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Project Specification 

The experiments at CERN generate mountainous amounts of data. In the first run of the Large 

Hadron Collider (LHC) 
[1]

, 30 petabytes of data was produced annually, and up to 40 Terabits per 

second amount of data more is expected to be produced during the future run of LHC in 2020. To 

filter the data coming from the LHCb 
[2]

 detector, LHCb team is working on a benchmark 

application called DAQPIPE 
[3] 

which emulates the data coming from the detector in a local area 

network. One of the major challenges faced by DAQPIPE is to prevent any type of data loss by 

implementing high-speed networks which can bear the load of the data coming in. The aim of the 

project is to implement a DPDK 
[4] driver for DAQPIPE to create a high speed packet processing, 

transfer and communication mechanism for future LHCb upgrades. 
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Abstract 

DPDK is a new frame-work for very fast software defined networking. It allows multi-stage 

Ethernet networks for DAQ to be implemented with very cost-effective hardware by offloading 

all intelligence and most of the buffering into commodity servers. The LHCb data acquisition for 

Run3 will need a 40 Terabit/s network, where 100 Gigabit Ethernet is one of the interesting 

candidates. In this project we aim to port the existing DAQ exerciser software of LHCb, 

DAQPIPE, to DPDK and perform tests on state of the art network hardware. 
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1 Introduction 

The experiments at CERN generate huge amount of data which has to be filtered, processed and 

stored. The LHCb is working on DAQ Protocol-Independent Performance Evaluator (DAQPIPE), 

a benchmark application to test network fabrics for the future LHCb upgrade, for emulating the 

data input, filtration and storage.  

1.1 DAQPIPE 

DAQPIPE emulates reading data from input cards, which in a real DAQ is 

connected to the detector. Data coming from one event is correlated and needs 

to be brought together in one place. This event data is spread over multiple 

nodes (~ 500 to 1000 for the LHCb DAQ upgrade) so DAQPIPE has to 

aggregate all the parts. The LHCb data acquisition will need a 40 Terabit/s 

network in 2020. 40 Tb/s data coming from the LHCb detector in the DAQ 

system, which consists of 500 computing nodes, makes the required 

throughput to be 80 Gb/s.
 1
 

1.1.1 Components 

DAQPIPE has 4 components: 

i. The Readout Unit reads data from the detector (or input cards in 

case of emulation) and sends it to the Builder Unit. 

ii. The Builder Unit aggregates the data of one particular event and 

sends it to a Filter Unit. 

iii. The Filter Unit has to decide whether or not the event is to be 

stored.  

iv. The Event Manager manages the job of dispatching between the 

Readout Unit and Builder Unit. 

1.1.2 Supported Networks 

DAQPIPE supports various network interfaces 
[5]

 which can be paired with 

different technologies to provide user with multiple pair options while 

keeping the user transparent to the underlying working. Some of the networks 

supported by the DAQPIPE include: 

i. MPI 

ii. LibFabric 

iii. Infiniband VERBS 

iv. TCP/IP 

v. RapidIO 

vi. PSM2 

                                                      
Figure 1 Source: https://openfabrics.org/images/eventpresos/2016presentations/312LHCBEventBld.pdf 

Figure 1. DAQ 
System Flowchart 
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2
 

Figure 2. DAQ System Hardware View 

  

                                                      
Figure 2 and 3 Source: https://openfabrics.org/images/eventpresos/2016presentations/312LHCBEventBld.pdf 

Figure 3. DAQ System View 
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1.2 DPDK 

DPDK is a set of libraries and drivers for fast packet processing. It is designed to run on any 

processor including Intel x86, IBM Power 8, EZchip TILE-Gx and ARM. It is a new frame-work 

for very fast software defined networking. It allows multi-stage Ethernet networks for DAQ to be 

implemented with very cost-effective hardware by offloading all intelligence and most of the 

buffering into commodity servers. It works with Ethernet. DPDK is aimed for switch 

implementation, however, in this project, it is being used for data transfer and communication.  

