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ABSTRACT
So far it is unclear how different factors of a scientific publi-
cation recommender system based on users’ tweets have an
influence on the recommendation performance. We exam-
ine three different factors, namely profiling method, tem-
poral decay, and richness of content. Regarding profiling,
we compare CF-IDF that replaces terms in TF-IDF by se-
mantic concepts, HCF-IDF as novel hierarchical variant of
CF-IDF, and topic modeling. As temporal decay functions,
we apply sliding window and exponential decay. In terms of
the richness of content, we compare recommendations using
both full-texts and titles of publications and using only ti-
tles. Overall, the three factors make twelve recommendation
strategies. We have conducted an online experiment with
123 participants and compared the strategies in a within-
group design. The best recommendations are achieved by
the strategy combining CF-IDF, sliding window, and with
full-texts. However, the strategies using the novel HCF-IDF
profiling method achieve similar results with just using the
titles of the publications. Therefore, HCF-IDF can make
recommendations when only short and sparse data is avail-
able.

1. INTRODUCTION
The social media platform Twitter is popular among sci-

entists to share and discuss their professional thoughts and
interests [14]. Thus, they are a natural resource for building
up a user’s professional profile and using it for recommend-
ing scientific publications. Recommending scientific pub-
lications based on a user’s social media items has several
advantages: First, users receive recommendations based on
their current and ongoing professional interests. In contrast,
systems like Google Scholar and Sugiyama et al. [26] recom-
mend scientific publications based on a user’s publication
record. It can take up to two years (for conferences) or
longer (for journals) until a paper is taken into consider-
ation by the recommender system. Second, content-based
profiling from a user’s social media items mitigates the well-
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known cold-start problem observed in collaborative filtering
systems [11]. The cold-start problem refers to the initial
situation where a recommender system yet does not know
anything about a user’s interests. Collaborative filtering sys-
tems need to analyze a large amount of user activities in
order to provide reasonable recommendations. In contrast,
content-based recommender systems like our work make rec-
ommendations based on similarity scores between a user
profile and candidate items. Therefore, they can generate
recommendations based on a single user profile already.

There is various research on user profiling from social me-
dia items [5, 21, 24, 29] and recommending scientific pub-
lications [15, 26, 28]. However, it is unclear how different
profiling methods affect the recommendation performance.
In addition, the age of social media items as well as scientific
publications has an influence on profiling [24, 21]. But again,
it has not been compared. Finally, we investigate whether
it is possible to make reasonable recommendations when us-
ing only the publications’ titles, i. e., when only short and
sparse information about the candidate items is available.
We have conducted an online experiment to evaluate these
three factors of top-k recommendations of scientific publica-
tions based on a user’s social media profile. In detail, the
factors are:

(i) Profiling Method: The first factor is the Profiling
Method, where we use Concept Frequency Inverse Document
Frequency (CF-IDF) [7] as baseline. CF-IDF is a modifi-
cation of TF-IDF where term frequencies are replaced by
frequencies of semantic concepts. In an experiment with
19 participants, Goossen et al. have shown that CF-IDF
outperforms TF-IDF for news article recommendations [7].
Recently, we have extended the statistical strength of CF-
IDF with the semantics provided by a hierarchical knowledge
base [19]. The resulting Hierarchical CF-IDF (HCF-IDF)
model is capable of revealing semantic concepts that are not
explicitly mentioned in texts but still are highly relevant.
This is achieved by applying a spreading activation over a
hierarchical knowledge base, which is typically provided as
domain-specific taxonomy. Please note that we also consid-
ered using BM25 and TF-IDF as profiling method. However,
our earlier work showed that HCF-IDF performs better for
user profiling from social media items [19]. As third method,
we apply Latent Dirichlet Allocation (LDA) [2, 1], a state-
of-the-art topic modeling method. LDA is a generative ma-
chine learning approach and thus does not require any prior
information such as a knowledge base.

(ii) Decay Function: As the second factor, we inves-
tigate two temporal Decay Functions. They are based on
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the idea that the importance of information declines grad-
ually as time passes. We compare sliding window [24] and
exponential decay [21, 26]. Both decay functions have been
used in the past for user profiling [24, 21, 26]. But so far no
comparative study was carried out.

(iii) Document Content: The third factor defines the
richness of Document Content used for profiling candidate
items (i .e., scientific publications). We compare the use
of full-texts and titles of scientific publications for profiling
versus profiling only based on titles.

We compared twelve recommendation strategies making
use of different combinations of the three factors described
above. For the experiment, we have recruited n = 123 par-
ticipants who are posting about their professional interests
on Twitter. For each strategy, the participants have received
recommendations of five publications from a large corpus of
|D| = 279, 381 scientific publications in the broader field of
economics. We used rankscore [4] to measure the recom-
mendation performance. We also computed Mean Average
Precision (MAP), Precision, Mean Reciprocal Rank (MRR),
and normalized Discounted Cumulative Gain (nDCG), which
show similar results and documented in the TR [20].

