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Spectral and Diffraction Tomography

I In standard tomography we seek to find scalar, vector, tensor fields
from line integrals

I In some types of tomography we have a a function for each line,
from varying wavelength, energy, diffraction angle etc, giving more
data. Korsunsky (and perhaps others) call this Rich Tomography.
We will give examples that have been tried experimentally that do
and do not work

This is the ‘wild west’ frontier of applied inverse problems.
These examples come from experimental literature and talking to
experimentalists where they have done some experiments and numerics
but not yet formulated the mathematical problems clearly.
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The ‘Golden Questions’ of practical inverse problems

Now for some rash generalizations...

Hansen and I have notice the following come up regularly as questions we
ask of experimental collaborators

I Q 0: Do your measurements change when the thing you want to
recover varies? If not no fancy mathematics will help you!

I Q 1: What do you want to know? Diagnosis? Quantification?

I Q 2: What can you measure and how accurately? This also leads to
the question of how we should model this mathematically.

I Q 3: What do you already know? A priori information.
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Non-uniqueness results have more impact?

I If you show a certain data set is insufficient to get a unique solution
whatever the accuracy and however many measurements are made
the scientists and engineers know they need some additional
information.

I .... or often if they were trying to do the inverse problem anyway
they will sometimes not believe the mathematics as they seem to be
able to do the inverse problem numerically, often incorporating
disguised a priori information.

I If you prove a uniqueness result for a continuum inverse problem (eg
Kohn and Vogelius, Sylvester and Uhlmann for EIT), the engineers
are reassured but tend to shrug their shoulders and say ‘well we
expected it to work as we can do it numerically’ (The is pretty much
what David Barber, one of the pioneers of medical EIT, said when I
explained K and V’s paper to him in the 80’s)
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Infrared absorption tomography

I This work derives mainly from studies of combustion where
tomography of the distribution of chemcal species and temperature
is probed using collimated beams from a tuneable infra red laser.

I Relatively small numbers of line integrals are measured as the
sources and detectors are fixed, scan rates (including scanning
wavelengths) are relatively fast.

I The experimental apparatus from Wisconsin group is shown on the
next slide. My interest in this work is thanks to a MIRAN workshop
on Chemical Species Tomography at Manchester last year and
especially I would like to thanks Scott Sanders for helpful discussions.



Wisconsin Apparatus

From An et al, Validation of temperature imaging by H2O absorption
spectroscopy using hyperspectral tomography in controlled experiments,
Applied Optics, 50, A29-A37, 2011.



Simplified model

The attenuation S of the infrared light at wave length λ depends in a
known but non-linear way on the temperature f , assuming the
mole-fraction of the chemical species and pressure is constant. We define
the spectral ray transform, for a unit vector ξ and point x ∈ R3 by

KS f (x , ξ, λ) =

∫
S(f (x + sξ), λ)ξ ds = XS(f , λ)(x , ξ)

and clearly for a fixed wavelength this is equivalent to the X-ray
transform. The hope of the experimentalists is that by measuring a a
range of wavelengths they can reduce the number of projections.
Specifically in An et al’s paper two projections are used.
In discussions they agreed that there must be a null space for two
projections as their regularized least squares reconstructions yielded
plausible results they assumed it was not important.



Discrete case

At least when explaining to experimentalists it is useful to consider the
two dimensional discrete case of a square a array of N ×N pixels and two
orthogonal projections. Of course there is a well known null space for the
discrete Radon transform with two orthogonal projections consisting of
‘checkered images’.



Two projections

Let fij be the pixel value on an N × N square grid xij . We take only two
projections in the coordinate directions at λ = λk , k = 1...L so that the data
are

K1mk =
N∑
j=1

S(fmj , λk), K2mk =
N∑
j=1

S(fjm, λk).

I What we can deduce from just K1mk , m = 1...N, k = 1...L = N? This is a
system of N equations for N variables (fmj)

N
j=1.

I Fixing a row of the image m the Jacobian matrix (∂K1mk/∂fmj)
N
j,k=1. If

this is invertible so the inverse function theorem guarantees that where a
solution exists in is unique within a neighbourhood of that solution. (For
example S(f , λ) = f λ is no good but S(f , λ) = f λ is fine.)

I

∂K1mk/∂fij =
∂S

∂f
(fmj , λk)

so under generic conditions if the values of fmj are different the columns of
the Jacobian will be independent vectors.

