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Abstract

Memory-intensive implementations often require access to an external, off-chip memory which can substantially slow down an FPGA
accelerator due to memory bandwidth limitations. Buffering frequently reused data on chip is a common approach to address this
problem and the optimization of the cache architecture introduces yet another complex design space. This paper presents a high-level
synthesis (HLS) design aid that automatically generates parallel multi-cache systems which are tailored to the specific requirements of
the application. Our program analysis identifies non-overlapping memory regions, supported by private caches, and regions which
are shared by parallel units after parallelization, which are supported by coherent caches and synchronization primitives. It also
decides whether the parallelization is legal with respect to data dependencies. The novelty of this work is the focus on programs using
dynamically allocated, pointer-based data structures which, while common in software engineering, remain difficult to analyze and
are beyond the scope of the overwhelming majority of HLS techniques to date. Secondly, we devise a high-level cache performance
estimation to find a heterogeneous configuration of cache sizes that maximizes the performance of the multi-cache system subject to
an on-chip memory resource constraint. We demonstrate our technique with three case studies of applications using dynamic data
structures and use Xilinx Vivado HLS as an exemplary HLS tool. We show up to 15× speed-up after parallelization of the HLS
implementations and the insertion of the application-specific distributed hybrid multi-cache architecture.

I. Introduction

Design flows for application-specific integrated
circuits (ASICs) and field programmable gate
arrays (FPGAs) traditionally rely on a register

transfer level (RTL) description of the application given
in a hardware description language (HDL). High-level
synthesis (HLS) raises the abstraction level from RTL
to high-level languages, such as C/C++, and promises
significant shortening of the design cycle compared with
an RTL-based design entry. Although modern HLS
tools can achieve a quality of results (QoR, measured in
terms of latency and resource utilization) comparable to
hand-written HDL code [1, 2], substantial source code
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refactoring is often required to obtain good HLS results [2].
This work automates some of this code refactoring. In
particular, we focus on the extraction of parallelism,
which is crucial for achieving good QoR. To ensure that
the memory system is not a sequential bottleneck to
performance, our technique partitions and distributes the
application data over multiple on-chip memory blocks so
as to benefit from the enormous memory bandwidth of
FPGAs. This work leverages the customizability of FPGA
implementations to automatically construct a memory
system which is tailored to the requirements of a specific
application.

Our departure point from related tool flows is the
focus on heap-manipulating C/C++ programs, making
the work a complement to existing work based on
run-time profiling [3], manual code annotations [4] or
automated analyses targeting static arrays referenced in
static loop nests [5–7]. Pointer-based memory references
and dynamic memory allocation have widespread use
in software engineering, their analysis and automated
code optimizations, however, are beyond the scope of
the most HLS techniques to date. The memory model in
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C/C++ assumes the presence of a heap, a large monolithic
memory space and the identification of independent and
shared portions in heap remains complicated because of
the difficulty of disambiguating aliases and predicting the
referenced memory locations.

The heap analysis in this work is based on separa-
tion logic [8], a theory for formal reasoning about
programs. Leveraging separation logic in an HLS context
is a recent approach explored within this line of work. Our
heap analysis builds on a previously developed baseline
analysis [9], which determines whether (parts of) the
accessed heap memory can be completely partitioned into
disjoint, non-overlapping portions, referred to as heaplets.
Finding a solution to this question is a pre-requisite for
parallelization and partitioning the on-chip memory space.
The analysis guides automated code transformations
which ensure the synthesizability of heap-manipulating
C++ programs by off-the-shelf HLS tools and implement
the partitioning and parallelization.

The applicability of the baseline technique in [9] is
limited to cases where the on-chip memory capacity is
sufficient and the accessed memory space can be split into
independent, private partitions. However, parallel on-chip
memory capacity remains a scarce resource and many
FPGA applications with a large memory footprint require
access to a larger off-chip memory. The bandwidth
limitations of external memory can significantly slow
down an FPGA accelerator and potentially eliminate the
gain of parallelization. The work presented in this paper
seeks to bridge the gap between a large accessible memory
space and fast on-chip memory by inserting parallel
on-chip caches to buffer frequently reused data on the
chip and to reduce the number of expensive accesses to an
external memory. This paper builds on work previously
published in [10], which applies the baseline analysis
in [9] to the synthesis of such an application-specific
high-performance memory hierarchy and extends it to
shared resources. Application specificity is introduced
by distinguishing between independent private caches
and coherent caches which are backed by a mechanism
to maintain inter-cache coherency. We leverage a static
program analysis to determine whether or not and for
which caches such a coherency mechanism is required in
the generated memory system. The contributions in [10]
are:

◦ In addition to the identification of disjoint heap re-
gions, we extend the baseline program analysis in [9]
by an identification of heaplets that would be shared
by the parallel loop kernels after parallelization by the
source-to-source translator. Our analysis inserts addi-
tional synchronization primitives for program parts that
access shared resources (Section IV).

◦ Even if coherency is ensured, updates to the shared

resource may happen in a different order after paralleliza-
tion compared to the sequential program. We implement
a commutativity analysis for the shared heap update to
prove that the parallelization is semantics-preserving
(Section iii).

◦ We target FPGA accelerators with access to an off-
chip memory. The disjointness and sharing information
provided by our analyses are used to break the heap
(residing in off-chip memory by default) into heaplets,
to generate a custom parallel multi-cache architecture
and (if needed) coherency mechanisms: we synthesize
parallel private caches for disjoint heap regions and (in-
herently more expensive) coherent parallel caches for
shared regions (Section V).

◦ We demonstrate the effectiveness of our technique us-
ing three applications as test cases which dynamically
allocate memory and traverse and update heap-allocated
data structures. We use Xilinx Vivado HLS as an exem-
plary back-end HLS tool and implement for a Virtex 7
FPGA (Section VII).

This paper is an extended version of the work published
in [10]. In contrast to [10], the program analysis and code
transformations operate on the LLVM intermediate repre-
sentation [11], which allows us to combine the framework
with an LLVM-based technique [12] that optimizes the
capacity of the multi-cache system produced by our auto-
mated flow. In applications with large memory footprints,
the bulk of the data necessarily resides off-chip. The HLS
core then often keeps only small data structures on-chip.
Consequently, the amount of on-chip block random ac-
cess memory (BRAM) used by the core is often smaller
than the amount of the BRAM available. We leverage
our previous work in [12] which provides a technique for
repurposing left-over on-chip memory to scale up the size
of individual caches in the multi-cache system. This paper
integrates this technique in the above cache construction
flow to automatically generate and size the multi-cache
system for heap-manipulation code as shown in Fig. 1.

◦ We extend the cache compilation framework by a dy-
namic (input data dependent) program analysis to imple-
ment an automated size scaling of private caches using
spare on-chip memory resources. The original LLVM
code is instrumented with profiling instructions for gath-
ering the memory reference trace of the program under
test. We include a cache hit rate estimator based on this
trace (Section ii).

◦ The cache size assignment is cast into a Knapsack
Problem to find the best distribution for the memory
access pattern of a particular application (Section iii).

◦ We evaluate the combined tool flow with physical
implementations on a Virtex 7 FPGA connected to a
DDR3 memory, showing up to 3× improvement of the
execution time compared to the cache system in [10].
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Figure 1: Summary of the extended tool flow in this paper.

We also characterize the impact of the cache insertion
by the combined flow in terms of power and energy
consumption (Section VII)

The remainder of this paper starts with an introduction
of LEAP, the open-source framework this work leverages,
and a discussion of related work.

II. Related Work

Automatic cache design in an HLS context requires
the extraction of application-specific properties from
program descriptions and remains outside the scope of
most HLS flows. This work provides a static memory
access analysis and automated code generation. The
latter embeds the C/C++-based HLS kernels in the
LEAP (Latency-insensitive Environment for Application
Programming) framework [13], an environment that
provides access to a physical FPGA device and memory.
Like an operating system, LEAP provides a unified
layer of abstraction on top of device-specific drivers
that interface to the underlying FPGA device, on-board
memory and the host system. We build a memory
hierarchy including the multi-cache system using LEAP
Memories [14, 15]. LEAP Memories are abstractions,
which build an interface to off-chip memory underneath
a uniform interface. Each single memory contains an
optional direct-mapped on-chip cache [14] which holds
a copy of data residing in external memory. LEAP
memories without on-chip caches forward all requests
to off-chip memory which results in longer response
times. The same applies for cache misses. Evicted items
are automatically flushed to the next memory level. A
multi-cache system is built by instantiating multiple
memories with on-chip caches. LEAP memories also
provide an optional inter-cache coherency mechanism [15].
We use both types, private (for disjoint memory regions)
and coherent memories (for shared memory regions). The
latter appear as independent interfaces to the application,
while they are internally connected via an additional
ring network. Coherent memories are more expensive
(in terms of FPGA resources) and slower (in terms of
response time) than their private counterparts. Our
automated technique thus seeks to avoid using costly
coherent memories whenever possible, based on the
specific requirements of the application.