The results are very interesting: The strategy that em-
ploys the profiling method CF-IDF and the decay function
Sliding window with both titles and full-texts achieves the
overall best recommendation performance. Although the
strategy using CF-IDF shows the highest performance, it
has a drawback that it requires full-texts of scientific pub-
lications. Thus, it is remarkable that the strategies with
HCF-IDF can achieve comparable results using only titles.
We observe no significant difference between the best per-
forming strategy and strategies with HCF-IDF. Thus, we
conclude that the use of the spreading activation function
over the hierarchical knowledge base enables HCF-IDF to
compensate for the sparseness when only titles are avail-
able due to e .g., legal reasons to hinder the use of full-texts.
Please note, there is no lack in domain-specific hierarchical
knowledge bases such as the one used in the experiment for
economics. In fact, these knowledge bases are freely avail-
able for many domains1. Furthermore, they are manually
crafted by domain experts and thus are of high quality.

In addition, we have applied a correlation analysis be-
tween the recommendation performance and the number
of tweets a participant has published, the number of con-
cepts extracted from these tweets, the number of concepts
extracted per tweet, and the percentage of tweets contain-
ing at least one concept respectively. Our results show no
significant correlations in any strategies. Thus, the methods
are robust against the amount of tweets.

Subsequently, we review related work in Section 2. Sec-
tion 3 introduces the problem definition. In Section 4, we
describe the three experimental factors used in o4ur recom-
mender system. We present the experiment setup and pro-
cedure in Section 5. The results are presented in Section 6
and discussed in Section 7 before we conclude the paper.

2. RELATED WORK
Recommender systems are categorized into content-based

recommender and collaborative filtering [11]. Collaborative
filtering requires analyzing a large amount of user activities
in order to predict items to other users [29]. In contrast, we

1http://www.w3.org/2001/sw/wiki/SKOS/Datasets

focus on content-based recommender, which suggest items
based on similarity scores between a user profile and candi-
date items. A content-based recommender can make recom-
mendations based on data from a single user already. Thus
it does not suffer from the cold start problem. Recommender
systems for scientific publications mostly employed user pro-
files based on publications [26, 27] or clicks [15]. Instead, we
create user profiles based on social media items.

Many works have extracted user interests from social me-
dia platforms [5, 21, 24, 29]. Chen et al. [5] studied a recom-
mender system incorporating Twitter, which recommended
URLs based on a user’s tweets and follower-followee rela-
tionships. In order to find out the best recommendation
strategy, they evaluated twelve strategies from three fac-
tors: content sources, topic interest models for users, and
social popularity. Referring to the factor content sources,
Chen et al. showed that profiling based on one’s own tweets
performed better than based on tweets by one’s followees.
Hence, we build up user profiles from social media items
produced by the users themselves.

In the past years, profiling methods based on semantic
concepts (i .e., ontology-based profiling) extraction have been
developed [7, 16]. They extract semantic concepts from
texts, using a structured knowledge base, e .g., DBpedia.
Goossen et al. [7] proposed CF-IDF, as an extention of TF-
IDF. CF-IDF counts frequencies of a concept instead of a
term. Their news arcticle recommendation experiment with
19 participants demonstrated that CF-IDF outperforms TF-
IDF. Lu et al. [16] proposed a recommender system for
tweets based on what a user tweeted. They constructed
user profiles represented as a set of weighted Wikipedia con-
cepts that correspond to Wikipedia articles. The experi-
ment demonstrated that concept-based approaches outper-
form TF-IDF. Other works employed a hierarchical struc-
ture of a knowledge base for profiling [12, 18, 16] and demon-
strated their effectiveness. These approaches can reveal user
interests that are not explicitly mentioned in the texts, using
a structure of a knowledge base and spreading activation.
In particular, Middleton et al. [18] constructed user pro-
files based on a hierarchical knowledge base using spreading
activation for a recommender system of scientific publica-
tions. Their user experiment compared a profiling method
using the structure of a hierarchical knowledge base and a
method not using the structure. The result demonstrated
superiority of using the hierarchical knowledge base. Topic
modeling such as LDA [2] is one of the most popular profil-
ing methods. It is used in the context of social media [10]
but particularly suited for document profiling.

Time-aware user profiles are constructed based on the as-
sumption that the degree of user interests declines as time
passes. The decline of user interests is modeled by a de-
cay function. In the past, the decay functions sliding win-
dow [24] and exponential decay [21, 26] have been employed
for user profiling. However, they have not been compared
so far like we do in this work.

3. PROBLEM DEFINITION
We address the problem of taking the social media stream

as input in order to recommend items such as scientific pub-
lications the user might be interested in. The problem can
be decomposed into three parts: (1) First, we need to ex-
tract the professional interests that a user exposes through
his social media stream and represent the interests in a user
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Table 1: Symbol Notation
u a user
i a social media item
Iu the set of u’s social media items
c a concept
C the set of concepts
d a candidate item (scientific publication)
D the set of candidate items

ti, td the time stamp of i and d, respectively
Pu u’s user profile
Pd d’s document profile
Φ a profiling function
w′ a weighting function (not considering temporal decay)
f a decay function
w a weighting function that extends w′ with temporal decay
σ a similarity function

profile. (2) Likewise, we profile candidate items (i .e., sci-
entific publications) and represent them in a way that they
are comparable with the user profile. (3) We need a rank-
ing function to compute the top-k items based on similarity
scores between the user profile and each candidate item. In
the following, we formalize the three steps required to create
a recommender system based on a user’s professional inter-
ests extracted from the social media stream. Symbols used
in this paper are summarized in Table 1.