I However that K1mk is invariant under permutation of the values in the
vector (fm,j)

N
j=1.
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Even if we can find the values of the pixels along that row, we have no
hope of finding the order in which they occur from one projection.
In general for given data K1mk the solution (fmj)

N
j=1 will be unique up to

a permutation j → σ(j) giving N! solutions for that row. For this one
projection we can apply any permutation on any row of the image giving
N · N! solutions.



A Latin square

Each colour (label) appear exactly once in each row and column.



Two orthogonal projections - Latin Squares

I Assuming we have been able to identify the values {fmj}Nj=1 for each

m but not the ordering from one projection, and similarly {fjm}Nj=1

from the other projection, in the special case in which no value
appears in two different rows the solution is unique.

I By consider the case where fij takes only N distinct values and these
occur in each row and column.

I In this case Kpmk , p = 1, 2 depends only on k. Any N × N Latin
square where the values of the fij are the labels for the squares gives
a solution. There are L(N) N × N Latin squares where

N∏
k=1

(k!)N/k ≥ L(N) ≥ (N!)2N

NN2

with for example L(10) approximately 9.98× 1036.
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A more general non-uniqueness

Consider a s ubset M rows, M columns with 2 ≤ M ≤ N such there is a
solution fij which has the Latin square property on the subset.

That is there are M distinct values all appearing in each row and column.
This subset can then be replaced by any of the L(M) Latin squares.
The simplest case is of course M = 2 and L(2) = 2 corresponding to swapping
the values on the two diagonals.
Two values are quite common, eg back ground and maximum level.
Suppose that there are at least two regions that are saturated not in exactly
the same rows and columns, then typically there will be a number Q of 2× 2
subsets and 2Q different solutions.
One might expect some of the values in any given image to be the same within
the precision to which we can work.
We can expect a large number of solutions that fit the data from two
projections and without additional information the imaging problem is not
possible to solve.



A more general non-uniqueness

Consider a s ubset M rows, M columns with 2 ≤ M ≤ N such there is a
solution fij which has the Latin square property on the subset.
That is there are M distinct values all appearing in each row and column.

This subset can then be replaced by any of the L(M) Latin squares.
The simplest case is of course M = 2 and L(2) = 2 corresponding to swapping
the values on the two diagonals.
Two values are quite common, eg back ground and maximum level.
Suppose that there are at least two regions that are saturated not in exactly
the same rows and columns, then typically there will be a number Q of 2× 2
subsets and 2Q different solutions.
One might expect some of the values in any given image to be the same within
the precision to which we can work.
We can expect a large number of solutions that fit the data from two
projections and without additional information the imaging problem is not
possible to solve.



A more general non-uniqueness

Consider a s ubset M rows, M columns with 2 ≤ M ≤ N such there is a
solution fij which has the Latin square property on the subset.
That is there are M distinct values all appearing in each row and column.
This subset can then be replaced by any of the L(M) Latin squares.

The simplest case is of course M = 2 and L(2) = 2 corresponding to swapping
the values on the two diagonals.
Two values are quite common, eg back ground and maximum level.
Suppose that there are at least two regions that are saturated not in exactly
the same rows and columns, then typically there will be a number Q of 2× 2
subsets and 2Q different solutions.
One might expect some of the values in any given image to be the same within
the precision to which we can work.
We can expect a large number of solutions that fit the data from two
projections and without additional information the imaging problem is not
possible to solve.



A more general non-uniqueness

Consider a s ubset M rows, M columns with 2 ≤ M ≤ N such there is a
solution fij which has the Latin square property on the subset.
That is there are M distinct values all appearing in each row and column.
This subset can then be replaced by any of the L(M) Latin squares.
The simplest case is of course M = 2 and L(2) = 2 corresponding to swapping
the values on the two diagonals.
Two values are quite common, eg back ground and maximum level.

Suppose that there are at least two regions that are saturated not in exactly
the same rows and columns, then typically there will be a number Q of 2× 2
subsets and 2Q different solutions.
One might expect some of the values in any given image to be the same within
the precision to which we can work.
We can expect a large number of solutions that fit the data from two
projections and without additional information the imaging problem is not
possible to solve.