Recent work has also explored the design space of
the cache micro-architecture [15–19]. Matthews et al. [17]
explore the efficiency in terms of speed-up versus area
increase of parallel coherent L1 caches with respect to
size, associativity and replacement rule in an FPGA-based
soft multi-core processor. Similarly, Choi et al. [18]
compare different configurations of cache size, line size
and associativity of shared on-chip caches, in addition to
two approaches for increasing the number of access ports
of the shared cache. FCache [16] and LEAP Coherent
Memories [15] target the micro-architecture of coherency
mechanisms for shared memory systems in FPGAs. The
goal in this work is different. We determine coherence and
synchronization requirements for a particular application,
infer cost/performance estimates prior to implementation
and devise an automated cache system construction
for a given application instead of exploring the cache
micro-architecture.

There are several approaches to cache construction
in an HLS context. Cheng et al. [3] use run-time profiling
to group memory accesses the same locations into
partitions and to instantiate separate on-chip caches
assigned to disjoint memory regions. This approach does
not make any assumptions about the type of program to
analyze, but a disadvantage is the need for user-provided
input data to settle the disjointness question and that it
requires a mechanism to take corner cases into account
that have been missed during simulation. We determine
the need for coherency, a parameter that affects functional
correctness, in a compile time analysis. Similar to our
work, the CHiMPS framework is a C-to-FPGA flow
that generates a distributed multi-cache architecture [4].
A main difference to our work is that independent
memory regions must be manually indicated with source
code annotations as opposed to an automated analysis.
Secondly, shared memory regions are not supported
by caches, while we automatically insert a coherency
network when it is required. CHiMPS’ many-cache
system is notable in that it also constructs parallel caches
based on left-over BRAM, clock rate degradation and
predicted miss rate. The third key difference of our work
is the non-uniform sizing, which is realized by solving an
optimization problem to find the best assignment of cache
sizes subject to a resource constraint.

Significant advancements in automated static anal-
yses have been made for loop analyses using the polyhedral
model, an algebraic representation of the iteration space
of static loop nests. The model can precisely analyze the
accesses to static arrays referenced in such loop nests.
For example, Liu et al. [5] and related work in [6] use the
polyhedral model to determine the addresses of reused
data items and buffer them in on-chip memories, whereas
Pouchet et al. [7] present an on-chip buffer insertion in
combination with automatic loop parallelization. The
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1 //main kernel function
2 void filter(TR *root , CS cinit , CI *z) {
3 CS* c0 = new CS;
4 *c0 = cinit;
5 ST *s = push(root , c0, true , NULL);
6 while (s != NULL) {
7 TR *u; CS *c; bool d;
8 s = pop(&u, &c, &d, s);
9 CS cs = *c;

10 if (d) {
11 delete c;
12 }
13 CS *cnew = new CS;
14 *cnew = subfunction1(cs);
15 if (u->left!=NULL) && (u->right!=NULL) &&

(subfunction2(cs))) {
16 s = push(u->left , cnew , true , s);
17 s = push(u->right , cnew , false , s);
18 } else {
19 delete cnew;
20 // update centroid information
21 CI w = u->wgtCent;
22 CI wprev = z->wgtCent;
23 z->wgtCent = wprev+ w;
24 }
25 delete u;
26 }
27 }
28 // auxiliary function push (create new entry)
29 inline ST* push(TR *u, CS *c, bool d, ST *s){
30 ST *t = new ST;
31 t->u=u; t->c=c; t->d=d; t->n=s;
32 return t;
33 }
34 // auxiliary function pop (delete list head)
35 inline ST* pop(TR **u, CS **c, bool *d, ST *s){
36 *u=s->u; *c=s->c; *d=s->d; ST *t=s->n;
37 delete s; return t;
38 }

Listing 1: Pseudo code from a K-means clustering kernel [2].

polyhedral model provides a powerful abstraction for
the analysis of static loop kernels and array references,
but it cannot analyze arbitrary memory accesses such as
indirect array references or pointer accesses or capture
dynamic memory allocation. Our focus on heap-allocated
data-structures significantly increases the body of code
for which automated parallelization and automatic
memory-system optimizations can be applied.

III. Motivating Example

This section reviews a motivating example and explains
how the extensions of the baseline analysis in [9] are
applied to generate a multi-cache architecture for both
private and shared heap regions. Our example is taken
from a high-performance implementation of the filtering
algorithm [20] for K-means clustering. Listing 1 shows
the tree-based K-means clustering kernel code [2]. The
while-loop in filter accesses four heap-allocated data
structures: the binary tree (type TR), the sets of candidate
centers (type CS), the stack (type ST) and the centroid
information (type CI). The tree has been built up from the
data set to be clustered. The center sets are intermediate

... ...

... ... ... ...
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Figure 2: Snapshot of the pointer-linked dynamic data structures ac-
cessed by the loop in Listing 1.

solutions propagated through the call graph. The stack
data structure is a pointer-linked list which manages
the tree traversal. It stores the pointers to left and right
subtrees and the center sets. The auxiliary functions push
(Lines 5, 16 and 17) and pop (Line 8) retrieve these pointers
from it and perfom new/delete operations on its head.
If the data-dependent conditional (Line 15) evaluates to
false (dead end of the tree traversal) the centroid data
structure is updated (Lines 22 and 23) which contains the
information from which the final clustering result is calcu-
lated. As we shall see below, this code fragment results
in a shared resource after parallelization of the application.

All data structures accessed by this program are
created at run-time using dynamic memory allocation.
Dynamic allocation (and disposal) results in efficient
memory usage if the average-case amount of required
memory is much smaller than the worst-case amount. An
efficient memory architecture for this program provides
fast access to this small amount of memory space and,
at the same time, supports worst-case allocation by
providing a large memory as a backup. Hence, our
approach is to place, by default, all heap-allocated data
in a large off-chip memory connected to the FPGA
accelerator and to insert on-chip caches which mirror
parts of the off-chip data and provide fast data access. We
describe the extensions of our baseline analysis below.

i. Memory Partitioning and Parallelization

Fig. 2 shows an example of the data structures allocated
in the heap after executing two while-loop iterations of
Listing 1. The data structures are grouped according
to their types. The loop can be split into parallel sub-
loops as shown in Listing 2 (two in this example). If
we ignore the centroid data structure (type CI) in Fig. 2
for a moment, the baseline method in [9] can prove that
the pointers dereferenced in any iteration of a sub-loop
never refer to the data structures used by the other loop.
Hence, we call these loop kernels ‘communication free’
with respect to each other, i.e. these program parts can run
in parallel because they access different memory locations.
The analysis partitions the remaining tree data structure
(dark gray nodes, type TR) into two groups of sub-trees
labeled with a and b. It splits the linked list (type ST)
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into the uppermost node and the nodes beneath, and the
pool of center sets (type CS) is partitioned accordingly.
Each parallel sub-loop obtains its own interfaces to off-
chip memory and the fact that the memory regions can
be proven to be disjoint allows our tool to instantiate fast
and cheap private memories for each partition without
the need to ensure costly coherency between them.

ii. Parallel Access to Shared Resources

Our baseline analysis in [9] aborts if it cannot fully split the
heap-allocated data into the desired number of partitions.
For example, the shared centroid information in Fig. 2
cannot be partitioned since it is accesed by both sub-loops.
Our extended analysis marks it as a shared resource, indi-
cated by the label {a, b}, as both sub-loops would update
it after parallelization. After the detection of a shared
heap region, our framework instantiates a coherent mem-
ory interface to this region in each sub-loop consisting of
two parts: caches with a coherence mechanism and locks
which enable atomic updates of the shared resource in the
presence of multiple accessors. The detection of a shared
resource triggers a second analysis as sharing invalidates
the independence assumption that parallel units access
different data. Assuming that coherency is ensured be-
tween parallel units, it remains to prove that the modified
order in which the shared resource is updated after par-
allelization does not alter the program semantics. The
centroid information is updated in Line 23 of Listing 1

z→ wgtCent = wprev + w;

where w is the contribution of the tree nodes. In the orig-
inal, sequential program, z receives the contributions of
all nodes in the right sub-tree (labeled with a) before it re-
ceives the first contribution from the left sub-tree (labeled
with b in Fig. 2). However, in the parallelized version z
may be updated with data from left and right sub-tree
in an arbitrarily interleaved fashion. Even if atomicity of
the update is ensured, we must also ensure that this new
update order is legal. In this example, the parallelization
is legal because of the commutativity and associativity
of the addition1. We address this question with a com-
mutativity and associativity analysis of the update function.
Listing 2 shows the output of a source code transformation
based on the result of all analyses above. The transformed
code, when run through a back-end HLS tool and RTL
implementation, results in a custom configuration of mul-
tiple private/coherent memories with a custom degree
of parallelism. The on-chip FPGA memory blocks are
aggregated accordingly to construct the custom parallel
caching scheme.