(1) User profiling from social media items. We con-
sider Iu as set of social media items i produced by user u. A
social media item i ∈ Iu has a certain time stamp ti. Sub-
sequently, Pu, the user profile of the user u, is created over
a set of concepts C by assigning a specific weight for each
concept c ∈ C. Generally speaking, a concept c is a key
subject in a dedicated field, coming from a given domain-
specific knowledge base C. For instance, ”financial crisis” is
a concept in the field of economics. We construct Pu by em-
ploying different user profiling functions Φ and we compare
them. Formally, user profiles are defined as:

Pu = Φ(Iu, C) := {(c, w(c, Iu)) | ∀c ∈ C} (1)

Here, w is an arbitrary weighting function that returns a
weight of a concept c in a user’s social media stream Iu.
Thus, it determines how important a concept c is for the
user u. Profiling functions Φ and weighting functions w are
described in Sections 4.1 and 4.2. Specifically, we describe
weighting functions w′ that do not consider temporal de-
cay in Section 4.1 and provide weighting functions w which
extend w′ with temporal decay in Section 4.2.

(2) Profiling candidate items. We have a set of can-
didate items D. A candidate item d ∈ D has a time stamp
td, indicating its published year. To determine the simi-
larity scores between a user profile Pu and each candidate
item d ∈ D, we need to construct profiles of candidate
items in a way that they are comparable with the user pro-
file. Formally, we represent a candidate item d as a profile
Pd = Φ(d,C) := {(c, w(c, d)) | ∀c ∈ C}. Since our candi-
date items are scientific publications, we refer to this process
document profiling.

(3) Ranking candidate items. We rank candidate
items based on similarity scores between the user profile Pu
and a document profile Pd. A similarity function σ takes as
input a user profile Pu and document profile Pd. It is defined
as σ(Pu, Pd) → [0, 1]. The similarity function is applied to
all candidate items d ∈ D. Finally, the top-k most relevant

Table 2: Three factors and their choices for the ex-
periment spanning in total 3× 2× 2 = 12 strategies

Factor Possible Design Choices

Profiling Method CF-IDF HCF-IDF LDA
Decay Function Sliding window Exponential decay
Document Content All (title + full-text) Title

items (i .e., documents whose similarity scores with Pu are
ranked in the top-k) are recommended to the user u. The
similarity functions σ are described in Section 4.3.

4. EXPERIMENTAL FACTORS
According to the three factors (i)-(iii) stated in the intro-

duction, we form the design space of our experiment. We
illustrate the design space in Table 2, where each cell is a pos-
sible design choice we can make in one of the three factors.
Subsequently, we detail the factor Profiling Method in Sec-
tion 4.1 and the factor Decay Function in Section 4.2. Fur-
ther, we describe similarity functions σ in Section 4.3. The
factor Document Content investigates whether full-texts of
scientific publications enhance the recommendation perfor-
mance compared to using only titles.

4.1 Profiling Method
We investigate three methods for user profiling and doc-

ument profiling. For each method, we define a weighting
function w′ that gives a certain weight to each concept c.
The final weighting function w taking temporal decay into
account is described in Section 4.2.

CF-IDF: Compared to the traditional TF-IDF, CF-IDF
(Concept Frequency Inverse Document Frequency) counts
frequencies of a semantic concept instead of term frequen-
cies [7]. Semantic concepts or short concepts are stored in
an external knowledge base. Each concept has a unique
resource identifier (URI) and one or more labels describing
the concept 2. The concept’s labels are treated as synonyms.
As an example, the concept “clothing industry” has the URI
http://zbw.eu/stw/version/latest/descriptor/13128-2

and is defined in the thesaurus STW, a domain-specific knowl-
edge base for economics (described in Section 5.3). The con-
cept has not only the label “clothing industry” but also the
synonymous labels “garment industry” and “apparel indus-
try”. We count the label frequency, i .e., the number of times
the label appears, in the social media items and candidate
items. Subsequently, we calculate the concept frequency,
i .e., the number of times the concept appears, by summing
up the frequencies of the labels referring to the concept. For
instance, if the labels “clothing industry” and “garment in-
dustry” appear twice and once in a text, the total frequency
of the concept referring to “clothing industry” is three.

For the social media items Iu of the user u, CF-IDF is
computed along with Equation 2.

w′cf-idf (c, i) = cf(c, i) · log
|Iu|+ |Ir|

|{i ∈ Iu ∪ Ir : c ∈ i}| , (2)

where cf(c, i) = the number of times concept c appears in i
the number of times all concepts appear in i

. The

denominator |{i ∈ Iu ∪ Ir : c ∈ i}| counts the number of
social media items that contain a concept c. Ir is a set of
random social media items.

2https://www.w3.org/DesignIssues/LinkedData.html
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We employ a set of random social media items Ir, because
it allows to better distinguish the relevant concepts in the
user’s social media items Iu, as Chen et al. [5] and Lu et
al. [16] did for TF-IDF. For instance, assuming there are
two social media items from a user u and both include the
concept “currency competition”. Although “currency com-
petition” should have a high weight in the user profile, in
this case IDF and a final CF-IDF score would be 0 because
“currency competition” is common in a user u’s social media
items. The random social media items are sampled from
public microblog postings. In our case, they are obtained
from the public Twitter stream using the Twitter API.