A more general non-uniqueness

Consider a s ubset M rows, M columns with 2 ≤ M ≤ N such there is a
solution fij which has the Latin square property on the subset.
That is there are M distinct values all appearing in each row and column.
This subset can then be replaced by any of the L(M) Latin squares.
The simplest case is of course M = 2 and L(2) = 2 corresponding to swapping
the values on the two diagonals.
Two values are quite common, eg back ground and maximum level.
Suppose that there are at least two regions that are saturated not in exactly
the same rows and columns, then typically there will be a number Q of 2× 2
subsets and 2Q different solutions.

One might expect some of the values in any given image to be the same within
the precision to which we can work.
We can expect a large number of solutions that fit the data from two
projections and without additional information the imaging problem is not
possible to solve.



A more general non-uniqueness

Consider a s ubset M rows, M columns with 2 ≤ M ≤ N such there is a
solution fij which has the Latin square property on the subset.
That is there are M distinct values all appearing in each row and column.
This subset can then be replaced by any of the L(M) Latin squares.
The simplest case is of course M = 2 and L(2) = 2 corresponding to swapping
the values on the two diagonals.
Two values are quite common, eg back ground and maximum level.
Suppose that there are at least two regions that are saturated not in exactly
the same rows and columns, then typically there will be a number Q of 2× 2
subsets and 2Q different solutions.
One might expect some of the values in any given image to be the same within
the precision to which we can work.

We can expect a large number of solutions that fit the data from two
projections and without additional information the imaging problem is not
possible to solve.



A more general non-uniqueness

Consider a s ubset M rows, M columns with 2 ≤ M ≤ N such there is a
solution fij which has the Latin square property on the subset.
That is there are M distinct values all appearing in each row and column.
This subset can then be replaced by any of the L(M) Latin squares.
The simplest case is of course M = 2 and L(2) = 2 corresponding to swapping
the values on the two diagonals.
Two values are quite common, eg back ground and maximum level.
Suppose that there are at least two regions that are saturated not in exactly
the same rows and columns, then typically there will be a number Q of 2× 2
subsets and 2Q different solutions.
One might expect some of the values in any given image to be the same within
the precision to which we can work.
We can expect a large number of solutions that fit the data from two
projections and without additional information the imaging problem is not
possible to solve.



An et al’s results



Longitudinal and Transverse ray transform
I Let F be a symmetric matrix valued function of space. ξ a unit

vector.

I We can define the longitudinal ray transform as

IF (x , ξ) =

∫
ξ · F (x + sξ)ξ ds

(note this is a scalar)
I And the transverse ray transform as

JF (x , ξ) =

∫
Πξ · F (x + sξ)Πξ ds

where Πξ = I− ξξT is the orthogonal projection. Note JF is also a
matrix (tensor).

I The longitudinal case has a null space IF = 0 if

Fij = ∂Ui/∂xj + ∂Uj/∂xi

for a vector field U.
I The transverse case does not have such a null space - indeed it can

be inverted using limited data.
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A tale of two strain tomographies

I Both x-rays and neutrons are diffracted by crystals, this is widely
used for crystallography

I Metals are polychrstaline, that is they consist of small randomly
oriented crystals.

I For polycrystalline materials the diffraction pattern is averaged over
the action of the rotation group SO(3).

I If the metal is subjected to linear elastic strain the crystals are
deformed changing their diffraction pattern.

I Using a narrow collimated beam of x-rays or neutrons we might
hope to get some kind of average strain along the beam.

I While this has not yet been done experimentally there has been
some feasibility studies for two possible methods.



Bragg edge tomography
From Santiseban et al, ‘Strain imaging by Bragg edge neutron transmission’,
Nuclear Instruments and Methods in Physics Research A, 481,765768,2002.

The transmission spectrum of thermal neutrons through a polycrystalline
sample displays sudden, well-defined increases in intensity as a function of

neutron wavelength (Fig. 1). These Bragg edges occur because for a given
{h,l,k} reflection, the Bragg angle increases as the wavelength increases until

2θ is equal to 180◦. At wavelengths greater than this critical value, no
scattering by this particular {h,l,k} lattice spacing can occur, and there is a

sharp increase in the transmitted intensity.



Bragg edge tomography

I A later paper Abbey et al, Feasibility study of neutron strain tomography,
Procedia Engineering 1 (2009) 185188, states that “ Analysis of the
shape, position and relative magnitude of these Bragg edges can yield
two-dimensional information about the component of the average elastic
strain within the sample that is collinear with the incident beam.”