1We focus on integer or fixed-point systems and ignore non-
associativity caused by floating-point representations.

1 void filter(TR *root , CS cinit , CI *z) {
2 ... preamble (pointers access partitions a and

b)
3 while (sa != NULL) { // parallel loop kernel a
4 .. access private memory for CS , partition a
5 .. access private memory for ST , partition a
6 .. access private memory for TR , partition a
7 acquireLock ();
8 .. access coherent memory for CI , partition a
9 releaseLock ();

10 }
11 while (sb != NULL) { // parallel loop kernel b
12 .. access private memory for CS , partition b
13 .. access private memory for ST , partition b
14 .. access private memory for TR , partition b
15 acquireLock ();
16 .. access coherent memory for CI , partition b
17 releaseLock ();
18 }
19 }

Listing 2: Transformed program from Listing 1.

iii. Custom Cache Sizing

The above identification of disjoint and shared heap re-
gions and the legality of parallelization provides informa-
tion about the cache types, but no information about their
size. Hence, all caches inserted by the tool flow above have
the same size by default. Since we synthesize a cache for
each data structure partition, the access patterns to these
memory regions may be very different: For example, the
stack data structure in Listing 1 is usually small compared
to the tree structure and has high access locality at the
head of the stack. In this case, using the available on-chip
memory to build a small cache for the stack and a large
cache for the tree is more beneficial than both caches hav-
ing the same size. In addition to the static analysis above,
we extend our tool flow by a profiling-based analysis in
Section VI which enables custom sizing to maximize the
aggregate hit rate of the multi-cache system. We refer to
the profiling-based analysis as a dynamic analysis.

IV. Extended Static Program Analysis

This section describes the program analyses enabling
the code transformations that turn a sequential heap-
manipulating program into a parallelized HLS implemen-
tation with an application-specific off-chip memory inter-
face. The following background section briefly reviews
theoretical background of separation logic [8] and the heap
analysis developed previously in [9], which we refer to
the ‘baseline analysis’. New extensions of the baseline are
described after Section i.

i. Background

Our static analysis is based on the symbolic execution of
a program under test. The values assigned to program
variables and memory cells accessed are referred to as
program state. During execution, the state is modified
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by program statements (commands). Additionally, a
program contains control parts such as conditionals and
loops. The symbolic execution engine in our analysis
propagates the program state through all paths of the
control flow graph (CFG). Branching creates multiple
control flow paths and loops create a cycle.

The analysis uses a formal description of the pro-
gram state. It describes the values assigned to program
variables (e.g. x = 3 ∧ y = 5 means that variable x and y
currently hold the value 3 and 5, respectively, where ‘∧’ is
the classical ‘and’-conjunction). At each CFG node, the
symbolic execution engine updates the current description
of the program state, e.g. the assignment statement x := 1
results in the new state x = 1 ∧ y = 5. In addition to
this, the state model consists of the heap which describes
the values assigned to addressable memory locations
(e.g. v 7→ 4 means that the memory cell referenced by the
pointer variable v contains the value 4). Reasoning about
the program semantics in this way is substantially more
complicated if a program uses heap-directed pointers.
Assuming that the current program state is u 7→ 4∧ v 7→ 6
and we execute the heap update command [u] := 1, we
may wish to conclude that the assignment does not affect
the heap cell referenced by v, i.e. u 7→ 1 ∧ v 7→ 6. This,
of course, can only be ensured if we explicitly rule out
the potential aliasing of u and v by adding an additional
constraint: u 6= v ∧ u 7→ 1∧ v 7→ 6. These constraints are
required for each pair of pointers in the program, quickly
limiting the applicability of an automated heap analysis
to real-life programs arising in practice.

Separation logic solves this problem by extending
the classical first order logic by a ‘separating conjunction’
(∗): The formula u 7→ 4 ∗ v 7→ 6 means that the heap is
split into two disjoint portions h0 and h1, where u 7→ 4
holds for h0 and v 7→ 6 holds for h1. We call disjoint
heap portions heaplets. The ∗-operator rules out aliasing
of pointers u and v by definition, i.e. it implies u 6= v.
Hence, each heap cell can be updated without any side
effects for the other one. In addition to single values,
u 7→ [f1 : x′1, .., fn : x′n] describes a heap-allocated record
(structs in C/C++): u points to a record containing the
fields f1, ..., fn with content x′1, ..., x′n. In addition to
program variables u, v, x and y, the primed variables
x′1, ..., x′n are symbolic replacements of values and are
only used in formulae (not as program variables). The
abbreviation u 7→ _ means that u points to ‘some’ record.
In general, formulae in separation logic are of the form
Π∧Σ, where Π are assertions in classical logic (connected
by ‘∧’) and Σ are spatial assertions such as u 7→ 4 ∗ v 7→ 6.
Σ can also include the value emp which denotes an
empty heap where nothing is allocated. Pointer variables
may hold a special value nil corresponding to the NULL

expression in C/C++. The effect of heap-manipulating
program commands (new, delete and dereferencing for

read/write) can be specified with concise separation logic
formulae and used by the symbolic execution engine.
Our analyses use a ‘heap footprint’ analysis [21] to find
disjoint and shared heap regions in the program.

Our baseline analysis for identifying private heap
regions and memory partitioning [9] is the starting point
for all subsequent analyses related to parallelization,
shared resources and commutativity of shared resource
updates. Loop parallelization and its follow-up analyses
are only triggered if (at least parts of) the heap-allocated
data structures accessed by the loop can be split into
P partitions, where P is the desired parallelism degree.
The inner do-while-loop in Algorithm 1 summarizes
the baseline analysis in [9]. The analysis starts with the
separation logic formula describing the pre-state of the
loop (Π ∧ Σ). The while-loop in Line 24 symbolically
executes (function SymbExeLoopBody) the loop body.
We refer to this process as ‘peeling off’ (unrolling) loop
iterations. For our motivating example above, two loop
iterations of the while-loop in Listing 1 are peeled off and
a new formula describing the new state are obtained. In
each peeling step, the analysis adds additional pointer
variables to the state formula. We name these variables
cut-points [9] and the insertion function CutpInsert.
Cut-points split the state formula in partitions. After
two peeling steps for this example, the analysis has
found a valid set of cut-points C, that is 1) C consists of
P = 2 cut-points, 2) these cut-points reference heaplets
of the same shape, i.e. describe the same type of data
structure. These two cut-points are the pointer s in
Fig. 2 and a second pointer sb referencing the uppermost
stack record in Fig. 2. The built-in fix-point calculation
(function FixpCalc) [9] now aims to prove that the
initial partitioning of the heap-allocated data structures
is maintained for all subsequent loop iterations of the
while-loop in Listing 1, i.e. any loop iteration accesses
either the partition referenced by s or that referenced by
sb, but never both. If we ignore the centroid information
in Fig. 2 for the moment this proof is successful; the
loop iterations can hence be split into P = 2 groups with
accesses to disjoint regions of memory, a prerequisite for
parallelization.