We have conducted a simple pre-experiment to empiri-
cally determine the optimal amount of random tweets to
be used in the profiling method in the context of our ex-
periment of recommending economics publications. Given
this pre-experiment, we set the size of random social media
items to five times of |Iu|. In more detail, we applied differ-
ent sizes of Ir, starting from 0 to 1000 random tweets. For
26 Twitter accounts, we computed the IDF scores for user
profile over Iu ∪ Ir and compared it using cosine similarity
with the user profile computed only over Iu. The Twitter
accounts were taken from a list of famous economists3 that
are frequently tweeting. We ensured that the set of random
tweets Ir is disjoint do the user’s tweets, i. e.. Ir ∩ Iu = ∅.
Particularly, we looked into the changes of the cosine simi-
larity while adding more random tweets. We observed the
changes in the IDF scores became stable after about a fac-
tor of five w.r.t. to |Iu|. The changes indicate the influence
of the IDF scores to user profile. Using this technique is
effective as the IDF score ensures that too generic concepts
do not get too high weights in the user profiling. Those
generic concepts are at the upper levels of the hierarchy of
the domain-specific knowledge base. In our case those con-
cepts are like “product” and “economics”. Please note that
the factor may depend on the domain of economics consid-
ered in this paper and that a different factor may be chosen
for other domains.

Regarding document profiling, CF-IDF is computed as de-
fined in Equation 3. The computation is basically identical
with the one for user profiling shown in Equation 2. The dif-
ference is that CF is computed over single documents and
IDF is computed over the document collection.

w′cf-idf (c, d) = cf(c, d) · log
|D|

|{d ∈ D : c ∈ d}| (3)

HCF-IDF: The novel profiling method HCF-IDF (Hier-
archical CF-IDF) [19] extends CF-IDF by using a hierarchi-
cal knowledge base, where the concepts are hierarchically or-
ganized in a taxonomy. HCF-IDF can reveal concepts that
are indirectly mentioned in texts by applying a spreading
activation over the hierarchical knowledge base. Figure 1
shows an example where a user’s profile includes the concept
“social recommendation”. Due to the hierarchical structure
of the knowledge base, also the concepts “web searching”
and “world wide web” are activated and obtain non-zero
weights even if they are not mentioned. Different from the
profiling methods using spreading activation [12, 18], HCF-
IDF avoids to provide too high weights to generic concepts
like “economy”, as it employs IDF. Specifically, HCF-IDF
combines the statistical strength of CF-IDF with semantics

3http://www.huffingtonpost.com/2012/11/13/
economists-twitter n 2122781.html

Figure 1: An example of HCF-IDF

provided by the hierarchical knowledge base. We compute
HCF-IDF along with Equation 4.

w′hcf-idf (c, i) = BL(c, i) · log |Iu|+ |Ir|
|{i ∈ Iu ∪ Ir : c ∈ i}| (4)

BL(c, i) denotes the spreading activation function BellLog
from Kapanipathi et al. [12]. It returns a weight of a concept
c in a social media item i and is defined below:

BL(c, i) = cf(c, i) + FL(i) ·
∑

cj∈Cl(c)

BL(cj , i), (5)

where FL(c) = 1
log10(nodes(h(c)+1))

. h(c) returns the level

where a concept c is located in the knowledge base and nodes
provides the number of concepts at a given level in a knowl-
edge base. For example, in Figure 1 h(“web searching’) re-
turns 2 and nodes(h(“web searching’) + 1) returns 4. Cl(c)
returns the set of concepts located in one level lower than
the concept c. In Figure 1 the function Cl(“world wide web”)
returns “web searching” and “web mining”.

For scientific publications, weights are computed as de-
fined in Equation 6. The computation is basically identical
with the one for user profiling as shown in Equation 4. The
difference is that BL is applied over single documents and
IDF is computed over the document collection.

w′hcf-idf (c, d) = BL(c, d) · log |D|
|d ∈ D : c ∈ d| (6)

LDA: As third profiling method, we use LDA [2, 1], an
unsupervised topic modeling method. LDA identifies latent
topics in a document collection, where each document is rep-
resented as a probability distribution over topics, while each
topic is again represented as a probability distribution over
a number of words. Please note that for user profiling, we
treat the set of social media items Iu published by a user u as
one single social media document in this profiling method.
It is known that topic models that treat a user’s microblog
postings as one combined social media document outper-
form topic models computed over single postings of a user
for recommendation tasks [10]. We first create a topic model
for the entire document collection D (using the parameters
and tools described in detail in Section 5.3). Subsequently,
we run LDA with the given topic model for the document
collection D and infer a probability distribution over topics
for the user’s social media document Iu.

Again, we use the same notation of concepts c as intro-
duced above: Each topic generated by LDA is treated as
a concept c ∈ C. The weight of a concept c is defined by
w′lda(c, Iu) = p(c | Iu) for user profiles and w′lda(c, d) = p(c |
d) for document profiles, where p(c | d) and p(c | Iu) denote
the probability of the concept (i .e., topic) c in the social
items Iu and document d, respectively.
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4.2 Decay Function
We compare two decay functions f , namely sliding window

and exponential decay. In the past, both functions have
been used in recommender systems [24, 21, 26]. However, so
far they have not been empirically compared. The profiling
functions w′ described in the previous section are combined
with a decay function f in order to obtain a final weight w.
The final weights are computed by Equation 7 for the set of
social media items and Equation 8 for the candidate items.

w(c, Iu) =
∑

c∈i:i∈Iu

f(ti) · w′(c, i) (7)

w(c, d) = f(td) · w′(c, d) (8)

Please note that when employing LDA, the decay functions
can only be applied on the candidate items, because we treat
the user’s social media items as one single document.

