

Scheme 1

Experimental

The compounds were characterised by elemental analysis and ir spectral data (Table 1). M ps. were taken in open capillary tubes and are uncorrected.

TABLE 1-PHYSICAL DATA OF THE HYDRAZONES*					
S1.	R	R1	M.p.	Yield	Colour
no.			°C	%	
1.	CH ₃	CH ₃	235	30	Yellow
2.	CH ₃	CH ₂ COCH ₂	204	80	Yellow
3.	CH ₃	CH ₂ C ₆ H ₅	196	50	Pale yellow
4.	н	$CH = CHC_6H_5$	174	75	Yellow
5.	C₄H₅	C ₆ H ₅	186	40	Yellow
6.	C ₂ H ₅	C ₆ H ₅	159	50	Yellow
7.	H	o-NO2C6H5	205	70	Yellow
8.	н	m-NO ₂ C ₆ H ₅	185-88	65	Orange
9.	н	p-NO ₂ C ₆ H ₅	243	80	Orange
10.	н	o-C C,H	204	45	Pale yellow
11.	H •OHČ ₆ H ₅		208-09md 50		Pale yellow
12.	н	p-OHC _g H ₅	251	80	Pale vellow
13.	CH ₃	2-OHC _e H _s	246	60	Orange
14.	$C_{s}H_{5}$	COC,H ₅	226	80	Yellow
15.	C ₆ H ₅	CH2ČOČH3	186	50	Light orange
16.	$\mathbf{R} = \mathbf{R}_1$	=Isatin	296md	50	Orange
17.	$\mathbf{R} = \mathbf{R}_1$	= Acenapthene-	300	35	Deep brown
	quipor	e			•
18.	$\hat{\mathbf{R}} = \mathbf{R}_1$	= 5-Chloroisatin	300	60	Orange
19.	$R = R_1$	= 5-Bromoisatin	300	50	Orange
20.	$\mathbf{R} = \mathbf{R}_1$	= 5,7-Dinitro	300	70	Orange
* All compounds gave satisfactory C, H and N analyses.					

Quinazoline 4-ethylthioglycolate: A solution of ethyl thioglycolate (3.2 g, 0.026 mol) in dry benzene (70 ml) was added dropwise during 5 min a benzene solution of 4-chloroquinazoline² (50 g, 0.302 mol) and the mixture was refluxed for 4 h. The resulting orange coloured solid was washed with benzene and then with 10% sodium hydrogen carbonate solution and recrystallised from methanol as yellow rectangular crystals (60%), m.p. $80-82^{\circ}$.

Quinazoline 4-thioglycollic acid hydrazide: Quinazolin 4-thioglycolate in 95% alcohol (20 ml) was added an alcoholic solution (1 ml) of hydrazine hydrate with stirring and the mixture was refluxed for 4 h. Pale yellow precipitate that separated after cooling was recrystallised from 95% alcohol, (70%), m.p. $177-78^{\circ}$.

The hydrazones: A mixture of quinazoline 4-thioglycollic acid hydrazide (0.01 mol) in ethanol (25 ml) and ethanolic solution of the

Synthesis and Biological Activities of Quinazoline-4-thioglycolic Acid Hydrazones

D. PRAKASH^{*}, S. M. PRASAD, S. KUMAR

and

(MRS.) ANJU K. GUPTA

Chemistry Department, Patna University, Patna-800 005 Manuscript received 24 August 159), revised 6 March 1991, accepted 23 April 1991

HYDRAZONES exhibit various biological activities¹. Present paper reports the synthesis of hydrazones from quinazoline 4-thioglycollic acid hydrazide and aldehydes or ketones (Scheme 1). All the compounds have been screened for their antimicrobial activities. appropriate aldehydes and ketones (0.01 mol) was refluxed for about 5 h. The solid that separated on cooling was recrystallised from ethanol.

Results and Discussion

The hydrazones of quinazoline 4-thioglycollic acid are crystalline in nature and stable under dry condition.

The strong intensity ir band present in the compounds at 3400-3100 cm⁻¹ can be attributed to the NH stretching frequency. A moderately strong band at 1700-1600 cm⁻¹ in the spectra of all the hydrazones is attributed to the stretching frequency of C=O group. Almost all the compounds exhibit C=N stretching frequency at 1600-1580 cm⁻¹.

All the compounds were screened against S. aureus, S. albus, Proteus, Pyocyanea, E. coli and Klebsiella bacteria using agar plate disk diffusion technique³. Compounds of sl. nos. 4, 5 and 16 were found to possess highest inhibitory action 8-12 mm) against the growth of pathogenic bacteria, and compound of sl. no. 5 showing highest action (>12 mm) against Pyocyanea. Decreasing sensitivity was found in case of hydrazones from propiophenone (sl. no. 6), 2-hydroxyacetophenone (sl. no. 13) as well as aliphatic ketone (sl. no. 1), which are moderately active against Pyocyanea.

Compounds of sl. no. 10 and 17 from o-chlorobenzaldehyde and acenaphthenequinone exhibit moderate activities (6-10 mm) against Proteus, Pyocyanes and E. coli.

Compounds no. of sl. no. 4, 9 and 18 were found moderately active (6-8 mm) against Klebsiella.

Acknowledgement

The authors wish to express their sincere gratitude to the laboratory colleagues of Patna Medical College & Hospital, for the biological screening. Two of our authors (S.M.P. and S.K.) are indebted to U.G.C. and C.S.I.R, New Delhi, for the financial assistance.

References

- YU P. KITAEV, B. I. BUZYKIN and T. V. TROFSPOLSKAYA, Russ. Chem Rev, 1970, 441; NG. PH. BUU-HOI, NG. D KUONG, NG. H. HAM, F. BINON and R. BOGER, J. Chem. Soc., 1951, 1358; T. S. MA and T. M. TIEN, Antibiot. and Chemother., 1953, 3, 491; Q. ALBERT, Nature. 1953. 9, 370; J. M. PRICE, Federation Proc, 1961, 20, 223; J. M. PRICE, R. R. BROWN and F. C. LERSON, J. Clin. Invest., 1957, 36, 1600; H. R. SNYDER and C. W. SMITH, J. Am. Chem Soc., 1943, 65, 2452; R. CARRER and R. RITS, J. Med Chem, 1955, 8, 756; W HOYLE and G. A. HAWORTH. Chem. Abst., 1973, 78, 16018; D. PRAKASH and S. M. PRASAD, J. Indian Chem. Soc., 1988, 65, 673.
- 2. KITAEV, BURGSKIN and TSCAPOLAKAYA, Russ. Chem. Rev., 1970, 39, 441.
- 3. R S. VERMA and S. A. IMAM, Indian J. Microbiol., 1973, 13, 451.