ii. Detecting Private and Shared Resources

The baseline analysis in [9] is limited to cases where the
accessed memory space can be split into independent,
private partitions. In that work, we aborted the analysis
reporting a failed proof after a fixed parameter of L
unrollings if the program state cannot be completely
partitioned (Line 32 in Algorithm 1). Here, we relax the
constraint that the inherent parallelism of the application
needs to be communication-free. The outermost do-while-
loop in Algorithm 1 shows the extended analysis to
identify disjoint and shared resources. If we now include
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Algorithm 1 Detecting private and shared resources.
1: Input:
2: Loop body specification (code)
3: Initial state formula (Π ∧ Σ)initial
4: Output:
5: Assignment of pointer statements to heap partitions
6: Number of initial unrollings
7: Shared/private predicate for pointer statements
8: Variables:
9: it: Iteration counter (number of iterations to be unrolled)

10: C: Set of cut-points
11: Cshared: Set of cut-points referencing shared heaplets
12: Scutpoints: Set of cut-point states
13: Π ∧ Σ: Loop pre-state formula
14: StmtS: Set of statement sets accessing shared heaplets
15: function HeapAnalysis

16: Cshared ← ∅
17: do
18: it← 0
19: C ← ∅
20: Π ∧ Σ← (Π ∧ Σ)initial
21: StmtsS← ∅
22: success← false

23: do
24: while C not valid do
25: Π ∧ Σ← SymbExeLoopBody(Π ∧ Σ, it)
26: Π ∧ Σ, C ← CutpInsert(Π ∧ Σ, Cshared)
27: it← it + 1
28: end while
29: Scutpoints ← AssignCPStates(C)
30: success, Stmtsshared ← FixpCalc(

Π ∧ Σ, C, Scutpoints, Cshared)
31: StmtsS← StmtsS ∪ {Stmtsshared}
32: while (not success) and (it < L)
33: if it = L then
34: Cshared ← ExtrctCutp( argmin

Stmts∈StmtsS
|Stmts|)

35: end if
36: while not success
37: ... generate analysis output
38: end function

the centroid information of our motivating example and
run the disjointness analysis, the fix-point calculation
cannot maintain the partitioning as it always finds a
non-singleton label set attached to it and never reports a
valid proof. Our goal is to mark this heaplet as a shared
resource. The shared resource analysis requires two
extensions of the baseline analysis: 1) identifying shared
heaplets and 2), once marked as shared, re-running
the cut-point insertion and proof-engine invocations
while excluding them from the search for separable heap
regions.

In the first phase, we turn a failed proof of com-
plete separability into the detection of shared resources.
Returning to our running example, we run the cut-point
insertion and fix-point calculation with the objective of
splitting the heap into P = 2 partitions. After peeling
off the first two loop iteration, the function FixpCalc

terminates unsuccessfully because it finds that both
groups of loop iterations (as explained above) access the
centroid information in Fig. 2. Even if more iterations are
peeled off, the shared access to this heaplet remains. We
use a heuristic to filter such shared resources by declaring
all heaplets, which maintain this sharing property after L

unrollings, as shared (Line 32). The fix-point calculation is
modified in that whenever it detects sharing on a heaplet,
it collects the set of program statements that accessed
the shared heaplet (each statement in the control flow
graph has a unique identifier). During the course of the
alternating iteration unrolling, cut-point insertion and
fix-point calculation, the analysis builds a set of statement
sets accessing shared heaplets (StmtsS).

After termination of the inner do-while-loop, the
analysis is reset. From StmtsS, we pick the set Stmts
containing the fewest statements accessing shared
resources, from which the function ExtrctCutp extracts
all cut-points mentioned in at least one of these program
statements (Cshared). The second phase begins by relaunch-
ing the analysis. We pass the set Cshared to the modified
function CutpInsert which excludes these cut-points
during the search for cut-points in the loop pre-state.
Similarly during the fix-point calculation we prevent the
analysis from complaining about the shared access if the
current program statement has been marked as excluded.
Finally, we obtain a proof of separability for the tree,
the stack and the pool of center sets, and the centroid
heaplet is marked as a shared resource. The interface
to the shared region in off-chip memory is supported
by a coherency protocol. The corresponding program
statements accessing the shared resource are Lines 22
and 23. The knowledge of shared resource access made
by these statements, discovered by the analysis, is used
by the source code transformation to insert acquireLock
and releaseLock commands before and after the critical
statements as shown in Listing 2 in order to ensure atomic
updates of the shared heap region.

iii. Commutativity Analysis

Parallelization in the presence of shared resources requires
a second analysis step after detection of a shared heap
region. We must verify that, after parallelization, the pro-
gram semantics are not altered as a result of the order
in which the updates of the shared resource are made
by the parallel version being altered. For example, dur-
ing the execution of the original (unparallelized) loop
in Listing 1, the shared centroid information receives all
contributions from the right sub-tree before it receives
any contribution from the left sub-tree, while it may be
updated with data from left and right sub-tree in an ar-
bitrarily interleaved fashion in the parallelized version.
Enforcing the original order with barrier synchronization
means re-sequentializing the parallelized implementation
and is not a viable solution. Instead we want to determine
that the modified order of state updates is legal. In the
following walk-through, for ease of explanation, we define
the function F which reads and writes the shared state
(Lines 22 and 23 in Listing 1):

7
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Definition 1 (Update function).

function F(w)

wprev = z→ wgtCent;

z→ wgtCent = wprev + w;

end function

A commutativity analysis was proposed by Rinard and
Diniz [22] and our approach builds on the same basic
idea: We say two operations on the program state are
commutable if their execution in sequence results in the
same program state regardless of their execution order. In
our case, F is commutable if ∀w1, w2, F(w1); F(w2) results
in the same program state as F(w2); F(w1). From the
shared resource detection above, we extract the pre- and
post-conditions on the program state before and after F’s
execution:

{w = w′0 ∧ z 7→ [wgtCent : w′1]} (1)

F

{w = w′0 ∧ w′2 = w′1 + w′0 ∧ z 7→ [wgtCent : w′2]}

The extraction phase brings the pre- and post-specification
of F into a canonical form Π ∧ Σ, where Π are the pure
formulae and Σ are the spatial formulae referring to the
shared heap resource. For example, the built-in symbolic
execution engine ensures that arithmetic operations in the
state formulae appear only in the pure part as demon-
strated for the expression w′1 + w′0 in the bottom row of
(1). We test whether F is commutable by symbolically
executing two sequences of two calls to F:

w = w′0,1; F(w); w = w′0,2; F(w); w = w′0,3; (2)

w = w′0,2; F(w); w = w′0,1; F(w); w = w′0,3; (3)

Note the permuted assignment of symbolic values to w in
(3). In order to show that F is commutable, we must prove
that the post-states of the sequences in (2) and (3) describe
the same program state. Their post-state formulae are:

{w = w′0,3 ∧ w′3 = w′1 + w′0,1 + w′0,2 ∧ z 7→ [wgtCent : w′3]} (4)

{w = w′0,3 ∧ w′4 = w′1 + w′0,2 + w′0,1 ∧ z 7→ [wgtCent : w′4]} (5)

The updated shared resource in (4) and (5) is described
by z 7→ [wgtCent : w′3] and z 7→ [wgtCent : w′4], respec-
tively. We want to prove that these predicates describe the
same state. We first ask a separation logic theorem prover
whether they match which recognizes their equality in
shape and creates a new proof obligation: w′3 = w′4. Next,
we combine this verification condition with the remaining
pure parts of the formulae and aim to prove:

∀w′0,2, w′0,1. (6)

w = w′0,3 ∧ w′3 = w′1 + w′0,1 + w′0,2 ∧
w = w′0,3 ∧ w′4 = w′1 + w′0,2 + w′0,1 ⇒ (w′3 = w′4)

In the actual verification step, we use satisfiability modulo
theories (SMT) solving [23] to decide (6). However, an SMT

solver cannot deal with the universal quantification (∀), so
we rephrase (6) by negating the verification condition:

∃w′0,2, w′0,1. (7)

w = w′0,3 ∧ w′3 = w′1 + w′0,1 + w′0,2 ∧
w = w′0,3 ∧ w′4 = w′1 + w′0,2 + w′0,1 ∧ (w′3 6= w′4)

The solver returns one of three possible results: 1) If (7)
is satisfiable, we can find an assignment to the input vari-
ables w′0,2, w′0,1 of F that makes the two program states
after executing the two sequences different: F is not com-
mutable. 2) If (7) is not satisfiable, there is no such as-
signment: F is commutable. 3) The solver may not be
able to decide the question in which case we conserva-
tively assume that F is not commutable. For the running
example and with the theory of linear arithmetic of inte-
gers it decides that F is commutable. Commutativity has
been proven to be an undecidable problem in general [24].
However, it can still be shown for many cases that arise
in practice. Next, we describe our compilation flow that
uses the information provided by the above static program
analyses to generate custom multi-cache architectures.