I Although the mathematical details are sketchy they use a curve fitting
technique to find the magnitude of the average strain projected in the
direction of the beam. Their test object has rotational symmetry making
the measurement and reconstruction simpler.

I Using this approach we believe what they have estimated is the
Longitudinal ray transform of the strain.

I As linear strain is the symmetric derivative of the deformation vector this
technique measures just.... the change in thickness!
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A different approach

A different approach is suggested by Korsunsky et al in Strain tomography of
polycrystalline zirconia dental prostheses by synchrotron x-ray diffraction, Acta
Materialia, 59, 2501 2513, 2011. They notice that the diffraction pattern for a
narrow beam of monochromatic x-rays through a polycrystalline material on a
distant screen forms concentric circular Debye-Scherrer rings.

Korsunsky et al Fig 3
If the material in the beam was subjected to a uniform linear elastic strain the
rings would become concentric ellipses, and the matrix defining each ellipse is
proportional to the strain tensor projected in the direction normal to the beam.
They presume without proof that for a non-uniform strain fitting an ellipse to
the diffraction pattern results in an average of this transverse strain.



What can you get from one projection?
I In general ‘Rich Tomography’ is still line integrals of a parameterized

function of the unknowns. We might hope to get the distribution of
values on the line, i.e. the histogram without knowing what order
they are in.

I Let us consider a line parallel to the x3 axis each value of the
transverse strain εij , 1 ≤ i , j ≤ 2 results in a contribution to the
intensity on the screen equally distributed on the ellipse

ε11q2
1 + 2ε12q1q2 + ε22q2

2 = 1

in normalized screen coordinates q = (q1, q2).

I let φ(ε) be the density of strain values on along the line. The
intensity at q is then

I(q) =

∫
ε:ε11q2

1+2ε12q1q2+ε22q2
2=1

φ(ε)dε11dε12dε22

I This is an integral over a two parameter family of planes in three
dimensional ε space. A restricted Radon plane transform.

I No unique solution φ with out a priori information.
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Diffraction Strain Tomography works

We can reduce the data from each ray (which also makes it practically
manageable) and then reconstruct as a tensor ray transform.

I A careful analysis shows that by taking appropriate moments of the
diffraction pattern we recover the transverse ray transform of the
strain.

I Specifically let I(q) be the intensity of the light in the diffraction
pattern where q ∈ R2 is a vector in the coordinates of the screen,
the moment ∫

rI(r−1/2q) dr = q · Jε(x , ξ) · q

for any unit vector q normal to the ray ξ where ε is the infinitesimal
strain (and x a point on the ray).

I From the polarization identity we can now find Jε(x , ξ)
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We hope to test this at the Diamond Light Source

Photo: Google Earth

This synchrotron at Harwell provides a monochromatic collimated x-ray
source. Manchester has its own beam and lab at Harwell as part of
Manchester X-ray Imaging Facility.



Inverting the transverse ray transform

Consider a fixed unit vector η then for all ξ normal to η

η · JF (x , ξ)η =

∫
η · Πξ · F (x + sξ)Πξη ds = X (η · Fη)(x , ξ)

So we can invert to get η · Fη as a Radon transform in each plane.
This means we need to rotate the sample half a turn about six axes η
and measure the η moment the diffraction pattern for each ray. Of
course this is very time consuming and better to get more data for each
ray, but going with this method...
Which η do we use?
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How to measure a tensor with six vectors?

We have the equations ηi · Fηi = di , for i = 1, ..., 6 for the six unknowns
Fi,j .

Just linear equations. When are they (in)dependent equations?
They are dependent when there is a symmetric matrix A such that

ηi · Aηi = 0, i = 1, ...6

Put another way ‘the six points ηi on the projective plane lie on some
projective conic (defined by A)’.
Any five distinct points on the projective plane (unit vectors in R3)
determine a projective conic
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Pascal’s theorem

Pascal’s theorem and its converse in projective geometry says:

Six points
on the projective plane lie on a projective conic if and only if when the
sides of any hexagon they form are extended the opposite sides meet in
three collinear points
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Conclusions

Rich tomography opens up a wide vista of new inverse problems for both
theoretical and practical study.

Picture by Sam Lionheart, sunrise in Morocco


