Synthesis and Biological Activity of some Novel Quinazolonylmercaptotriazoles and their Corresponding Sulphide and Disulphide Derivatives

P. C. JOSHI, JR*., M. M. SAH and C. K. PANT Chemical Laboratories, Kumann University Campus, Almora-263 601

Manuscript received 19 April 1989, revised 18 April 1991, accepted 21 June 1991

A number of 4-quinazolinones¹ and triazoles² have shown various biological activities. A variety of sulphides and disulphides also exhibit a broad biocidal activities³. The toxophoric importance of NCS moiety has been well stressed in many pesticides⁴. In view of the above facts, it was thought worthwhile to synthesise the title compounds which incorporate the above moiety. Thus compounds 4 (prepared by reported method) were treated with aryl isothiocyanates in the presence of 8% aqueous NaOH to give 4-aryl-5-[p-(6,8-disubstituted-2-methyl-4-oxo-3H-quinazolin-3-yl)phenyl]-3-mercapto-1, 2, 4-triazoles (5). In addition, the triazoles (5) were oxidised to bis[4-aryl-5-{p-(6,8-disubstituted-2-methyl-4-oxo-3H-quinazolin-3-yl)phenyl}-1, 2, 4-triazol-3-yl]

sulphide (6) and bis[4-aryl-5-{p-(6,8-disubstituted-2methyl-4-oxo-3 H-quinazolin-4-yl)phenyl}-1,2,4-triazol-3-yl] disulphides (7) by treating them with thionyl chloride and methanolic bromine, respectively (Scheme 1).

Experimental

Melting points were taken in open capillaries in a sulphuric acid bath and are uncorrected. Ir spectra (KBr) were recorded on a Perkin-Elmer spectrophotometer and pmr spectra on a EM-360 spectrometer (60 MHz) using TMS as internal standard.

Substituted-anthranilic acids⁵ (1), 6,8-disubstituted-2-methylbenzoxazin-4-ones⁶, 4-(6,8-disubstituted-2-methyl-4-oxo-3H-quinazolin-3-yl)ethyl benzoates and 4-(6,8-disubstituted-2-methyl-4-oxo-3Hquinazolin-3-yl)benzhydrazides (4) were prepared by known procedures.

Preparation of 4: A mixture of 4a (5.88 g, 0.02 mol) and phenyl isothiocyanate (2.70 g, 0.02 mol) was refluxed in 8% aqueous NaOH for 5-6 h. The reaction mixture was then cooled and filtered. filtrate on acidification with cold dilute acetic acid gave a white solid which was crystallised from ethanol-water to give 5a (5.5 g, 70%), m.p. 190° (Found: N, 16.66. $C_{23}H_{17}N_5OS$ requires: N, 17.03%); ν_{mex} (KBr) 2 980, 2 540 (SH), 1 675, 1 600, 1 530, 815 (1,4-disubstituted benzene ring) and 770 cm⁻¹ (1,2-disubstituted-benzene ring); 8 (CDCl₃ +DMSOd_s) 2.1 (1H, s, SH), 2.35 (3H, s, CH₃) and 6.3-7.2 d₆) 2.1 (1H, s, SH), 2.35 (3H, s, CH₃) and 6.3-7.2 (12H, m, ArH). Other compounds were prepared similarly: 5b (yield 69%), m.p. 258°; c (71), 255°; d (68), 235°; e (70), 208°; f (66), 196°; g (68), 190°; h (67), 184°; i (69), 191°; j (71), 196°; k (66), 226°; 1 (68), 196°; m (71), 220°; n (69), 196°; o (66), 229°; p (68), 174°; q (67), 167°; r (69), 192°; s (71), 165°; t (67), 172°; u (66), 216°; y (68), 170-74°; w (70), 218°; x (71), 185-90°; y (69), 200°.