V. Code Generation

The tool flow of the multi-cache synthesis consists of
three main parts: 1) The analysis extension builds on the
baseline heap analyzer in [9]. It also interfaces to the
Z3 SMT solver [23]. 2) The modified source-to-source
translator, which implements the loop parallelization and
pointer access transformations, is implemented as a cus-
tom transformation pass in the LLVM infrastructure [11].
The code generation includes directives for instructing
Vivado HLS to generate bus interfaces for memory
access. 3) We use LEAP [13] to embed the C/C++-based
HLS kernels in an environment that constructs the
on-chip/off-chip memory hierarchy (through LEAP
Memories) as explained in Section II.

The source-to-source transformation replaces heap
memory with arrays located in off-chip memory by
default (a portion of them then resides on-chip via caches)
and each heap access becomes an access to the external
memory bus. Our translator turns pointer dereferencing
into array-based bus accesses and instantiates a memory
interface for each data structure type and each of the P
heap partitions (private and shared). The extended heap
analyzer provides information on whether the memory
bus points to a private or a shared heap region. We insert
a generic Verilog wrapper for each interface which acts
as a bridge between Vivado’s native bus protocol and
the LEAP interface. Vivado’s scheduler ensures that,
when the HLS kernel issues a memory request, it stalls
execution until the memory request has been serviced by
the LEAP Memory.

8
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Figure 3: Parallelized HLS implementation of the filtering algorithm
with a hybrid cache architecture (private interfaces for center
sets (CS), stack records (ST), tree nodes (TR), coherent
interfaces for the centroid information (CI)).

1 requestLock(access_critical_region0);
2 waitForLock (); // stalls until lock is acquired
3 ... issueMemoryRequest //set memory fence
4 releaseLock(access_critical_region0);

Listing 3: Lock-synchronized shared memory access.

Fig. 3 shows the integration of our running exam-
ple after heap partitioning and parallelization with P = 2
into the LEAP memory hierarchy. Each loop kernel (we
omit the preamble here) has an interface to the memory
system for each type of heap-allocated data-structure:
center sets (CS), stack records (ST), tree nodes (TR)
and centroid information (CI). An additional coherency
network is instantiated for the CI ports (shared memory).
For shared heap regions, the source translator inserts
synchronization signals to ensure atomic updates to
the shared heap cell. Listing 3 shows an example. The
function argument access_critical_region0 translates
into a Boolean signal in the generated RTL code and
triggers lock acquisition and release. LEAP’s lock service
ensures that no access to heap region 0 is granted before
the lock is acquired (only one requestor can own the lock).
The memory fence instruction ensures that the memory
transaction has been completed before releasing the lock.

The on-chip caches of the LEAP Private and Coher-
ent Memories are direct-mapped and we use a write-back
policy. The presence of a coherency/synchronization
mechanism is the only variable parameter in our cache
architecture implementation above. The next section
describes how our design aid automatically determines
how much on-chip memory should be used for the
implementation of each individual private cache.

VI. Custom Cache Sizing

Our cache sizing technique uses up the left-over BRAM
and enlarges the private on-chip caches. The size of

each private cache is set individually in order to obtain
a size distribution across the parallel caches that is
tailored to the memory access pattern of a particular
application. It is important to note that our technique
does not rely on successive synthesis and place-and-route
cycles, but instead estimates the cache performance
for different sizes with a pre-RTL, dynamic program
analysis of the input code to an HLS tool. Our approach
relies on a prediction of the performance of each cache
from the application’s reference stream, and finds a size
configuration that maximizes the aggregate performance
subject to a resource constraint. We adopt here a run-time
profiling approach for capturing the memory reference
trace in order to ensure wide applicability. Especially in
heap-manipulating programs, the absolute data structure
size is often unknown at compile time. Our dynamic
analysis can handle such programs at the expense of
relying on a representative input data set provided by the
user. Using a data set which is not representative of the
typical use case may affect the performance of the cache
system, but does not compromise functional correctness
of the implementation.

To give a more concrete example of our technique,
we consider a two-cache system consisting of private
caches. Our compilation flow above generates such a
system, for example, from applications which use a tree
data structure and a stack to implement a depth-first tree
traversal. Assuming we have only run the transformation
of pointer references and cache insertion for such an
application without asking for additional parallelization,
the hardware implementation has a private cache for
stack records (ST) and tree nodes (TR). The RTL design
for the modified source code is generated with an HLS
tool, for example Xilinx Vivado HLS, which also provides
information of the BRAM resources consumed by the
HLS core itself. In this case, the core uses 112 36k-RAM
blocks which leaves 918 left-over blocks in a Virtex 7
device (xc7vx485tffg1761-2) to be used by the platform
surrounding the HLS core. With a conservative 40%-
margin, 550 RAM blocks (2200 kB2) can be repurposed as
cache memories.

Our technique then estimates the performance of
the caches from the memory reference trace, which is
obtained from running the HLS input program with
a representative input data set provided by the user.
The reference stream, together with the knowledge of
the cache type (direct-mapped, set-associative, fully
associative) allows us to model the aggregate hit rate of
the multi-cache system. For K = 2 private caches as in
this example, there is no interaction between the caches

2We use 32 kbits in a Xilinx 36K-RAM block to store user data
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Figure 4: Aggregate hit rate estimate for a two-cache system with an
2200 kB on-chip memory constraint.

and the aggregate hit rate is given by:

η =
∑K−1

i=0 hi(Bi)

∑K−1
i=0 ti

, (8)

where hi is the number of hits in cache i of size Bi, ti is
the total number of accesses to cache i. Fig. 4 shows the
aggregate hit rate for the two direct-mapped caches over
different feasible size configurations. The design space
spans hit rates from 79% to 97%. The hit rate of Cache
0 (for stack records of type ST) reaches its maximum
at 32 kB and then plateaus. The reason for the steep
improvement with low sizes and early saturation is
the high locality of the memory accesses made to the
stack-like linked list and the fact that just 32 kB of cache
memory is sufficient to keep the entire data structure
on-chip. For tree nodes (Cache 1), a 2 MB cache is needed
to fit all tree data. Clearly, spending the same amount of
memory resources on both caches is sub-optimal.

The advantage of our technique over a one-size-
fits-all cache scaling becomes obvious when we take the
memory resource constraint of 2200 kB into account.
With a fixed size for all caches, on this grid, we could
implement caches with a maximal capacity of 1024 kB
each, which corresponds to the bar marked with the
solid-line blue ellipse in Fig. 4. A cache sizing tailored
to the access pattern of the application allows us to
decide that a size of 32 kB for Cache 0 and 2048 kB for
Cache 1 maximizes the hit rate while still satisfying the
resource constraint. This design point is marked with the
dashed blue ellipse in Fig. 4. In general, implementations
(including those parallelized by our CAD flow) will use
more than two parallel caches, and the disparity between
fixed-size and application-specific cache sizing will be
larger.

