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Abstract—This paper addresses the important problem of
leader detection in racing sports videos (e.g., cycling, boating and
car racing events), as his/her proper framing is a pivotal issue
in racing sports cinematography, where the events have a linear
spatial deployment. Over the last few years, as autonomous drone
vision and cinematography emerged, new challenges appeared
in drone vision. While, until recently, most computer vision
methods typically addressed still camera AV footage, drone sports
cinematography typically employs moving cameras. In this paper,
we solve the problem of leader detection in a group of similarly
moving targets in sports videos, e.g. the leader of a sports cyclist
group and his/her breakaway during a cycling event. This is
very useful in drone sports cinematography, as it is important
that the drone camera automatically centers on such a leader.
We demonstrate that the novel method described in this paper
can effectively solve the problem of leader detection in sports
videos.

Index Terms—UAV cinematography, computer vision, target
tracking, event detection

I. INTRODUCTION

As drone sports cinematography evolves over time, there is
a constant need for automation. Sports filming tasks, which
previously required a human operator, have reached the stage
where quick decisions are compulsory and automation seems
to be inevitable. When filming a group of moving targets
(e.g., athletes) moving in the same direction, in conventional
human-operated cinematography, the operator usually targets
the camera either on the gravitational center of the athlete
group or on the leader of this group. In this sense, leader
target detection would enable automatic leader framing by the
drone cinematography camera.

The novel leader detection method proposed in this paper,
uses global optical flow, in order to estimate camera motion
direction. The underlying assumption is that the drone already
follows the athlete group, either from above or from a lateral
position, according to the chosen drone cinematography mode
[1]. A visual target (object) detector and tracker is employed
for finding regions of interest (ROI) of the targets (athletes)
on the image plane. In the next step, the target ROI centers
are projected on the optical flow unit direction vector and,
lastly, the leading target (athlete) is detected. Moreover, the
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athlete winning order (1st, 2nd, 3rd, etc), as well as their
spatial distribution over time can be determined as well, thus
providing very useful information for computational racing
sports coaching.

Furthermore, in racing sports, a breakaway is the event
where, starting from a spatially compact racer group, one ath-
lete accelerates and distances fast from the rest of the athlete
group. In the context of this paper, we solve the breakaway
detection problem as well, by introducing additional target
breakaway detection metrics and constraints.

II. RELATED WORK

Although there have been numerous works that study ath-
letic performance at an individual athlete level, primarily by
modeling biomechanics [2]–[4], there has been no research
on the kinematics and dynamics of racing sports involving a
group of athletes using only visual information, at least to the
authors’ knowledge.

III. LEADER DETECTION

The first step to leading athlete (leader) detection is visual
athlete detection on a video frame, producing athlete ROIs,
as shown in Figure 1. Alternatively, semantic segmentation
[5]–[7] can be utilized for better localization accuracy. Then
global motion is estimated, which is primarily due to drone
and ensuing drone cinematography camera motion.

In such a framework, target group motion direction esti-
mation can be obtained by assuming that the drone camera
moves on a 3D line that is parallel to the 3D target trajectory,
while maintaining the camera axis to be almost perpendicular
to the 3D drone motion direction, trying to keep the group
of racers inside the video frame, as shown in Figure 2. This
means that the targets are almost static on the image plane,
but there is global 2D motion to the opposite direction. Thus,
detecting the global motion direction can help in determining
the actual target group motion direction. The following drone
cinematography camera motion types can meet these require-
ments: Lateral Tracking Shot (LTS) and Vertical Tracking Shot
(VTS), according to the UAV shot type taxonomy recently
defined and formalized in [1], [8] and [9]. This is not a
major limitation, as LTS and VTS are the primary drone
cinematography motion types used for when the director wants



to frame the leader. The gimbal points at the center of gravity
of the athlete group. The drone camera focal length should be
fixed. Furthermore, the video framing should be of long shot
type [1], so that many targets appear in the video frame.

Video frames can be greatly subsampled, resulting in, e.g.,
144 × 256 pixel images, as this resolution is enough for our
goals. Optical flow estimation algorithm [10] has proven to be
reliable and fast, as it takes approximately 7.4 ms for optical
flow estimation on such subsampled video frames. The 2D
target group motion unit direction vector −v̂ estimate, shown
in Figure 1, is essentially the reverse of the 2D global motion
unit direction vector v̂ estimate, which can be found by, e.g.,
averaging the estimated optical flow vectors v = 1

N

∑N
i=1 vi.

