Studies on Flavonoids. Part-III. Synthesis and Physiological Studies of some New 3-Bromoflavones†

M. D. ANKHIWALA

Departmeant of Chemistry, R. R. Mehta College of Science, Palanpur-385 002

Manuscript received 21 December 1990, revised 23 May 1991, accepted 17 July 1991

LAVONES have been found to be associated with

diverse biological activities¹. It was therefore, thought interesting to synthesise the title compounds with the object of ascertaining whether presence of 3-bromo group in flavones could augment their physiological activity.

The present work reports the synthesis of 3,8dibromo-6-nitro-7-n-butoxyflavones (5). These are derived from previously synthesised² 8-bromo-7-nbutoxy-6-nitroflayones and tested for their antimicrobial activity². The reaction³ of the flavones (1) with N-bromosuccinimide in methanol gave 2methoxy-3-bromoflavanones (2). The said reaction⁸ of the flavones (1) with N-bromosuccinimide in ethanol gave 2-ethoxy-3-bromoflavanones (3). These flavanones (2 and 3), on treatment with alcoholic potassium hydroxide at room temperature easily lost a molecule of alcohol to give the 3-bromoflavones (5). The reaction³ of flavones (1) with Nbromosuccinimide in acetic acid-acetic anhydride gave good yields of the 2-acetoxy-3-bromoflavanones (4). Elimination of acetic acid from these compounds occurred easily. Boiling a solution of 2acetoxy-3-bromoflavanone (4) in methanol gave 3bromoflavones (5; Scheme 1) whose structures have

† Presented at the 26th Annual Convention of Chemists held at Indore, 1989.

been confirmed by elemental analysis, ir and pmr spectra. The compounds have been screened for their antibacterial activity.

Antibacterial activity: Compounds 5 were screened for antibacterial activity at a concentration of 50 μ g by cup-plate method⁴ against gram-positive bacteria Staphylococcus aureus and gram-negative bacteria Escherichia coli. The activity of the compounds was compared with chloromycetin and penicillin G at the same concentration level. The compounds 5 showed strong activity (zone of inhibition, 15-30 mm) against S. aureus and medium activity (8-14 mm) against E. coli. It is concluded from the results that some of the compounds containing chlorine atom(s) introduced in aryl part of the flavone molecule are active while others possessed moderate activity against both the bacteria. Moreover, the bromine atom in position-3 of flavone enhanced the antibacterial activity.

Experimental

All m.ps. were determined by open capillary method and are uncorrected. The ir spectra were recorded on a Perkin-Elmer 577 spectrophotometer and pmr spectra on a XL-100A (100.1 MHz) spectrometer using TMS as internal reference. The purity of the compounds was checked by tlc.

2-Methoxy-3,8-dibromo-6-nitro-7-n-butoxyflavanone (2a): It was prepared by the reported method³, (90%), m.p. 146° (Found: C, 45.32; H, 3.62; N, 2.70. $C_{20}H_{19}O_6NBr_2$ calcd. for: C, 45.37; H, 3.59; N, 2.65%); ν_{max} (KBr) 1 690 (C=O), 1 110 (C-O-C) and 565 cm⁻¹ (C-Br); δ (TMS; DMSOd₆) 7.01-8.03 (6H, m, ArH), 4.40 (1H, s, 3-H) and 3.02 (3H, s, OMe). Similarly, other flavanones (77-92%) were prepared (Table 1).

3,8-Dibromo-6-nitro-7-n-butoxyflavone (5a): It was prepared by the reported method³, (86%), m.p. 132° (Found : C, 45.82; H, 3.10; N, 2.85. $C_{19}H_{15}$ -O₅NBr₂ calcd. for : C, 45.88; H, 3.02; N, 2.82%); ν_{mas} (KBr) 1 640 (C=O), 1 560 (C=C), 1 140 (C-O-C) and 560 cm⁻¹ (C-Br); δ 7 0-7.9 (6H, m, ArH) and the signals due to 3-H and OMe observed in **2a** were found absent in **5a**. Similarly, other 3-bromoflavones (75-92%) were prepared (Table 1).