Replacing a fixed-size scaling with a specific size
distribution relies on the ability to predict the perfor-
mance of each cache from the reference stream, and
to find a size assignment maximizing the aggregate
performance subject to a memory constraint. Our cache
sizing flow has three components: 1) It determines
unused BRAM resources, which requires an estimation of
the memory resources used by the HLS core itself. 2) It
predicts the hit/miss counts of each cache for different
sizes. 3) The amount of spare BRAM and the cache
performance estimates are combined into an optimization
problem which finds a variable size configuration in the
multi-cache system that maximizes the aggregate hit rate.

i. On-chip Memory Utilization Estimation

We obtain high-level estimates of the BRAM consump-
tion from the HLS tool to determine the left-over RAM
resources. Here, we use Vivado HLS, which provides esti-
mates of the number of LUTs, FFs, DSP slices and RAM
blocks consumed by the HLS core. Compared to LUTs,
FFs and DSP slices, the predicted amount of memory is
relatively accurate. Once the tool decided which variables
in the code go into BRAM, a conservative estimate can
be easily made. We evaluated the accuracy of the BRAM
estimation in [12] by comparing the high-level estimates
with post placement and routing (PAR) results. The only
cases where the high-level prediction deviates from the
implementation post PAR were observed when the down-
stream RTL synthesis tool performed bit truncations that
affected operands stored in memory. However, in these
cases, the high-level estimate is always higher than the
actual usage, which results in a slightly conservative but
safe estimate. We also include a 10% security margin
in the left-over portion used for cache construction. We
use a cache banking technique in [19], implemented in
the context of this work, to address a potential clock rate
degradation due to large on-chip RAMs. Each cache mem-
ory is divided into smaller parallel banks with pipeline
buffers at the input and output, relieving the timing pres-
sure on cross-chip routing paths. This multi-cycle banked
cache structure ensures that the critical path lies within
the HLS core instead of the cache in all our benchmark
designs.

ii. Cache Performance Estimation

We build our sizing technique on top of the multi-cache
generator above. We instrument the transformed program
with profiling instructions that fill trace buffers, which
maintain the memory reference trace for each bus interface
to external memory. The profiling run takes user-provided
input data. Hence, we may miss corner cases with this
dynamic program analysis. However, since cache size is
only a performance-related parameter, the functional cor-
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rectness of the optimisation is not compromised. The trace
buffers are empty at program start-up. On each access
to external memory in the program, the instrumentation
code adds the memory address. In this way, we build up
reference streams of length Mi:

( a0,i, ..., aMi−1,i ), (9)

where i is the index of the memory interface. The memory
is divided up into blocks, some of which will have copies
in the cache. The block width L is equal to the cache line
size. For a data width smaller than L the block reference
streams

( b a0,i
L c, ..., b aMi−1,i

L c ) (10)

give us the dynamic trace of memory accesses at the
granularity of the cache line size. The line size is a
fixed parameter in our analysis. If the user data width
is larger, a cache access is split into multiple sequential
chunks in our implementation. We model this by
expanding the block reference stream (10) accordingly
in a post-processing step. The cache size remains the
only variable parameter in the hit rate estimation. Other
parameters such as associativity are fixed but must be
taken into account.

The stack distance metric [25, 26] counts the number
of unique references ‘between’ accesses to the same
address. A fully associative cache with LRU replacement
policy produces a miss if this number exceeds the number
of cache lines B. The stack distance thus provides
an exact model of such a cache. The stack distance
distribution of a reference stream allows us to count cold
misses (cache misses due to empty cache at program
start-up) and capacity misses (misses due to line eviction
because the cache is full) in fully associative caches. In
lower-associativity caches, additional conflict misses occur
(eviction due to intervening references although the cache
is not full) which the stack distance approach can only
approximate [25, 26]. The prediction accuracy worsens
with decreasing associativity.

Because we target direct-mapped caches and our
goal is an accurate prediction, we devise a precise hit
rate determination for direct-mapped caches. For each
reference r and the previous reference r′ to the same
block address, we examine the intervening references
between r′ and r. A conflict miss occurs if at least one
intervening reference accesses the same cache line, which
is determined by reference modulo the cache size B.
Algorithm 2 shows Matlab-like pseudo code of the hit rate
estimator for direct-mapped caches (size B). It predicts
the the number of hits (nhit) and misses (nmiss) of the
cache dependent on its size. We validate our cache model
in [12] with measurements of the actual hit/miss rates.
Additionally, we compared the stack distance-based
approximation in [25] (hSD

est , errorSD) with our estimator.

Algorithm 2 Hit rate of a private, direct-mapped cache.
1: Input:
2: Block reference stream S
3: Number of cache lines B
4: Output:
5: Miss count nmiss
6: Hit count nhit
7: function estimate_hitrate(S)
8: Su ← unique(S) . keep unique block references
9: nmiss, nhit ← 0

10: for all r ∈ Su do
11: I ← findAll(S = r) . get indices of entries equal to r
12: c← r mod B . cache line accessed by r
13: nmiss ← nmiss + 1 . first access is always a cold miss
14: for j = 1 . . . length(I)− 1 do . loop over remaining accesses
15: R′ ← S(I(j− 1) + 1 : I(j)− 1) . intervening refs
16: C ′ ← R′ mod B . intervening cache line refs
17: if find(C ′ = c) = ∅ then
18: nhit ← nhit + 1 . hit
19: else
20: nmiss ← nmiss + 1 . conflict miss
21: end if
22: end for
23: end for
24: return nmiss, nhit
25: end function

Ours matches exactly the measured hit/miss counts, i.e.
Algorithm 2 models our direct-mapped caches perfectly.
The approximation by Brehob and Enbody [25] tends to
underestimate the hit rate of direct-mapped caches, an
observation also made in [25]. The high-level hit rate pre-
diction allows us to compare the performance of cached
memory interfaces with different block reference streams)
relative to the other caches and select a configuration of
cache sizes that maximizes the aggregate hit rate. The
next section describes how our technique finds such a
configuration.

iii. Optimization Strategy

Our compiler generates K caches as described above. With
Algorithm 2, we can estimate the performance of each
independent cache hi(B), i = 0 . . . K − 1 once we have
obtained the corresponding reference streams. We assign
different sizes to the caches in such a way that the ag-
gregate hit rate is maximized. To this end, we assign to
each cache a set of N cache sizes Bi = {B0, B1, . . . , BN−1}
and compute the hit rate relative to the total number of
accesses for each size. We cast the search for the best size
assignment for each cache into an optimization problem
and define the following variables:

pij = hi(Bj) the profit (hit rate of cache i)
wij = brami(Bj) the cost (block RAM consumption

of cache i)
C the global constraint on the available

block RAM resources
xij ∈ {0, 1} a binary variable,

where i = 0 . . . K− 1 iterates over caches and j = 0 . . . N−
1 iterates of cache sizes. We phrase the maximisation
problem as a Multiple-Choice Knapsack Problem (MCKP) [27]
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as follows:

maximise ∑K−1
i=0 ∑N−1

j=0 pijxij

subject to ∑K−1
i=0 ∑N−1

j=0 wijxij ≤ C

and ∑N−1
j=0 xij = 1, i = 0 . . . K− 1

(11)

The objective in (11) maximizes the aggregate hit rate of
K caches. The first constraint enforces memory resource
limits and the second constraint ensures that, for each
cache, exactly one size from the set Bi is selected. We solve
the MCKP with an algorithm by Pisinger et al. [27] based
on dynamic programming. The next section evaluates the
HLS design aid.

VII. Experiments

We run our experiments with the three C++ applications
from that traverse, update, allocate and dispose dynamic
data structures in heap. All applications perform
pointer-chasing and are therefore sensitive to the memory
access latency.
Merger. The program builds up four linked lists from
scratch performing a sorted insertion of input values,
and subsequently merges and disposes the four lists to
produce a single sorted output stream. The linked lists are
disjoint, the parallelized program does not access shared
heap memory as determined by our analysis. Four private
caches are inserted in the parallelized implementation.
Reflect Tree. The application traverses a binary tree and
recursively swaps the left and right child pointer of some
nodes to produce a partially mirrored tree. The HLS core
consists of P parallel units, each of which has two private
memory interfaces and one interface to shared memory
which holds a running minimum. P coherent caches and
a lock service are instantiated for the shared heap region.
Filter. This is our running example. The tree, center
sets and linked list data structures are partitioned and
supported by private caches and the traversal loop is
parallelized. The shared heap-allocated running sum is
supported by coherent caches and a lock service.

We use Xilinx Vivado HLS 2014.1 as a back-end C-
to-FPGA tool. We implement our benchmarks on a VC707
evaluation board (Virtex 7 FPGA, xc7vx485tffg1761-2,
1GB DDR3 SDRAM). We build the Bluespec-based LEAP
framework with Bluespec 2014-07-A. The generated RTL
code is integrated into the framework with Bluespec’s
import BVI statement. The complete FPGA designs are
implemented in a hybrid flow with Synopsys Synplify
Premier 2014.03.1 for synthesis and Xilinx Vivado 2014.4
for placement and routing. We report FPGA slices, DSP
slices, 36k-BRAMs (18k-blocks count as 0.5 36k-blocks)
and total latency (cycle count × clock period) for the
complete FPGA designs (HLS core and multi-cache

Table 1: Parallelization and caching (cache size 1 kB).