To avoid excessive computational cost, only few optical flow
vectors at chosen locations are used for the mean optical flow
vector calculation. In order to avoid letting outliers affect v̂,
zero motion vectors at target locations are removed, as targets
appear static on the image plane. To further eliminate possible
outliers, the Local Outlier Factor algorithm [11] is used to
detect and remove other possible optical flow outliers. Another
possibility is to use either a vector median [12], or angular
statistics [13] to find v̂.

The ordering of the targets/athletes and leader detection can
be easily achieved by projecting the target ROI centers on −v̂,
as depicted in Figure 1.

Fig. 1: Projection of the targets on the estimated global motion
direction vector −v.

IV. LEADER BREAKAWAY DETECTION

Let C = {c1, ..., cn} denote a group of n targets. Their
projections on −v̂ are denoted by pi = −oT

i · vT, i =
1, ..., n, where o1, ...,on denote the corresponding target ROI
center coordinates on the image plane. Let c(1) � c(2) �
... � c(n) be their ordered rank [12] along the motion
direction, o(1),o(2), ...,o(n) their corresponding coordinates
and p(1), p(2), ..., p(n) their corresponding projections on −v̂.
c(n), c(1) denote the leader and the laggard, respectively.
During breakaway, the distances of the leader location o(n)

from either the mean target group location m = 1
n

∑
o(i)

Fig. 2: Proper UAV cinematography camera motion with
respect to the motion of the targets.

and/or from the second target o(n−1) increases sharply over
time, thus indicating breakaway. Therefore, we propose the
following metrics that can indicate the breakaway occurrence.

Distance to variance ratio has two variations. The first one
is the ratio of the squared distance between the first target
location o(n) and the mean m̃ of target ensemble C − {c(n)}
coordinates divided by its variance:

r1 =
‖o(n) − m̃‖22∑
o∈Õ ‖o− m̃‖22

, (1)

where Õ contains the target coordinates corresponding to C −
{cn}.

The second one is the ratio of the squared distance between
the leader target location o(n) and the second leader location
o(n−1) divided by the variance of the target ensemble Õ:

r2 =
‖o(n) − o(n−1)‖22∑

o∈Õ ‖o− m̃‖22
. (2)

However, these metrics have a limitation. They assume
that the spatial target location projection variance along the
motion direction

∑
o∈Õ ‖o − m̃‖22 is almost static. This is

not always true, since targets can move independently, hence
altering r1 and r2 drastically, without an actual breakaway
event occurence. Additionally, laggards affect target group
position variance, hence r1,r2 as well. Finally, both r1,r2
depend on m̃, whose estimation can become unreliable if
targets start disappearing from the video frame, due to a large
target group spatial spread or due to changes in camera focal
length.

Distance to distance ratio was created as a solution to the
target disappearance problem, as well as to counter the effects
of the laggards, as both the leader and the laggard positions
are essentially outliers of the target position probability density
functions (pdfs). The first variation is the ratio of the squared



Fig. 3: Cyclist ranking. The first row shows the source video frames and the second row shows the processed ones. The orange
line indicates the estimated target motion direction. The yellow, magenda and blue dots stand for a) the leader, b) the second
best and c) the rest of the ranked targets respectively.

(a) First derivative of r1. (b) First derivative of r2.

(c) First derivative of r3. (d) First derivative of r4.

Fig. 4: These figures present the first derivatives of r1, r2, r3 and r4 through time on a simulated video.

distance between the leader and the second leader target,
divided by median absolute deviation (MAD) in Õ [12]:

r3 =
‖o(n) − o(n−1)‖22

median(‖o(i) −med2(o(i))‖2)
, i = 1, ..., n− 1, (3)

where med2() can be any 2D median operator, e.g., a marginal
or a vector median [12] [14].

