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Executive summary 

The deliverable describes the first version of the definition of the input space that will be used to feed the virtual 
cohort generators. Accurate definition of the input space depends on available clinical data, the model used for 
virtual cohort generation and model parameter prioritization based on advanced sensitivity analysis techniques. 
The final models to be used will be part of future deliverables, which also holds for the sensitivity analysis. In 
this document we will describe the envisioned strategy for input space definition and how this strategy will result 
in an input distribution that captures realistic aortic valve disease and heart failure patients. The feasibility of 
the input space definition as envisioned by the project methodology will be supported by preliminary results of 
virtual cohort generation of aortic valve patients. Here we also discuss how clinical data is transformed into data 
that can be fed into our virtual cohort generator. This preliminary use case nicely demonstrates our approach 
but is not yet completely validated. However, it is already integrated into the Virtual Research Environment as 
a typical example. How integration is done will also be shown. Moreover, we present preliminary results on the 
geometric input definition of porcine pulmonary arteries. 
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Introduction 
This deliverable describes the first version of the definition of the input space that will be used to feed 
the virtual cohort generators.  

First, the document describes the envisioned strategy for input space definition, and how this strategy 
will result in an input distribution that captures realistic aortic valve disease and heart failure patients. 

Then, it presents preliminary results of virtual cohort generation of aortic valve disease, and on the 
geometric input definition of porcine pulmonary arteries. 
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Approach envisioned for input space definition 
In SIMCor, we use an approach in which we define a N-dimensional input space based on available 
clinical data that has been post-processed to serve as input for a validated physiological model (i.e., 
the digital representation of the real patient). The process can be summarized as follows: 

• The input space is spanned by the upper and lower limits of model parameters and boundary 
conditions, which are inferred from the available data.  

• Subsequently, we assume that all parameter values within the input space are uniformly 
distributed, and new samples are randomly selected from the defined input space.  

• These newly generated samples are then fed into the physiological model to simulate the outputs 
of interest (see D7.1 – Definition of model output (TUE, M6)). To reduce computational cost, we 
use a surrogate model that is a fast equivalent of the real physiological model.  

• Finally, a filter (acceptance criteria) is implemented to compare the simulation results with real 
population output data, hereby removing the models with non-physiological outcomes. The 
complete set of inputs of all realistic simulations defines a region (or multiple regions) of the initial 
sparse N-dimensional input space. Samples generated from these regions together with the 
physiological model define the virtual patients.  

 

Figure 1: Schematic overview of the SIMCor methodology for virtual cohort generation. 

Sensitivity analysis techniques can be used to determine which model inputs are mainly responsible 
for model output realisations in the output range of interest. This insight can be used to optimize the 
filtering criteria and only filter those virtual patients out that produce model realisations in specific 
(sub)regions of the output interest, hereby allowing for the generation of (sub)sets of the virtual 
cohort.  
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Preliminary results aortic valve disease patients 
In this section, we demonstrate the feasibility of the envisioned strategy by presenting preliminary 
results of generating virtual patients suffering from aortic valve disease (AVD). We start by defining 
the N-dimensional sparse input space, that is needed to feed the physiological model serving as basis 
for the virtual cohort generator. Thereafter, we describe how this input space is converted to virtual 
patients.  

Input space definition 
The physiological model used for virtual cohort generation was previously developed within our group 
by Hoeijmakers et al.1,2 and replicated by one of our MSc. students (Damian Suasso de Lima de Prado, 
BSc.) to create the results presented in this deliverable. The physiological model consists of a stenotic 
aortic valve geometry in the systolic phase, a prescribed systolic flow at the inlet, and a zero-pressure 
boundary condition at the outlet. The model can calculate realistic pressure drops and velocity fields 
as observed in the clinic and during in-vitro experiments. However, the patient-specific validation still 
needs to be done and is one of the aims of SIMCor (Deliverable 7.8 – Validated virtual cohorts for in-
silico trials (TUE, M36)). 

Geometric input 
The geometric subspace of the N-dimensional input space is based on 74 iso-topological geometries 
of aortic valve stenoses collected during an earlier project on aortic valves (EurValve3) and converted 
to iso-topological meshes by PHI. Subsequently, statistical shape modelling is performed to transform 
this database of real patients into a range of shape modes and scaling factors.  