P: parallelisation degree; Nc : number of caches; S: speed-up over baseline

P Nc LUT FF DSP BRAM Latency S

Merger (250000 random input key-value pairs)

LEAP Memories without on-chip caches

1 0 58709 59029 21 571.5 18.0 ms 1

4 0 67867 67130 19 586.5 5.9 ms 3.1

LEAP Memories with on-chip caches (1 kB)

1 1 64860 64820 24 583.5 19.4 ms 0.9

4 8 91401 88830 38 634.5 6.4 ms 2.8

Reflect Tree (36862 tree nodes)

LEAP Memories without on-chip caches

1 0 64471 65953 37 231.5 547.5 ms 1

4 0 95483 99269 97 360.5 194.0 ms 2.8

LEAP Memories with on-chip caches (1 kB)

1 3 70662 72437 46 243.5 320.6 ms 1.7

4 12 118226 123215 129 408.5 79.9 ms 6.9

Filter (32767 kd-tree nodes, 128 clusters)

LEAP Memories without on-chip caches

1 0 72980 74050 57 275 897.3 ms 1

4 0 128163 128587 179 486.5 415.8 ms 2.2

LEAP Memories with on-chip caches (1 kB)

1 4 83077 83493 67 296 464.7 ms 1.4

4 16 163849 164620 218 558.5 145.6 ms 6.2

architecture). We fix the parallelization degree to P = 4
for all benchmarks in this evaluation. The latency results
are normalized differently depending on the benchmark:
latency per input sample for Merger, latency per full
tree traversal for Reflect Tree, and latency per clustering
iteration for Filter. We separate this evaluation into two
parts: The first part focuses on the performance gained
by inserting our multi-cache system and the benefits
of specializing it by inserting coherent caches only if
necessary. The second part of this evaluation section
discusses the automatic scaling of private caches.

i. Hybrid Multi-Cache Architectures

Table 1 quantifies the acceleration and resource consump-
tion of parallelization and the multi-cache architecture
Nc is the number of inserted caches. The default size
of all caches is 1 kB. For each benchmark, we set the
unparallelized (P = 1) design with no caches as a baseline
reference (top row for each benchmark). The ratio S is the
speed-up of each configuration compared to the baseline
reference case (S = 1).

Adding single caches to the unparallelized imple-
mentations (P = 1) brings a speed-up of 1.7× and 1.4×
for Reflect tree Filter, respectively. Parallelization with
P = 4 results in 2.2× to 2.8× speed-up over the unparal-
lelized baseline if the memory interface is not supported
by caches. We observe further latency improvements
when these parallelized applications are supported by
multiple caches, which provides an overall acceleration
of 6.2× to 6.9× for the tree-based benchmark. The small
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caches mostly reduce the memory access time for the
stack and center set data structures, as opposed to the
tree data structures which are substantially larger. As we
shall see in Section ii, the system performance is further
improved by cache scaling. Merger is an extreme case in
this evaluation because inserting the small 1 kB caches
slightly slows down the implementations for both P = 1
and P = 4. The reason is the size of the data structures:
only 2048 list elements fit in the caches, which is a small
fraction of the entire data structure, resulting in a poor hit
rate. The improvement of the memory access latency by
the caches thus does not outweigh the small overhead in
terms of cycle count because of the buffered banked cache
memories [19]. Parallelization improves the net speed-up,
but we shall see in the next sections that scaled-up caches
further improve the overall latency significantly.

In addition to aggregate latency, we evaluate the
benefit of cache architecture specialization. Our analysis
determines that Merger requires P private memories,
while Reflect Tree and Filter require a hybrid architecture
with private and coherent caches. We compare the results
of our application-specific systems to an ‘all-coherent’
scenario where no knowledge of disjoint heap regions
is available to generate the multi-cache system. Firstly,
such a scenario requires a commutativity analysis for safe
parallelization for all heap updates which significantly
increases the burden of analysis. Secondly, all LEAP
Memories must feature a coherency mechanism by
default. We focus on the second aspect here and quantify
the additional cost of such an all-coherent architecture in
terms of loss of efficiency: Table 2 lists the implementation
results for the designs with all-coherent memories. Each
row also shows the increase in resource consumption,
latency and the slices-latency product of the all-coherent
(AC) default compared to the corresponding hybrid (HY)
architecture in Table 1 which uses knowledge of private
and shared heap regions ( AC−HY

HY in %). We measure the
resource consumption in terms of logic slices here to
obtain a metric which combines LUTs and FFs.

The AC versions use more logic and have longer
latencies. The resource overhead is especially notice-
able for DSP slices (70.5% up to 281.6%), but is also
substantial for logic slices (19.5% to 25.4%). The area
overhead is particularly large for Merger, because the
application-specific memory architecture does not use
a coherency network at all. The access latencies due to
the additional coherency network are notably longer.
Finally, we compare the efficiency of the implementations
by the area-time product. For P = 4, our disjointness
analysis and the ability to instantiate cheap private caches
whenever possible brings an overall improvement of
the slices-latency product of 53.8% to 93.5% (70.9% on
average).

The results above quantify the advantage of a spe-
cialized application-specific multi-cache system. The
following sections discuss the performance and trade-offs
when scaling up the private caches in the above hybrid
multi-cache system.

ii. Performance after Custom Cache Scaling

Our technique improves the aggregate hit rate of the multi-
cache architecture. The following results show the impact
of the custom cache sizing on the overall execution latency
and on the FPGA resource usage once we scale the private
caches of the hybrid multi-cache systems. For ease of
comparison, we include the uncached case and the case
with small default size caches (both from Section i). We
compare four cases:

Case 1. No caches (as in Table 1)

Case 2. Small fixed cache size of 1 kB (as in Table 1)

Case 3. A fixed size for all caches but scaled up to the
maximum possible size

Case 4. A variably-sized multi-cache system as delivered
by our technique in Section VI

The clock rate target is set to 100 MHz in all cases and all
designs meet this clock constraint. All caches have a line
width of 64 bits. Table 3 shows the timing as well as the
utilization of LUTs, FFs, DSP slices and 36k-RAM blocks.
We also show the aggregate hit rate (measured) of all pri-
vate caches and the execution latency. The parallelization
degree is P = 4 in all cases. We compare the speed-up S
with respect to the base case in Section i (P = 1, no caches).

In addition to more BRAM, we observe a sudden
increase in LUT, FF and DSP utilization once caches are
included in the LEAP Memories. LUTs and FFs increase
only marginally when scaling the caches up, leaving
the BRAM usage as the limiting factor. The hit rate
and latency improvements for Merger are substantial
and grow steadily with larger cache sizes. There is a
significant asymmetry between the linked lists in the
application and the large improvement of the variable
sizing over a fixed sizing (Cases 3 and 4) is due to the
fact that larger caches support longer lists. The overall
speed-up after parallelization, private cache insertion and
custom cache sizing is S = 15.2 over the baseline.

For the tree-based benchmarks, we see a different
characteristic of the latency improvement. Even small
caches lift the aggregate hit rate above 90%. This reflects
the behavior in Fig. 4: the stack data structures are
very small (but heavily accessed) compared to the
tree structure in the average case and a small cache is
sufficient to keep all data on-chip. Consequently, the
optimization algorithm in Section iii opts to use more
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Table 2: Cost increase of all-coherent default compared to application-specific hybrid cache architectures.

P: parallelisation degree; Nc : number of caches

P Nc Slices DSP BRAM Clock period /ns Latency /ms Area− time product

Merger (250000 random input key-value pairs)

4 8 42875 (25.4%) 145 (281.6%) 642 (1.2%) 10.0 (0.0%) 7.83 (22.6%) 335.7 slices · s (53.8%)

Reflect Tree (36862 tree nodes)

4 12 52665 (20.4%) 220 (70.5%) 504 (23.4%) 10.2 (2.2%) 128.5 (60.7%) 6765.5 slices · s (93.5%)

Filter (32767 kd-tree nodes, 128 clusters)

4 16 65412 (19.5%) 375 (72.0%) 644 (15.3%) 10.1 (0.9%) 208.2 (43.0%) 13615.8 slices · s (70.9%)

Table 3: Latency and resources after custom cache scaling.