The second variation is the ratio of the squared distance
‖o(n) − o(n−1)‖22, divided by mean distance between each
target and its nearest neighbor:

r4 =
‖o(n) − o(n−1)‖22

1
‖C‖

∑
o∈Õ ‖o− argmin

k∈Õ
(‖o− k‖22)‖22

. (4)

Both r3,r4 assume that target ROI center variance along the



direction perpendicular to v̂ is small. If not, the same analysis
can be performed on p(i). In this case, the med2 operator in
(3) is reduced to the classic 1D median operator [12].

All ri, i = 1, ..., 4 vary with time t. As leader breakaway
is a temporal event, their differentiation indicates breakaway:
dri
dt > T, i = 1, ..., 4. The optimal threshold T can

be found by estimating the pdfs Pri(ri), i = 1, ..., 4 in
presence/absence of breakaway and by choosing a threshold
minimizing the detection error [15].

TABLE I: Standard deviation of breakaway metrics in absence
of breakaway

Metric Std in absence of breakaway
r1 0.18
r2 0.17
r3 0.06
r4 0.14

V. EXPERIMENTAL RESULTS

Leader and breakaway performance was evaluated in a video
dataset of cycling races provided by Radiotelevisione Italiana
(RAI) 1. From the whole dataset, a number of relatively
short video clips was extracted, so that the drone camera
motion conforms to the detection requirements set up in the
previous sections. The cyclist detector [16] was employed for
target detection. The chosen video clips were transformed to
grayscale and their spatial resolution was reduced to 144×256
pixels.

Due to the fact that the leader detection algorithm uses
bounding boxes that have been already produced by a cyclist
detector, the quality of the overall results depends strongly
on the target detection performance. If target detection perfor-
mance is good [16], as in 3, the leader detection algorithm
yields almost perfectly accurate results. Using a dataset of
1571 bicycle racing video frame pairs, the leader detection
algorithm achieved a high leader detection accuracy of 97.2%,
while in detecting the second best it achieved 95.6% accuracy.
It can run in real time, as only around 24 ms are needed to
process a single video frame pair.

As cyclist breakaway videos are rather scarce, at least to
authors’ knowledge, the event was simulated. Figures 5 (a)
and 5 (b) are taken from a CGI video simulating a cyclist
racing sports event shot with VTS CMT [1] that includes
three breakaway events. Figure 4 depicts the derivatives
dri
dt , i = 1, ..., 4, respectively, filtered with median filtering

of kernel size 7. As seen in this figure, if the derivative
surpasses a certain threshold, it can successfully indicate the
time instances (around video frames no. 250, 600 and 1000)
when the breakaways take place. It is clearly seen that dr3

dt

and particularly dr4
dt have much less background noise in

the absence of a breakaway, as manifested in Table I. As
dr3
dt and dr4

dt are more robust, the choice of the optimal
thresholds for dr3

dt and dr4
dt is investigated. First we estimate

1http://www.aiia.csd.auth.gr/LAB PROJECTS/MULTIDRONE/AUTH
MULTIDRONE Dataset.html

pr3(r3) and pr4(r4) in presence/absence of breakaway using
Kernel Density Estimation [17] with Gaussian Kernel and then
determine the optimal thresholds that minimize the detection
error, as seen in Figure 6.

(a) Video frame at a time instance when the
cyclist group is compact.

(b) Video frame at a time instance when a
breakaway is detected.

Fig. 5: Video frames from a cyclist race simulation video

(a) r3.

(b) r4.

Fig. 6: Optimal threshold identifications for r3 and r4.

VI. CONCLUSIONS

Although the results show that the leader and breakaway
detection algorithm can yield satisfactory results, there are

http://www.aiia.csd.auth.gr/LAB_PROJECTS/MULTIDRONE/AUTH_MULTIDRONE_Dataset.html
http://www.aiia.csd.auth.gr/LAB_PROJECTS/MULTIDRONE/AUTH_MULTIDRONE_Dataset.html


some certain limitations that must taken into consideration.
First and foremost, the leader detection algorithm applies
only in scenarios where the targets move on a relatively
straight line. Turns produce complex optical flow behavior,
such that the motion direction can not be estimated by a
single averaging. Secondly, as stated in a previous section,
the algorithm works well only in certain CMTs, notably VTS
and LTS [1], [8], [9], where the camera axis is perpendicular
to the targets trajectory and the UAV and target trajectories
are parallel to one another.
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