1.2.1 Components 

DPDK consists of the following major modules: 

i. Environment Abstraction Layer (EAL): It is responsible for gaining access to low 

level resources such as hardware and memory space.  

ii. Memory Manager: Responsible for allocating pools of objects in memory space. 

iii. Buffer Manager: Assigns outgoing and incoming (TX/RX) packet queues. 

iv. Queue Manager: Manages the queues allocated by the buffer manager.   

v. Packet Flow Classifier: Implements hash based flow classification to place packets into 

flows for processing. 

vi. Poll Mode Drivers: These are designed to work without Interrupt-based signalling, 

which saves the CPU time.   

 

3
 

Figure 4. DPDK Components 

                                                      
Figure 4 Source: https://www.linkedin.com/pulse/dpdk-layman-aayush-shrut 
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2 Problem Statement 

2.1 Problem 

As explained earlier in section 1.1, it is estimated that in the 2020 upgrade, Run3, the LHCb data 

acquisition will need a 40 Terabit/s network, where 100 Gigabit Ethernet is one of the most 

interesting candidates. 

2.1.1 Desired Throughput 

80 Gb/s is the throughput required by the network in DAQPIPE to transfer data among Readout 

Units and Builder Units.  

 

 

Figure 5. Readout Units and Builder Units communication chanels 

 

2.1.2 Linux Kernel Network Stack - Performance Limitations 

Linux is not designed as a high operation and high throughput for network traffic operating 

system, but as a general purpose OS. Forwarding process of TCP/IP packets in Linux goes 

through many layers of the network stack, in both, reception of the packets and transmittance of 

the packet. These layers of the operating systems don't give the user much control over the 

hardware features. Therefore, high throughput communication and specialized workloads require 

methods other than the general purpose methods working with Linux OS which cannot get us 

very high throughput as desired in the LHCb DAQPIPE.  

2.2 Solution  

Over the years, many attempts have been made to overcome the Linux kernel performance 

limitations.  Specialized APIs have been designed to increase packet reception at high speed in 

Linux environment.  
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2.2.1 Kernel Bypass 

One of the most popularly used techniques used to send and receive more packets from existing 

hardware is by working around the Linux kernel networking stack. This is known as Kernel 

Bypassing 
[6]

. 

2.2.2 DPDK Driver for DAQPIPE 

DPDK is a set of libraries and drivers for high speed packet processing. It allows the user to send 

and receive packets with the minimum number of CPU cycles. It also allows the development of 

fast packet capture algorithms.  

In this project, we are looking to implement a driver of DPDK for DAQPIPE to produce a high 

speed network for the future LHCb upgrades.  

Comparisons of the packet send/receive path in Linux and DPDK is shown in the following 

figures.  

 

 

  
Applications 

Linux Kernel 

Network Driver 

NIC NIC 

 

Linux Kernel 

Network Driver 

Applications 

DPDK Libraries 

Figure 6. Packet Transfer with and without DPDK 
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3 Forwarding Packets with DPDK  

3.1 API Examples 

As DPDK is a set of libraries, it has the following major topics in which the headers can be 

categorized: 

i. Device  

ii. Memory   

iii. Timers  

iv. Locks  

v. CPU arch  

vi. CPU multicore  

vii. Layers   

viii. QoS  

ix. Hashes  

x. Containers  

xi. Packet framework  

xii. Basic  

xiii. Debug  

 

For a simple hello world program: 

i. The EAL has to be initialized first. 

ret = rte_eal_init(argc, argv); 
    if (ret < 0) 
        rte_panic("Cannot init EAL\n"); 

 
ii. A function to print “hello world” on console. 

static int lcore_hello( attribute ((unused)) void *arg) 
{ 
    unsigned lcore_id; 
 
    lcore_id = rte_lcore_id(); 
    printf("hello from core %u\n", lcore_id); 
    return 0; 
} 

 
iii. Call the function on ach available slave node. 