Sliding Window: There are two kinds of sliding window
functions, whose window size is defined by (a) the number of
items [13] and (b) the period of time [25]. The approach (a)
is employed to identify relatively short-term features (e .g.,
user interests from web browsing histories) [13], while the
approach (b) is used to identify long-term features [25]. We
aim at extracting a user’s professional interests, which are
rather long-term. Thus, we take the approach (b) and use
only social media items and documents that are younger
than a given threshold point in time thresh. The sliding
window function can be represented as Equation 9.

fsw(t) =

{
1 for t ≥ thresh
0 for t < thresh

(9)

For user profiles, we set the threshold based on the work by
Orlandi et al. [21]. They found out that the half life time is
threshsocial = 250 days. For document profiles, Sangam et
al. [22] observed that the half-life time of the scientific pub-
lications in the field of social science is 9.04 years. In our
experiment, we use a dataset of scientific publications in eco-
nomics (see Section 5.3), which has a large overlap with so-
cial science. Thus, we set threshdoc = 9.04 years [22] and re-
move scientific publications published more than 9.04 years
ago from the candidate items.

Exponential Decay: The exponential decay function is
defined as shown in Equation 10.

fexp(t) = e−(tcurrent−t)/τ , (10)

where tcurrent denotes the current time and τ is a posi-
tive number presenting mean-life [21]. For user profiles, we
set τ = 360 days based on Orlandi [21]. Since Sangam et
al. [22] found out that the mean-life of scientific publications
in social sciences is 13.05 years, we set τ = 13.05 years for
document profiles.

4.3 Similarity Functions
We calculate the similarity scores between a user profile

Pu and each document profile Pd. We cast a user profile
Pu and document profiles Pd to a user profile vector ~pu and
document profile vectors ~pd, respectively. Each element in
the vectors corresponds to a weight of a concept c.

Temporal Cosine Similarity: We employ the temporal
cosine similarity function described in Equation 11 for the
profiling methods CF-IDF and HCF-IDF.

σtcossim(Pu, Pd) = f(td) ·
~pu · ~pd

|| ~pu|| · ||~pd||
, (11)

It extends the cosine similarity by the function f(td), which
results in higher similarity score to newer documents. f(td)
is a decay function from Equation 9 or Equation 10. td is
time stamp of a scientific publication d. i .e., the year at
which d was published.

Dot Product: For LDA, we employ the dot product com-
puted as σdp(pu, pd) = ~pu · ~pd. Since LDA represents doc-
uments as probability distribution, it is more reasonable to
use Kullback-Leibler divergence (KL divergence). However,
the dot product outperforms cosine similarity and Kullback-
Leibler divergence (KL divergence) when representing doc-
uments using LDA [9].

5. EVALUATION
We conducted an online experiment with n = 123 par-

ticipants in order to identify the best strategy for a recom-
mender system along the factors described in Section 4. As
social media platform, we choose Twitter as it is widely used
in scientific communities [14]. We design our experiment
following the experiment setup and procedure of Chen et
al. [5]: Each participant obtains top-5 recommendations for
each of the twelve strategies formed from the three factors.
The recommendation performance of each strategy is mea-
sured by the rankscore [4]. Below, we describe the details of
our experiment procedure and participants. Subsequently,
we explain the dataset and the knowledge base used in the
experiment. Finally, we introduce our evaluation metric.

5.1 Procedure
The participants are invited to a web application imple-

menting the twelve recommendation strategies. First, par-
ticipants input their public Twitter handles and e-mail ad-
dress. Then, the participants’ tweets are retrieved from the
Twitter API. Subsequently, user profiles are created from
the tweets using each of the three profiling methods and
two decay functions. Based on the user profiles, person-
alized top-k recommendations of scientific publications are
generated for each of the twelve strategies. We set the num-
ber of recommendations per strategy k = 5 along with Chen
et al. [5]. After computing the recommendations, the par-
ticipants receive an e-mail invitation to assess the recom-
mendations. The participant go through all of the twelve
strategies like as Chen et al. [5]. Thus, we apply a repeated
measures design. Each participant obtains 12 · 5 = 60 rec-
ommendations in total throughout the experiment.

Prior to starting the experiment, participants are informed
about the task of the experiment, i .e., rating the recom-
mended publications based on relevance to their research
interests, and confirmed consent. On each of the subse-
quent pages, the participants see a list of five recommenda-
tions produced by one of the twelve strategies. An example
screenshot of the evaluation page is shown in Figure 2.

For each recommended scientific publication, the partic-
ipants see its bibliographic information, i .e., authors, title,
and year of publication. In addition, participants can look
into the original PDF files by clicking on a link attached to
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Figure 2: Screenshot of our experiment web page showing a randomized list of top-5 recommendations for
the first of twelve strategies (which again are randomly ordered). For each recommendation the participants
could assess the bibliographic record as well as click on the full-text document. The participants rated each
recommended publication as “interesting” or “not interesting”’ based on their research interests.

the bibliographic record. In order to avoid bias, the partici-
pants go through the twelve strategies in random order. For
each strategy, the participants receive one list of five rec-
ommendations. The five recommendations in the lists are
again shown in random order to the participants to avoid
the well-known ranking bias. Typically, participants assume
that top-ranked recommendations are essentially more rele-
vant [3, 5]. Thus, again prior to starting the experiment we
have explicitly informed the participants that we have ran-
domized the order of the items in the top-5 lists. However,
the actual ranks of the recommendations as well as their po-
sitions where the recommended items appeared on the par-
ticipants’ screen are stored in the database for later analyses.
Participants evaluate each recommendation as “interesting”
or “not interesting” by clicking on radio buttons next to the
publication records like Chen et al. [5]. Please note, the
participants had to evaluate all recommended items.