2-Ethoxy-3,8-dibromo-6-nitro-7-n-butoxyflavanone (3a): It was prepared by the reported method³, (88%), m.p. 152° (Found : C, 46.36; H. 3.82; N, 2.64. $C_{21}H_{21}O_6NBr_2$ calcd. for : C, 46.41; H. 3.87; N, 2.58%); ν_{max} (KBr) 1 695 (C=O), 1 115 (C-O-C) and 570 cm⁻¹ (C-Br); δ 7.0-8.13 (6H, m, ArH), 4.44 (1H, s, 3-H), 3.30 (2H, q, OCH₂CH₃) and 0.9 (3H, t, OCH₂CH₃). Similarly, other flavanones (76-92%) were prepared (Table 1).

3,8-Dibromo-6-nitro-7-n-butoxyflavone (5a): It was prepared by the reported method³, (92%), m.p. 132°. The crystalline product obtained was identical with the³³-bromoflavone prepared by the previous route. Similarly, other 3-bromoflavones were prepared (Table 1).

TABLE 1-	PHYSICAL,	DATA	01	Compounds*
----------	-----------	------	----	------------

Compd. no.	R	Molecular formula	М.р. •С
2a	Phonyl	C H O NB-	140
2b	2'-Chlorophenyl	C H O NCIBr.	146
2c	4'-Chlorophenyl	C. H. O. NCIBra	117
2d	2' 4'-Dichlorophenyl	C H O NCL Br	109
2e	4'-Methylphenyl	$C H O NP_{+}$	157
2f	3' A'-Methylenediowyphenyl	$C_{11} C_{11} C_{6} NB_{7}$	175
20	9' 4' 5'-Trimethowyphenyl	$C_{s_1H_{19}}U_8NDIs$	160
2h	3' 4'-Dimethowyphenyl	$C_{23}H_{26}U_9NBF_2$	134
21	4'-Methozyphenyl	$C_{13}H_{23}O_{8}NBr_{3}$	111
21	9'-Methoryphenyl	$C_{21}\Pi_{21}U_7NDI_9$	125
39	Dhany!	$C_{21}H_{91}U_7NB\Gamma_9$	105
3h	2'-Chlorophonyl	$C_{31}H_{21}O_6NDI_3$	192
30	2 Chloresherry	$C_{21}H_{20}U_6NCIDI_8$	128
3d	4 Chlorophenyl	$C_{21}H_{30}O_6NCIDI_2$	114
30	2,4 Dichlorophenyl	$C_{21}H_{19}O_6NC_{19}D_{19}$	166
28	4 Methylphenyl	C ₂₂ H ₂₃ O ₆ NBrs	133
31	3',4 -Methylenedloxyphenyl	CasHa1OaNBra	170
JUS	3',4',5 "ITIMB(noxyphenyl	$C_{14}H_{27}U_{9}NBr_{9}$	122
30	3',4 "Dimetnoxyphenyi	CasHasOsNBrg	155
31	4 -Methoxyphenyl	C22H25O7NBr2	148
3]	2 -Methoxyphenyl	$C_{22}H_{23}O_7NBr_2$	117
48	Phenyl	C21 H1907 NBr2	124
4D	2 Chlorophenyl	C ₁₁ H ₁₀ O ₇ NClBr ₃	147
4C	4 Chlorophenyl	C ₂₁ H ₁₈ O ₇ NClBr,	152
40	2',4'-Dichlorophenyl	$C_{21}H_{17}O_7NCl_9Br_9$	173
40	4 Methylphenyl	C ₂₂ H ₂₁ O ₇ NBr ₂	160
41	3',4'-Methylenedioxyphenyl	$C_{22}H_{19}O_9NBr_9$	141
4g	3',4',5'-Trimethoxyphenyl	C ₃₄ H ₂₆ O ₁₀ NBr ₃	137
4n	3',4' Dimethoxyphenyl	C22H22O9NBrg	155
41	4'-Methoxyphenyl	$C_{22}H_{21}O_{6}NBr_{9}$	108
4)	2'-Methoxyphenyl	$C_{22}H_{21}O_8NBr_9$	98
5a	Phenyl	$C_{19}H_{18}O_{6}NBr_{2}$	132
50	2'-Chlorophenyl	C19H14O8NClBr2	160
5c	4'-Chlorophenyl	C19H14O8NClBr2	172
5d	2',4-'Dichlorophenyl	$C_{19}H_{18}O_6NCl_2Br_9$	178
5e	4'-Methylphenyl	$C_{20}H_{17}O_{\delta}NBr_{2}$	151
5f	3',4'-Methylenedioxyphenyl	$C_{20}H_{17}O_7NBr_2$	122
5g	3',4',5'-Trimethoxyphenyl	$C_{22}H_{21}O_8NBr_2$	148
5h	3',4'-Dimethoxyphenyl	C ₂₁ H ₁₉ O ₇ NBr ₉	140
51	4'-Methoxyphenyl	$C_{30}H_{17}O_8NBr_9$	108
Þj	2'-Methoxyphenyl	$C_{20}H_{17}O_6NBr_9$	120
*All compo	ounds gave satisfactory C, H and N analyses.		