RTE_LCORE_FOREACH_SLAVE(lcore_id) { 
   rte_eal_remote_launch(lcore_hello, NULL, lcore_id); 
} 

 
iv. Call the function on master (current) node. 

lcore_hello(NULL); 
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3.2 Packet Construction 

For a more customized communication and packet transfer, DPDK allows us to create a packet of 

our choice and send/receive it.  

i. Initialize the EAL. 

int ret = rte_eal_init(argc, argv); 
if (ret < 0) 

          rte_panic("Cannot init EAL\n"); 

 

ii. Create a memory pool for the program. 

  packet_pool = rte_mempool_create("packet_pool", 
                               nb_ports, 
                               MBUF_SIZE, 
                               MBUF_CACHE_SIZE, 
                               MBUF_DATA_SIZE, 
                               rte_pktmbuf_pool_init, NULL, 
                               rte_pktmbuf_init,      NULL, 
                               rte_socket_id(), 
                               0); 

 

iii. Allocate a packet in memory pool. 
packet = rte_pktmbuf_alloc(packet_pool);  

 

iv. Populate the packet with data, source address, destination address, and initialize 

packet fields.  

  pkt_size = sizeof(struct ether_hdr) + 
   sizeof(struct data); 
  packet->data_len = pkt_size; 
  packet->pkt_len = pkt_size; 
  eth_hdr = rte_pktmbuf_mtod(packet, struct ether_hdr *); 
  rte_eth_macaddr_get(src_port, &eth_hdr->s_addr); 
  rte_eth_macaddr_get(dst_port, &eth_hdr->d_addr); 

 

v. Transmit the packet to the destination port address.  

 rte_eth_tx_burst(dst_port, 0, &packet, 1); 
 

vi. The receiver side can receive the incoming packets in a similar way. 

 rte_eth_rx_burst(port, 0, &packet, 1); 
 

vii. Free the memory occupied by packet after processing. 

 rte_pktmbuf_free(packet); 
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3.3 Forwarding Example 

Following is a basic forwarding example derived from the basicfwd.c example in the DPDK 

sample applications 
[7]

. The lcore_main function is reads from an input port and writes to an 

output port. The forwarding loop continues for 10 seconds in this example. 

/* 
 * The main thread that does the work, reading from 
 * an input port and writing to an output port. 
 */ 
struct message { 
 char data[DATA_SIZE]; 
}; 
 
static __attribute__(()) void 
lcore_main(void) 
{ 
 const uint8_t nb_ports = rte_eth_dev_count(); 
 uint8_t port; 
 
 for (port = 0; port < nb_ports; port++) 
  if (rte_eth_dev_socket_id(port) > 0 && 
   rte_eth_dev_socket_id(port) != 
   (int)rte_socket_id()) 
   printf("WARNING, port %u is on remote NUMA node to " 
   "polling thread.\n\tPerformance will " 
   "not be optimal.\n", port); 
 
 struct rte_mbuf *pkt; 
 struct ether_hdr *eth_hdr; 
 
 struct message obj; 
 struct message *msg; 
 int nb_rx = 0, nb_tx = 0, cnt = 0, pkt_size = 0; 
 int count = 0; 
 int k = 0; 
 for (count = 0; count < DATA_SIZE; count++){ 
  obj.data[count] = (char)(97 + (k++)); 
  if (k == 26) 
   k = 0; 
 } 
 time_t endtime = time(NULL) + 10; 
 port = 0; 
 while (time(NULL) < endtime) { 
  cnt = rte_eth_rx_burst(port, 0, &pkt, 1); 
  nb_rx += cnt; 
 
  if (cnt > 0) 
  { 
   eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *); 
 
   rte_eth_macaddr_get(port, &eth_hdr->s_addr); 
 
   // printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" 
PRIx8 
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   //    " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n", 
   //  (unsigned)port, 
   //  eth_hdr->s_addr.addr_bytes[0], eth_hdr-
>s_addr.addr_bytes[1], 
   //  eth_hdr->s_addr.addr_bytes[2], eth_hdr-
>s_addr.addr_bytes[3], 
   //  eth_hdr->s_addr.addr_bytes[4], eth_hdr-
>s_addr.addr_bytes[5]); 
 
   pkt_size = sizeof(struct message) + sizeof(struct 
ether_hdr); 
   msg = (struct message *) (rte_pktmbuf_mtod(pkt, char*)) + 
sizeof(struct ether_hdr); 
   rte_pktmbuf_free(pkt); 
  } 
 
  msg = &obj; 
  pkt = rte_pktmbuf_alloc(mbuf_pool); 
  pkt_size = sizeof(struct message) + sizeof(struct ether_hdr); 
  pkt->data_len = pkt_size; 
  pkt->pkt_len = pkt_size; 
  eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *); 
  rte_eth_macaddr_get(port, &eth_hdr->d_addr); 
  rte_eth_macaddr_get(port ^ 1, &eth_hdr->s_addr); 
  eth_hdr->ether_type = htons(PTP_PROTOCOL); 
  char* data; 
 
  data = rte_pktmbuf_append(pkt, sizeof(struct message)); 
  if (data != NULL) 
   rte_memcpy(data, msg, sizeof(struct message)); 
 
  nb_tx += rte_eth_tx_burst(port ^ 1, 0, &pkt, 1); 
 } 
 printf("----\nData size: %d\nPacket size: %d\nRX : %d, TX : %d\n\n", 
DATA_SIZE, pkt_size, nb_rx, nb_tx); 