At the end of the experiment, we collect the demographic
information of each participant, including gender, age, high-
est academic degree, major, years of profession, and current
employment status (academia/industry). Finally partici-
pants could state free comments regarding the experiment.

5.2 Participants
We recruited n = 123 participants through mailing lists,

tweets, and word-of-mouth on the Internet. Initially 160
participants registered their Twitter handles and email ad-
dress for our experiment. Among them, 134 participants
started the experiment after receiving the e-mail invitation.
From these 134 participants, only eleven dropped in the
course of assessing the recommendations in the twelve strate-
gies. Thus, finally we obtain evaluations for all strategies
from n = 123 participants. From these, 27 participants are
female. The average age of the participants is 32.83 years
(SD: 7.34). Regarding the highest academic degree, we have
acquired 21 with a Bachelor, 58 have a Master, 32 a PhD,
and 12 are lecturers/professors. While 83 participants work
in academia, 40 work in industry. Tweets of the partic-
ipants were retrieved via Twitter API. We only collected
tweets in English as the scientific publications are also in
English. The participants published on average 1096.82 En-

glish tweets (SD: 1048.46). The maximum and minimum
numbers of tweets are 3192 and 2, respectively. Twitter
users who have not produced any tweets in the last 250 days
could not register and participate in the experiment, since
we use a 250 days threshold for the decay function Slid-
ing window (see Section 4.2). Five Twitter users could not
participate in the experiment for this reason.

The participants spent on average 517.54 seconds to com-
plete the assessment of the 5 × 12 = 60 recommendations
(SD: 376.72). This does not include the time spent to reg-
ister for the experiment, read the instructions, and filling
out the final questionnaire. As incentive, each participant
received the information about his most similar economist
among 26 famous economists4 and the top-5 dominant se-
mantic concepts in their tweets after the experiment. In
addition, the participants could opt-in to a raffle for one of
two Amazon vouchers worth of 50 e.

5.3 Dataset Preparation
We use a large-scale dataset of scientific publications in

the field of economics as candidate items and a high-quality
taxonomy as a knowledge base for profiling methods.

Dataset of Scientific Publications. We collaborate
with the providers of EconBiz5, a portal for scientific pub-
lications in economics managed by ZBW, the German Na-
tional Library of Economics. From this portal, we obtained
1 million URLs of open access publications and extracted
full-texts and metadata (i .e., authors, title, year of publi-
cation) of 413, 098 scientific publications. Finally, we deter-
mined the document language6 and got 279, 381 scientific
publications in English, which were used in this experiment.

Knowledge Base in Economics. The ZBW also main-
tains and further develops the hierarchical knowledge base
STW7, a thesaurus specialized for the field of economics.
The STW is freely available and is of high quality due to
its manual maintenance by domain experts. The knowledge

4http://www.huffingtonpost.com/2012/11/13/
economists-twitter n 2122781.html
5http://www.econbiz.de/
6https://code.google.com/p/language-detection/
7http://zbw.eu/stw/version/8.12/about.en.html

176



base is poly-hierarchically organized with six levels. It con-
tains 6, 335 semantic concepts and 11, 679 labels. The hier-
archically organized concepts are connected with each other
via 14, 875 edges. In order to extract as many labels as possi-
ble, we enhanced the original STW with DBpedia redirects8.
From DBpedia redirects we can retrieve the synonymous la-
bels for a concept. STW contains 2, 692 concepts that have
both a DBpedia mapping and one or more DBpedia redi-
rects. As an example, for the concept “Telecommunications
industry” in the thesaurus, we obtain the DBpedia redirects
“Telecommunications operator” and “Telephone companies”
and use them as synonymous labels referring to the concept
“Telecommunications industry”. Finally, our extended STW
contains 6, 335 concepts and 37, 733 labels. This extended
STW is used for the profiling methods CF-IDF and HCF-
IDF. For CF-IDF, we ignore the edges between concepts.

Processing of the tweets and publications. For the
profiling methods CF-IDF and HCF-IDF, we extract seman-
tic concepts from the participants’ tweets and the scientific
publications by matching the texts with the labels from the
extended STW (i. e., a gazetteer-based approach). Before
processing, we lemmatize both the tweets and the scien-
tific publications using Stanford Core NLP9 and remove stop
words. Regarding the tweets, some of them contain hashtags
indicating topics (e .g., #election) and user mentions (e .g.,
@UNICEF). We remove only the symbols # and @ from the
tweets as Feng et al. [6] observed that the combination of the
tweets’ textual content with the hashtags and user mentions
made the highest performance for tag recommendation.

This process extracts only the users’ professional inter-
ests from tweets and helps to avoid noise (i .e., topics not
relevant to professional interests in economics). A partici-
pant has published on average 1096.82 tweets (SD: 1048.46).
On average 1, 214.93 concepts (SD: 1181.43) are contained
in a participant’s tweets and 1.07 concepts (SD: 0.31) are
contained per tweet. Regarding CF-IDF and HCF-IDF, we
calculate the ratio of the number of tweets containing at
least one concept and the total number of tweets the user has
published. This indicates the percentage of tweets that have
contributed to creating the user profile. On average, 62.24%
of the tweets (SD: 13.55) that a participant has published
contain at least one concept in economics. These tweets are
assumed to be relevant to the professional interests.