Preparation of 6: Compound 5a (2 g, 0.005 mol) was treated with thionyl chloride (10 ml) in cold and the mixture was kept at room temperature for 2 h. Thionyl chloride was then distilled off at reduced pressure and the resulting solid was washed with aqueous Na₂CO₃ and warer, dried and cryswith addeous $Na_2^2CO_3$ and water, other and crystallised from ethanol to give 6a (1 g, 50%), m.p. 225° (Found; N, 7.96. $C_{46}H_{32}N_{10}O_2S$ requires: N, 17.76%); ν_{max} (KBr) 3 075, 1 670, 1 590 and 1 500 cm⁻¹; δ (DMSO-d₆) 3.7 (6H, s, CH₃) and 6.5-8.5 (26H, m, ArH). Other compounds were 0.3-8.5 (26H, m, ArH). Other compounds were prepared similarly: 6b (yield 52%), m.p. 220°; c (51), 222°; d (49), 209°; e (54), 245°; f (53), 143-46°; g (50), 170°; h (51), 140°; i (57), 173°; j (49), 180°; k (51), 160°; l (48), 172°; m (52), 163°; n (56), 162°; o (48), 170°; p (47), 186°; q (49), 204°; r (48), 201°; s (46), 193°; t (49), 173°; u (50), 152°; v (52), 138°; w (48), 154°; x (47), 180°; y (51), 105°.

(iii) NH2NH2.H3Q, (iv. NaOH, (v) SOCl2, (vi) Br2.

Preparation of 7: To an ice-cold methanolic solution of 5k (2.85 g, 0.005 mol), a cold methanolic solution of bromine (0.8 g, 0.005 mol) was added dropwise with stirring, kept as such for 2 h and then evaporated. The resulting solid was washed successively with water, dilute NaOH and water, dried and crystallised from ethanol to yield 7k (1.5 g, 53%), m.p. 116° (Found: N, 12.72. $C_{46}H_{28}Br_4N_{10}O_2S_2$ requires N, 12.30%); ν_{max} (KBr) 2 940, 1 700, 1 620 and 1 500 cm⁻¹; δ (DMSO-d₆) 2.1 (6H, s, CH₃) and 6.0-7.7 (22H, m, ArH). Other compounds were prepared similarly: 7a (yield 53%), m.p. 167°; b (46), 156°; c (47), 192°; d (49), 80°; e (48), 102°; f (49), 213°; g (51), 108°; h (50), 145°; i (49), 215°; j (50), 160°; k (53), 116°; l (50), 97°; m (52), 110°; n (51), 98°; o (49), 117°; p (48), 130°; q (47), 78°; r (53), 82°; s (54), 88°; t (50), 137°; u (51), 71°; v (49), 106°; w (46), 144°; x (48), 74°; y (47), 96°.

Biological screening: Compounds 5-7 were screened for their antifungal activity against Alternaria alternata, Aspergillus flavus and Fusarium moniliforme by paper-disc plate method⁸ and none of them showed any significant antifungal activity. Compounds 5a, 5e, 5f, 5i, 5t and 6a were also screened in vitro for their antitumor activity on mouse Leukemia p-388 at National Cancer Institute, Bethesda, Maryland, U.S.A. and all of them were inactive at the doses tested.

Acknowledgement

The authors are grateful to National Cancer Institute, Bethesda, Maryland, U.S.A., for antitumor activity screening.

References

- R. S. VERMA, J. Indian Chem. Soc., 1975, 52, 344;
 N. B. DAS and A. S. MITRA, J. Indian Chem. Soc., 1979, 56 398;
 P. C. JOSHI and P. C. JOSHI, J. Indian Chem. Soc., 1978, 55, 465.
- R. B. PATHAK, B. JAHAN and S. C. BAHRI, J. Antibact. Antifungal Agents, Jpn., 1980, 8, 12;
 R. S. SHARMA and S. C. BAHRI, J. Indian Chem. Soc., 1982, 59, 877.
- H. KUBOTA and M. SCHIMIZU, Jap. Pat. 7 034 884/ 1970; J. BERNSTEIN and K. A. LOSEL, Ger. Pat. 1 224 744/1966.
- H. SINGH and L. D. S. YADAV. J. Indian Chem. Soc., 1977, 54, 1143.
- 5. N. RABJOHN, Org. Synth., 1967, 4, 872.
- M. T BOGERT and H. A. SEIL. J. Am. Chem. Soc., 1907, 829, 517.
- S. S. PARMAR and R. C. ARORA, Can. J. Chem., 1966, 44, 2100.
- 8. H. H. THORNBERRY, Phytopathology, 1950, 40, 419.