 

Figure 2: Typical aortic valve geometry and the conversion to a statistical shape model. References in the figures are aligned 
with references in the text. 

To derive a statistical shape model4 all real patient geometries are represented by a vector consisting 
of points that are defined on the valve surface geometries, also known as the vertices. Thereafter, all 
geometries are aligned and scaled to filter out shape variation due to translation, rotation, and scaling. 

 
1 Hoeijmakers et al. (2019): https://doi.org/10.1016/j.jbiomech.2019.07.010 

2 Hoeijmakers et al. (2021): https://doi.org/10.1002/cnm.3518 

3 https://www.eurvalve.eu/. 

4 Heimann et al. (2009): https://doi.org/10.1016/j.media.2009.05.004 
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This alignment is done by using Generalized Procrustes Analysis5 in which the mean squared distance 
between two shapes is minimized. This method is used to iteratively determine a mean shape to which 
all shapes in the training set have minimum distance. After subtracting the mean shape from each 
shape vector, a covariance matrix can be made. Hereafter, an eigendecomposition can be performed 
to obtain and the main modes of variation, the shape modes (eigenvectors) and eigenvalues. Each 
shape mode describes one of the possible variations within the geometry. Each patient geometry can 
thus be described by the following equation:  

𝑥𝑖̂ = 𝑥̅ +  ∑ 𝛼𝑖,𝑚𝜙𝑚

𝑁𝑚

𝑚=1

,     𝑖 ∈ {1,2, … , 𝑁𝑠}. 

Herein 𝑥𝑖̂ describes each reconstructed patient i, 𝑥̅ is the mean shape, 𝛼𝑖,𝑚 describes the shape 
coefficient for each patient i and each mode m, 𝜙𝑚 describes the shape mode for each mode m, 𝑁𝑠 is 
defined as the number of patients used to derive the statistical shape model, and 𝑁𝑚 defines the 
number of modes. 

After reconstructing the patient geometries using different numbers of shape modes, we have 
conducted 3D simulations to calculate the pressure drops across the valve stenoses. Based on these 
analyses, we have found that geometric reconstructions based on 5 shape modes are sufficient to 
accurately calculate the pressure drops. Therefore, we need five shape coefficients to properly 
parameterize each patient geometry. To define the upper and lower limits of the different shape 
coefficients, we will consider geometries that are within three standard deviations with respect to the 

mean geometry. The lower bound of the shape coefficients are then defined as 𝛼𝑚 = −3√𝜆𝑚, 𝑚 =
(1,2,3,4 𝑜𝑟 5)  where  𝛼 describes the shape coefficient, m the mode number and 𝜆 the eigenvalue 

that is representative for the variance. The upper bound is defined as  𝛼𝑚 = +3√𝜆𝑚  𝑚 =
(1,2,3,4 𝑜𝑟 5). In addition to these shape modes, we also introduce a scaling parameter s to allow for 
creating geometries with different patient sizes. The range of the scaling parameter is set to 0.8 to 1.2 
times the original size based on the available data. 

The resulting new patient geometry is a new vector consisting of vertices that have been manipulated 
by the shape modes, shape coefficients and scaling parameter. These vertices can finally be 
transformed into a mesh that can be used for CFD or TAVI deployment simulations.   

Physiological boundary conditions 
Following parametrization of the geometry, we only need an inlet flow boundary condition and a zero-
pressure condition at the outlet. Our physiological model uses a peak systolic inflow and the lower- 
and upper limits are set to respectively 50 and 650 ml/s 6. This range is based on literature in which 
peak flows around 600 ml/s, systolic flow of 400 ml/s and diastolic flow of 0 ml/s are reported.  The 
inflow completes our 7-D input space.  

  

 
5 Gower et al. (1975), “Generalized Procrustes Analysis”, Psychometrika, vol. 40, pp. 33–51 

6 Hoeijmakers et al. (2020): https://doi.org/10.1002/cnm.3387 
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Virtual cohort generation and integration into the VRE 

Surrogate model development 
To develop a surrogate model, we generate multiple samples from the input space defined above and 
obtain the corresponding virtual geometries using the statistical shape model. These virtual 
geometries are subsequently used for accurate 3D CFD simulations to generate the pressure drop 
across the aortic valve stenosis. The calculated pressure drops, together with the corresponding shape 
modes, coefficients, scaling parameter and peak systolic flow, are used to train a genetic-aggregation 
model7 in ANSYS fluent R2021R1 (ANSYS Inc, Canonsburg, Pennsylvania, United States). 