2-Acetoxy-3,8-dibromo-6-nitro-7-n-butoxyflavanone (4a): It was prepared by the reported method³, (90%), m.p. 124° (Found : C, 45.20; H, 3.45; N, 2.46. $C_{21}H_{19}O_7NBr_2$ calcd. for : C, 45.24; H, 3.41; N. 2.51%); ν_{max} (KBr) 1 705 (C=O), 1 100 (C-O-C) and 580 cm⁻¹ (C-Br); δ 7.04-8.01 (6H, m, ArH), 4.5 (1H, s, 3-H) and 1.85 (3H, s, OAO) Similarly other four propert (75)

OAc). Similarly, other flavanones (75-92%) were prepared (Table 1).

3.8-Dibromo-6-nitro-7-n-butoxyflavone (5a): It was prepared by the reported method⁸, (88%), m.p. 132°. The crystalline product was identical with the 3-bromoflavone prepared by the previous two routes. Similarly, other 3-bromoflavones were pre-pared (Table 1).

Acknowledgement

The author is garteful to the college authority for facilities and thankful to U.G.C., New Delhi, for financial assistance.

References

- T. FAQUDA, Ardv. Exptl. Pathol. Pharmakol, 1932. 164, 585; D. DONELLY, J. Med. Chem., 1965, 8, 872; K. P. JADAV and D. B. INGLE, Indian J. Chem., Sect. B, 1983, 22, 150; G. JONGEBEREGER, Arch. Int. Pharmacodyn., 1952, 90, 384; K. A. THAKAR, D D. GOSWAMI and D. G. PACHFOR, J. Indian Chem. Soc., 1973, 50, 420; V. P. KHIYA, I, G. GRISHKO, A V TUROV and M. G. SFASENOV, Chem. Abstr. 1982, 96, 351501; M. D. ANKHWALA *Chem. Abstr.*, 1982 **96**, 351501; M. D. ANKHIWALA and H. B. NAIK, J. Indian Chem. Soc., 1989, **66**, 482; D. N. DHAR "The Chemistry of Chalcones and Related Compound", Wiley, New York 1981 and references cited therein.
- 2. M. D. ANKHIWALA, J. Indian Chem. Soc., 1990, 67, 913.
- T. G. C. BIRD, B. R. BROWN, I. A. STUART and 3. A. W. R. TYRRELL, J. Chem. Soc., Perkin Trans. 1, 1983, 1831.
- 4. F. KAVANAGH, "Analytical Microbiology", Academic, New York, 1963, p. 125.