} 
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3.4 Packet Example 

Following are the packet examples being sent and received on a port.  

3.4.1.1 Received 

 

Figure 7. Received Packet 
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3.4.1.2 Sent 

 

Figure 8. Sent Packets 
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4 Results 

4.1 Bandwidth  

The maximum bandwidth achieved is on packet size = 1200. Figure 9 shows how the bandwidth 

is affected by packet size. The graph displays 5 runs each for packet sizes: 64, 128, 256, 512, 

1024, 1200 bytes.  

 

Figure 9. Bandwidth Results 
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5 Issues 

A few issues faced during the project include: 

I. DPDK requires specialized hardware 
[8]

 support to work. Initially, the NIC chosen to 

work with was Chelsio, but due to the compatibility constraints between the Chelsio 

driver and the OS used by the test servers, the cards had to be changed to Mellanox. 

This caused a lag in the timeline estimated for the project.  

II. DPDK is aimed for switch implementation. However, we are using it as a 

communication protocol. Hence, it was quite difficult to find any example or 

previous work regarding our area of interest.  

III. Currently, there are no DPDK experts in the computing team in LHCb. Therefore, 

obtaining expert guidance was not possible.  

IV. The maximum packet sizes that worked initially were not impressive. The maximum 

packet size being communicated at the moment is 1200 bytes.  
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6 Future Work 

6.1 Threading in DPDK 

DPDK offers users to write parallel code using its thread-safe libraries. The typical runtime 

environment of DPDK is a single-threaded process per logical core. However, it can be multi-

threaded or multi-process in some cases. According to DPDK documentation, there are three 

threading models: 

i. One EAL thread per physical core. 

ii. Multiple EAL threads per physical core. 

iii. Multiple light-weight threads per EAL thread. 

In future work for this project, the developers can utilize threading to increase parallelism and 

throughput of the current system.  

6.2 Packet Size in DPDK 

The current maximum packet size is 1200 bytes. Further optimizations can be made to increase 

the packet size for the data transfer.  

6.3 Segmentation of Packets  

DPDK allows the developers to create segmented packets. This feature can be tested and utilized 

to increase the packet size efficiently. 

6.4 Implementation of DPDK Driver for DAQPIPE 

Due to unforeseen complications in the project, the DPDK driver for DAQPIPE could not be 

completely implemented in time. Therefore, the next step is to implement a complete API for the 

driver. 

6.5 Exploring DPDK further 

This project, as mentioned before, was a prospective project as no one in the LHCb group had 

worked with DPDK before. It leaves the team with a chance to further explore and exploit the 

features by DPDK. 
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7 Conclusion 

This project was a prospective step by the LHCb team. The bandwidth results obtained so far (i.e. 

32Gb/s approximately) signify that DPDK can be an interesting candidate for the LHCb upgrade 

in 2020. However, there is still a need for further exploration and optimization for the driver 

implementation in DAQPIPE.  Given the specified hardware support, and feature such as 

threading and segmentation utilized, DPDK might be able to produce close to the desired 

throughput (80 Gb/s).  
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8 Acronyms and Abbreviations 

# Keyword Meaning 

1 API Application Programming Interface 

2 DAQ Data Acquisition  

3 DAQPIPE DAQ Protocol-Independent Performance Evaluator 

4 DPDK Data Plane Development Kit 

5 EAL Environment Abstraction Layer 

6 Gb/s Gigabits per second 

7 LHC Large Hadron Collider  

8 LHCb  Large Hadron Collider beauty 

9 NIC Network Interface Card 

10 OS Operating System 

11 RX Receiver 

12 Tb/s Terabits per second 

13 TX Transmitter 
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