P = 4; S: speed-up over unparallelized, uncached baseline in Table 1

Case LUT FF DSP BRAM Hit rate Latency S

Merger (250000 random input values, baseline latency: 18.0 ms)

1 67867 67130 19 586.5 0 5.9 ms 3.1

2 91401 88830 38 634.5 5.31% 6.4 ms 2.8

3 93528 89184 38 858.5 79.24% 2.4 ms 7.4

4 92871 89064 39 874.5 99.12% 1.2 ms 15.2

Reflect tree (36863 tree nodes, baseline latency: 547.5 ms)

1 95483 99269 97 360.5 0 194.0 ms 2.8

2 118226 123215 129 408.5 90.12% 79.9 ms 6.9

3 136087 125046 126 743.5 95.50% 68.7 ms 8.0

4 119284 123253 128 736.5 98.27% 57.4 ms 9.5

Filter (32767 kd-tree nodes, 128 clusters, baseline latency: 897.3 ms)

1 128163 128587 179 486.5 0 415.8 ms 2.2

2 163849 164620 218 558.5 94.12% 145.6 ms 6.2

3 168416 165278 221 886.5 96.19% 140.4 ms 6.4

4 164818 164168 219 878.5 98.72% 138.2 ms 6.5

memory resources for the large tree structure. For Reflect
tree, this improves the aggregate hit rate by 3% to 4%
compared to a homogeneous maximum sizing. Although
the hit rates for Filter and Reflect tree are similar, the
latency improvement from cache scaling for Filter is small.
This is mainly due to high core-internal computation
between memory accesses, which makes the effect of a
shorter access time to the tree data less significant. The
overall improvement execution time after parallelization
with P = 4, hybrid cache insertion and custom cache
scaling is 9.5× and 6.5× over the unparallelized and
uncached baseline implementation for Reflect tree and
Filter, respectively.

iii. Energy Consumption

We quantify the impact of our cache insertion and scaling
on the overall energy consumption. To this end, we
measure the instantaneous power consumption of the
FPGA and the board-level SDRAM while the applications
are running. We collect power figures for three out of the
12 power rails on the VC707 board: VCCINTFPGA is the
main supply of the FPGA and VCCBRAM is an additional
block RAM supply. We combine both to obtain the main
supply of the FPGA. The third rail is VCC1V5, a supply
of the SDRAM. No other rail notably changes its power
levels during execution of our applications. We integrate

Table 4: Power and energy measurements.

R: energy reduction compared to Case 1

Case PFPGA /W PSDRAM /W EFPGA /mJ ESDRAM /mJ Etotal /mJ R

Merger (250000 random input values)

1 1.78 1.11 10.40 6.40 16.88 1

2 2.13 1.09 13.61 6.99 20.60 0.8

3 2.58 1.05 6.30 2.55 8.85 1.9

4 2.57 1.01 3.05 1.19 4.24 4.0

Reflect tree (36863 tree nodes)

1 2.13 1.15 412.30 222.46 634.76 1

2 2.34 1.04 186.68 83.24 269.92 2.4

3 3.06 1.07 210.40 73.37 283.77 2.2

4 3.26 1.14 187.09 65.56 252.64 2.5

Filter (32768 kd-tree nodes, 128 clusters)

1 2.25 1.31 936.46 542.55 1479.01 1

2 2.77 1.05 402.50 152.94 555.44 2.7

3 3.27 1.03 459.55 144.19 603.74 2.5

4 3.53 1.08 488.11 148.73 636.84 2.3

power over the three latencies defined in the previous
section; we show the energy per input value for Merger,
the energy per completed tree traversal for Reflect tree
and the energy per clustering iteration for Filter. Table 4
shows the main energy consumption of the FPGA (EFPGA),
the energy attributed to the SDRAM (ESDRAM) and the
total energy for the four cases above. We also show the
energy improvement R compared to Case 1 (uncached
parallel implementation). Table 4 also shows the mean
power consumptions PFPGA and PSDRAM.

For large caches, the extra power consumption is
significant (up to 102%). The latency reduction must
be large enough to counter this effect and improve
EFPGA and Etotal. Large caches always improve the
energy consumption with respect to a cacheless memory
interface in our implementations. In all benchmarks, the
application-specific cache sizing outperforms fixed sizing
in terms of energy reduction.

iv. Analysis Complexity and Performance

We evaluate the tool execution time for the largest
benchmark design points on an Intel i7-3770 machine
with 16 GB memory. Table 5 shows the lines of C++
code (LOC) and the time for heap analysis (including the
symbolic execution), for solving the MCKP and FPGA
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Table 5: Analysis time, compile time and FPGA usage.

Benchmark LOC Heap analysis MCKP Compilation
FPGA

usage

Merger 291 1546 s < 1 s 6308 s 43.7%

Reflect tree 570 27 s < 1 s 3748 s 55.9%

Filter 783 705 s < 1 s 8628 s 76.4%

compilation. It also includes the resource usage in terms
of FPGA slices. In the worst case, the time complexity
of the current symbolic execution is exponential in the
number of analyzed branching statements in the program,
which may limit scalability. However, our analysis merges
heuristically singleton heaplets into generalized formulae
as described in [9], which results in a linear growth
observed in our benchmarks.

State merging is also required for the convergence
(termination) of our analysis. The decision under what
conditions the merging is triggered builds on a heuristic,
which works well in practice for common data structures
such as trees and linked lists. However, for programs
using more exotic data structures we cannot rule out that
merging fails (non-convergence of the analysis) due to
the incompleteness of the heuristic. Algorithm 1 tries to
provably distinguish private from shared heap regions
only up L peeled off iterations. This incompleteness
may thus result in indicating sharing of a heaplet which
in reality is private to a particular code section. Note
that this does not compromise the soundness of our
transformation but only performance as our tool would
simply not parallelize the application or instantiates an
unnecessary coherency mechanism in this case. Our
analysis currently does not support pointer arithmetic.

VIII. Conclusion

Mapping dynamic memory operations to FPGAs is
difficult, both in terms of analysis and implementation. In
this work, we present an HLS design aid for synthesizing
pointer-based C/C++ programs into efficient FPGA
implementations. We target applications that perform
computation on large heap-allocated data structures and
that require access to an off-chip memory. We leverage
the separation logic-based static program analysis in [9]
to determine whether different program parts access
disjoint, non-overlapping regions in the monolithic heap
space in which case we trigger automated source-to-
source transformations that automatically parallelize
the application. Our extended analyzer also detects
heap regions that are shared by multiple accessors in
the parallelized implementation. An additional commu-
tativity and associativity analysis decides whether the
parallelization in the presence of shared memory regions
is semantics-preserving. The information provided by the
heap analyses is used to optimize the interface between
the parallelized HLS kernel and an off-chip memory:

we generate an application-specific multi-cache system,
where disjoint heap partitions are mirrored in private,
independent on-chip caches and interfaces to shared heap
regions are supported where necessary with on-chip
caches backed by (inherently more expensive) coherency
mechanisms and a synchronization service. We observe a
speed-up of up to 6.9× after parallelization and insert of
a multi-cache system compared to the unparallelized and
uncached application. Our hybrid multi-cache system
outperforms a default all-coherent version by 69.3% on
average in terms of the area-time product.

We combine the hybrid cache synthesis with cus-
tom cache sizing, which automatically uses up the
left-over BRAM to scale up the size of the private on-chip
caches. The size of each private cache is set individually in
order to reach a size distribution across the parallel caches
that maximizes the aggregate hit rate. The pre-synthesis
cache performance estimation is based on a high-level
cache model and on the memory reference trace of the
application obtained from automated profiling. We
cast the cache size assignment into a Multiple-Choice
Knapsack Problem to find the best size distribution
for a given reference trace. The overall reduction of
execution time after parallelization, insertion of the
hybrid multi-cache system and custom cache scaling is
up to 15.2× (9.8× on average) over an unparallelized
and uncached implementation. Although the insertion
of large on-chip caches has a significant impact on the
power consumption of the FPGA, we show that our
variably-sized multi-cache configuration reduces the total
energy by 2.5× (on average) compared to a cacheless
memory interface.

There are two important extensions planned for fu-
ture work. The current cache scaling targets private,
independent caches. Future work will focus on a model of
the coherency protocol in a cache architecture consisting
of coherent caches, which must take additional invalida-
tion and owner misses due to interfering accesses by other
caches into account. Secondly, our energy measurements
in Table 4 suggest that the optimal cache sizing changes
when we optimize for energy instead of aggregate hit
rate. Future work will address the development of an
energy model that can be used to minimize the energy
consumption of our multi-cache system.
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