The trained surrogate model is subsequently validated by comparing the results on 74 geometries of 
stenotic aortic valves from real patients against highly accurate 3D CFD calculations with different 
prescribed flows, i.e., 100, 200, 400 and 600 ml/s. In the 3D simulations the peak systolic flow is 
obtained by prescribing a plug-velocity profile. Moreover, the outflow boundary is extended with 3.5 
times the ascending aorta diameter. 

It is demonstrated that the differences (root mean squared error) in transvalvular pressure drop 
between the CFD simulations and the surrogate model trained by using 250 or more training points, 
are smaller than ~4% for all cases and flow regimes. 

 

Figure 3: Generation of a surrogate model. References in the figures are aligned with references in the text. 

Filter design and cohort generation 
In this preliminary analysis we have chosen to set a calculated pressure drop across the stenotic valve 
larger than 300 mmHg as a non-physiological simulation. In future studies this can and will be adapted 
to the specific needs of the filter. The exact filter will later be based on physiological or physical 
constraints but also based on (regional) sensitivity analysis techniques that identify the regions in the 
model input space that are responsible for model realizations in the preferred (sub)regions of the 
output space8. The latter gives the flexibility to create virtual patients that fulfill some specific criteria, 
for example, only patients with mild stenoses. 

After proper definition of the input space, the development of the surrogate model and proper filter 
design, the virtual patients can be created. This is done by sampling the model input space by Latin 
HyperCube sampling9 to ensure proper distribution of the input samples throughout the full input 
domain. Each sample thus consists of shape parameters (shape coefficients, scaling factor) and a peak 
systolic flow. These parameters are used as input of our surrogate model that subsequently calculates 
the pressure drop across the stenotic valve. Thereafter, the filter removes all non-physiological 
realisations of the model (in this typical example a pressure drop >300 mmHg). All input samples of 

 
7 Ben Salem and Tomaso (2018): https://doi.org/10.1007/s00158-018-1925-3 
8 Pianosi et al. (2016): http://dx.doi.org/10.1016/j.envsoft.2016.02.008 
9 McKay et al. (1979): https://doi.org/10.2307/1268522 
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the realistic simulations are stored and form the new virtual patient input distribution. The 3D valve 
geometry can be derived by using the statistical shape model and the shape parameters of the input 
sample. Together with the physiological model, the reconstructed geometry and the boundary 
condition represent a realistic virtual patient.  

VRE integration 
The approach for virtual cohort generation is designed to be integrated into the Virtual Research 
Environment of SIMCor. In this deliverable, we demonstrate the feasibility of our approach and 
present a first use case example.  

The current workflow for the VRE is designed as follows (all steps are summarized in Figure 4). We let 
the user define the ranges of the input space (i.e., the ranges of the shape coefficients, scaling factor 
and flow). Moreover, the user must indicate the number of “virtual patient candidates” that should 
be evaluated by the virtual cohort generator. Note that the initially selected number of “virtual patient 
candidates” will be larger than the number of resulting virtual patients after filtering. In future 
releases, we will change this so that the user can insert the number of realistic virtual patients that 
should be produced by the generator. The number of candidates is equal to the number of samples 
taken from the input space. These samples are then automatically evaluated by our surrogate model 
which results in a pressure drop estimation for all input samples. The surrogate model was developed 
in ANSYS fluent R2021R1 (ANSYS Inc, Canonsburg, Pennsylvania, United States) but converted to an 
executable that can be run without the need to install ANSYS and to have a license.  

 

Figure 4: Workflow of virtual cohort generation of aortic valve disease patients as implemented in the VRE. References in 
the figures are aligned with references in the text. 

After obtaining the calculated pressure drops physiologically unrealistic candidates are automatically 
removed based on the user-defined acceptance criteria. The filtering procedure results in a database 
with input samples that result in realistic virtual patients. The definition of virtual patients used here 
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is adopted from Chase et al.10 and Viceconti et al.11 (Figure 5). The shape parameters (𝛼𝑚 and s) and 
the SSM are finally used to reconstruct 3D geometries that can then be used, together with the 
corresponding flow Q and the physiological model, to test the TAVI device.  