LDA. For constructing profiles by LDA, we use JGib-
bLDA10. We first run LDA to generate the topic model
based on the given document set D. Following Blei et al. [1],
we lemmatize the scientific publications using Stanford NLP
Core. Subsequently, we remove stop words and words that
appear in fewer than 25 scientific publications. We opti-
mized the number of topics K regarding the maximum mean
log likelihood of words given topics as suggested by Griffiths
et al. [8]. We experimented with K = 20, 50, 100, 200, 500,
1000, and 5000 and obtained the highest log likelihood for
K = 100. All topic models were computed over 500 iter-
ations. Regarding the further parameters for LDA, we set
α = 0.5 and β = 0.1 as suggested by Griffiths et al. [8]. To
infer a topic distribution over a user’s tweets, we run LDA
again using the topic model for the document set D with 200

8http://oldwiki.dbpedia.org/Downloads39#redirects
9http://nlp.stanford.edu/software/corenlp.shtml

10http://jgibblda.sourceforge.net/

iterations. Prior to this, we prepare the tweets of a user u in
a single social media document as described in Section 4.1.

5.4 Evaluation Metric
In order to assess the recommendation performance, we

compute the rankscore [4] as used by Bostandjiev et al. [3]
and introduced by Jannach et al [11]. Rankscore posits that
each successive item in a list is less likely to be viewed by
users with an exponential decay, as defined in Equation 12.

rankscore′ =
∑
d∈hits

1

2
rankd−1

θ−1

(12)

θ denotes a viewing halflife parameter controlling the speed
of the exponential decay. As suggested by Breese et al. [4],
we set θ = 5. hits refers to the set of documents d evalu-
ated as “interesting” and rankd denotes the rank of a rec-
ommended item d in a list. Please note rankd denotes the
actual rank stored in the database different from the position
where a item d appears in the list (cf. Section 5.1). The nor-
malized rankscore is computed by rankscore = rankscore′

/rankscoremax, where the maximum rankscore rankscoremax =∑k
j=1

1

2
j−1
θ−1

. Here, k is the number of the recommended

items. We set k = 5. We also computed Mean Average Pre-
cision (MAP), Precision@5, Mean Reciprocal Rank (MRR),
and normalized Discounted Cumulative Gain (nDCG). Over-
all, the results are similar to the rankscore and thus omitted
for reasons of brevity. The interested reader may refer to
the details in the appendix [20].

6. RESULTS
In this section, we document the results of the experi-

ment11 and conduct the statistical analyses. We set a sig-
nificance level of α = 5% for all statistical tests (please do
not confuse with α for LDA in Section 5.3).

6.1 Quantitative Analyses
We first report the best performing strategy among the

twelve strategies. Subsequently, we analyze the influence by
the experimental factors followed by investigating the cor-
relations between the recommendation performance and the
numbers of tweets written by a user. Finally, we analyze the
performance related to the number of times the participants
clicked on the full-text of a publication.

Best performing strategy. Table 3 documents the av-
erage rankscores of the twelve strategies sorted in decreasing
order. Overall, the best performing strategy is the strat-
egy CF-IDF × Sliding window × All. We apply a one-
way repeated-measure ANOVA in order to identify if there
are significant differences between the strategies. For using
ANOVA, we first need to verify whether the variances of the
rankscores of the twelve strategies are equal. This is done
by using Mauchly’s test, which reveals a violation of spheric-
ity in the strategies (χ2(65) = 435.90, p = .00). It may
lead to positively biased F-statistics and increases the risk of
false positives. To reduce this risk, we apply a Greenhouse-
Geisser correction of ε = .61 and run the one-way repeated-
measure ANOVA. It reveals a significant difference in the
rankscores of the strategies (F (6.60, 805.33) = 21.98, p =
.00). To assess the pair-wise significant differences between

11The anonymized experimental data is available from: http:
//dx.doi.org/10.7802/1224
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the twelve strategies, a post-hoc analysis is conducted. We
have applied Shaffer’s modified sequentially rejective Bonfer-
roni procedure (Shaffer’s MSRB procedure) [23] that takes
into account the number of different experiment conditions,
i. e., the number of recommendation strategies. The result
of the post-hoc analysis is presented in Table 4. The vertical
and horizontal dimensions of the Table 4 show the eleven-
by-eleven comparison of the twelve strategies. As one can
see, we observe various significant differences between the
strategies (p < .05, marked in bold font). For example,
while we observe a significant difference between the strate-
gies CF-IDF × Sliding window × Title and HCF-IDF ×
Sliding window × All (t(122) = 4.77, p = .00), there is no
significant difference between the strategies CF-IDF × Ex-
ponential decay × Title and LDA × Sliding window × Title
(t(122) = 2.43, n.s., p = .41).

Table 3: Rankscores of the strategies in decreasing
order. M and SD denote mean and standard devia-
tion, respectively.

