. Chem. Soc., 1975, 97, 2381.
- 5. R. B. MARTIN and J. T. EDSALL, J. Am. Chem. Soc., 1959, 81, 4044.
- 61, 2014.
 F. BASOLO and R. G. PEARSON, "Mechanism of Inorganic Reactions", Wiley, New York, 1967
 R. M. FUOSS, J. Am Chem. Soc., 1958, 80.