 

Figure 5: Resulting virtual patient, i.e., a geometry, boundary conditions and a physiological model 

 

  

 
10 Chase et al. (2018): https://doi.org/10.1186/s12938-018-0455-y 
11 Viceconti et al. (2017): https://doi.org/10.1177/0954411917702931 
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Preliminary results heart failure patients 
Virtual cohort generation of heart failure patients is not yet at the same stage of development as the 
aortic valve disease patients. To date, we have made a preliminary geometric input definition, here 
presented. 

Geometric input 

A first iteration of a statistical shape model describing the porcine pulmonary was developed using a 
centreline-based approach, as successfully used for human aortic geometries12. Here, the main vessel 
and all branches of the vascular structure are described by the respective centrelines as well as the 
local radius information. The patient- or animal-specific geometry can be then described following the 
assumption of circular cross-sections. This assumption was found to be valid for porcine pulmonary 
arteries. However, a relevant constraint of this shape model specification is, that the topology of the 
vascular tree is identic among all cases. Variants with 2 or 4 branching vessels instead of 3 are rather 
common, so the assumption was shown to be not valid for the porcine pulmonary artery. In humans, 
the heterogeneity of vascular trees of human pulmonary arteries was even more pronounced.  

Nonetheless, a subset of 15 porcine pulmonary arteries with similar numbers of branching vessels on 
the left and right pulmonary artery was identified. From this subset, a statistical shape model was 
generated to describe the shape variance. Using this shape model, virtual pulmonary artery 
geometries were generated (see Figure 6) to assess the feasibility of the method.  

 

Figure 6: Examples of synthetically created porcine pulmonary artery geometries using a statistical shape model. 

In general, the centreline-based shape model seems feasible for description of the shape variance of 
the main, left and right pulmonary artery. For the branching vessels another approach must be pursuit. 
This is especially true for the human pulmonary artery anatomy. Currently, different methods are 
discussed and will be evaluated. The most promising approach is describing the branching vessels 
independently from the main vessel by heuristic description of their location as well as rotation and 
inclination angle. This seems feasible, as the detailed path of the branching vessel is not necessary for 
either hemodynamic or structural mechanical simulations.   

 
12 Gundelwein et al. (2018): http://dx.doi.org/10.1007/978-3-030-04747-4_7 
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Future work 
Regarding the input space definition several important steps will be considered in the coming period. 
First, we will use a statistical shape modelling approach that is more generally applicable than the 
method used so far. Second, we will re-evaluate the complexity of our physiological models with 
respect to the output of interest and the required accuracy in the prediction. It is evident that changes 
in model complexity will also change the required model input and thus the input domain. In the 
remainder of this deliverable, we will elaborate a little bit on our future plans regarding this issue.  

Geometric input 
For the statistical shape modeling method that is currently used, point-to-point correspondence 
between all geometries is required. However, not all geometries that result from imaging 
segmentations are iso-topologic. Therefore, a new statistical shape modeling framework proposed by 
Durrleman et al.13, for which no point-to-point correspondence is required, will be implemented. This 
framework relies on control-points-based large deformation diffeomorphic metric mapping (LDDMM). 
The idea behind it is that statistical shape modeling is applied to the deformation vectors that deform 
a certain template geometry towards each patient (target) geometry. These vectors are called 
momenta and are located at certain control points. Each point (𝑥) of the template shape is 
transformed by these momenta as follows14:  

𝜙(𝑥) = 𝑥 + ∑ 𝐾𝑉(𝑥, 𝑞𝑘) ∙ 𝛽𝑘
𝑛𝑐𝑝

𝑘=1 , 

with 𝜙(𝑥) the transformed point 𝑥, 𝑛𝑐𝑝 the number of control points, 𝑞𝑘 the 𝑘’th control point, and 

𝛽𝑘 the momentum located at control point 𝑞𝑘. The Gaussian kernel 𝐾𝑉  is defined as14: 

𝐾𝑉(𝑥, 𝑞𝑘) =  𝑒

−‖𝑥−𝑞𝑘‖
2

𝜆𝑉
2

, 

with kernel width 𝜆𝑉 the distance between the control points. In other words, the contribution of each 
momentum to the deformation of a template point is weighted by this Gaussian kernel. The momenta 
𝛽𝑘 and the template shape are calculated alternately. The momenta are computed by minimizing the 
distance between the initial template and the target shape, using a correspondence-less similarity 
metric14. The template is updated by deforming it towards each target with the computed momenta 
and afterwards computing the average. The momenta are calculated again, now based on the new 
template. This process is repeated until the difference between the deformed template and the target 
shape is below a certain threshold. This results in a set of vectors for each target shape. Since these 
vectors are defined at predefined control points, we now have an iso-topologic description of all 
geometries (Figure 7). The statistical shape modeling method that was used in the previous section 
for the aortic valve geometries can be applied to these resulting vectors.  

The control-points-based LDDMM method was tested on aortic valve geometries. A template 
geometry was deformed towards one target geometry, and the results are shown in Figure 8. In 
Figures 8a and 8b it is visible that the leaflets of the template geometry are deformed towards a more 
closed position, as in the target shape. Furthermore, Figures 8c and 8d show that the aortic diameter 
of the template is decreased such that it matches the aortic diameter of the target shape. This result 
shows that this method is applicable for aortic valve geometries, which makes it a very promising 
statistical shape modeling tool. 

 

 
13 Durrleman et al. (2014): doi: 10.1016/J.NEUROIMAGE.2014.06.043 
14 Bône et al. (2021): https://hal.inria.fr/hal-01874752v2 
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Figure 7: Control-points-based LDDMM applied to a 2-D skull geometry. Adapted from http://www.deformetrica.org. 

 

 

 

 

 

 

 

 

Figure 8: Aortic valve template (white) before (a and c), and after (b and d) deformation towards target geometry (blue), by 
control-points-based LDDMM. 

This framework will be applied to 100 non iso-topologic aortic valve geometries, originating from CHA. 
The idea is to extract the main directions of shape variance (shape modes) within the sets of momenta. 
Virtual geometries will be reconstructed by deforming a template by a weighted combination of these 
shape modes. The same method will be used to reconstruct virtual pulmonary artery geometries. The 
virtual geometries will be used to train an emulator, such that it can generate the desired physiological 
output, for shape modes and boundary conditions as input.  

  

(a) (b) 

(c) 
(d) 
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Model for virtual cohort generation 

Aortic valve disease patients 
The physiological model that we have used so far is only focusing on the pressure drop. For this output 
of interest Hoeijmakers et al. demonstrated that this simplified model with stationary peak systolic 
flow is sufficiently accurate when the pressure drops exceed 10 mmHg. However, when we aim to 
evaluate also other hemodynamic metrics and/or the situation after TAVI deployment we need to 
assess again the required level of model complexity and the surrogate model to be used. Moreover, 
we need to provide boundary conditions that are representative for both the situation before and 
after TAVI deployment.  

Properly parameterized reduced order 0D models that mimic the heart and vascular structures distal 
to the 3D aortic valve geometry can potentially be used to obtain boundary conditions that can adapt 
to the changing haemodynamics after the TAVI procedure. How we can do this and how these models 
need to be parameterized to realistically represent our aortic valve disease patients will be part of our 
future work. 

All clinical data collected within SIMCor will help us by reaching these objectives. 

Heart failure patients 
Regarding heart failure patients we aim to follow a similar strategy as the one described in this 
deliverable. However, we are not yet at this level because we are still working on the development of 
the physiological model. In contrast to the aortic valve disease patients, we could not build on previous 
modelling work and/or existing databases. The SIMCor database is now sufficiently mature to make 
the same steps for the heart failure patients. In addition, we must determine the best surrogate model 
to serve as virtual cohort generator. 

Like the work discussed before, also for the HF patients we aim to develop an accurate 0D model to 
serve as boundary condition model. Here we will include the left and right side of the (sick) heart, the 
pulmonary and the systemic circulation (Figure 9). 

 

Figure 9: A schematic picture of the pulmonary artery in 3D coupled to 0D boundary models. Right part of the figure 
adapted from Regazzoni et al.15  

 
15 Regazzoni et al. (2021): https://www.biorxiv.org/content/10.1101/2020.06.23.166421v2 
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