Strategy Rankscore
Profiling
Method

Decay
Function

Con-
tent

M (SD)

1. CF-IDF Sliding window All .59 (.33)
2. HCF-IDF Sliding window All .56 (.34)
3. HCF-IDF Sliding window Title .55 (.33)
4. HCF-IDF Exponential decay Title .52 (.30)
5. CF-IDF Exponential decay All .51 (.32)
6. HCF-IDF Exponential decay All .49 (.30)
7. CF-IDF Exponential decay Title .41 (.29)
8. CF-IDF Sliding window Title .39 (.27)
9. LDA Exponential decay Title .35 (.31)
10. LDA Sliding window Title .33 (.31)
11. LDA Exponential decay All .32 (.30)
12. LDA Sliding window All .27 (.33)

Difference in experiment factors. Subsequently, we
analyze the results with respect to each experimental fac-
tor. To this end, we first apply Mendoza’s test [17] to check
for violations of sphericity against the factors. Mendoza’s
test is an extension of Mauchly’s test to adopt to multi-way
repeated-measure ANOVA. It shows significances with the
global (χ2(65) = 435.90, p = .00) and the factors Profiling
Method (χ2(2) = 12.21, p = .00), Profiling Method × Decay
Function (χ2(2) = 20.02, p = .00), and Profiling Method
× Document Content (χ2(2) = 8.61, p = .01). Subse-
quently, we run a three-way repeated-measure ANOVA with
a Greenhouse-Geisser correction of ε = .60 for the global and
ε = .91 for the factors Profiling Method, ε = .87 for Profil-
ing Method × Decay Function, and ε = .93 for Profiling
Method × Document Content. Table 5 shows the results of
the ANOVA with F-ratio, effect size η2, and p-value. The
effect size is small when η2 > .02, medium when η2 > .13,
and large when η2 > .26. The analyses reveal significant dif-
ferences in all three factors and their contributions except
the factor Decay Function. For all factors with significant
differences, we apply again a post-hoc analysis using Shaf-
fer’s MSRB procedure with respect to each factor. In terms
of the factor Profiling Method, the post-hoc analysis reveals
significant differences between all pairs of HCF-IDF, CF-
IDF, and LDA (details of the post-hoc analysis are omitted
for the reasons of brevity and documented in our TR [20]).
Although the strategy CF-IDF × Sliding window × All per-
forms best as shown in Table 3, the best Profiling Method is

HCF-IDF as it performs under all other factors better than
CF-IDF and LDA. Regarding the factor Document Content,
“All” outperforms “Title” (F (1, 122) = 5.18, p = .02). Re-
garding the factor Profiling Method × Decay Function, the
result suggests that the strategies with the Exponential de-
cay function perform better than those with the Sliding win-
dow function when LDA is employed. In addition, there
are significant differences among the three profiling meth-
ods when a decay function is fixed. In both decay functions,
HCF-IDF performs best, followed by CF-IDF, and LDA. Re-
ferring to the factor Profiling Method × Document Content,
the result indicates that All is a better choice than Title,
when CF-IDF is employed. In profiling methods HCF-IDF
and LDA, the factor Document Content makes no signif-
icant difference. It indicates that HCF-IDF does perform
well when only titles of candidate items are available. In
addition there are significant differences among the profiling
methods when a choice of Document Content is fixed. In
those cases, HCF-IDF always outperforms others. In terms
of the factor Decay Function × Document Content, All is a
better choice than Title, when Sliding window is used.

Correlation of recommendation performance with
the number of tweets, the number of concepts, the
number of concepts per tweet, and the percentage
of tweets containing at least one concept. We com-
puted Pearson’s r and Kendall’s τ between the users’ mean
rankscores and each of the number of tweets, concepts, con-
cepts per tweet and the percentage of tweets containing at
least one concept. A correlation may show a dependency
that could influence the recommendation performance. The
results show no significant correlation: As stated in Sec-
tion 5.3, a participant has published on average 1096.82
tweets (SD: 1048.46). There is no significant correlation
with the rankscores (r(121) = .04, n.s., p = .62 and τ = .00,
n.s., p = .98). Referring to the number of concepts, on
average 1, 214.93 concepts (SD: 1181.43) are contained in
a participant’s Twitter stream. The correlation coefficients
are non-significant (r(121) = .05, n.s., p = .60 and τ = −.01,
n.s., p = .94). Regarding the number of concepts per tweet,
a participant’s tweet contains on average 1.07 concepts (SD:
0.31) with again no significant correlation to the rankscores
(r(121) = −.05, n.s., p = .59 and τ = −.02, n.s., p = .71).
Regarding the tweets that contribute in computing the user
profiles for the methods with CF-IDF and HCF-IDF, we
calculate the percentage of the number of tweets contain-
ing at least one concept and the number of tweets for each
user. On average, 62.24% of the tweets (SD: 13.55) that a
participant has published contain at least one concept, with
no significant correlation (r(121) = −.04, n.s., p = .67 and
τ = −.03, n.s., p = .73)

6.2 Questionnaire Feedback
At the end of the experiment, the participants were asked

to rate: “How easy it was to make the decisions whether
a recommended publication is interesting”. Using a 5-point
Likert scale, where values between 1 and 5 refer to very dif-
ficult to very easy, the result is fairly high with an average
of 3.68 (SD: 0.88). Regarding question “Whether the partic-
ipants noticed a difference among the twelve strategies”, the
result is similarly high with an average of 3.46 (SD: 1.20).
In the free text feedback, one participant denoted that the
recommender system failed to pick up his primary field de-

178



Table 4: Post-hoc analysis with pairwise p-values over the twelve strategies using Shaffer’s MSRB procedure.
The p-values are marked in bold font if p < .05, which indicates a significant difference between the two
strategies. Strategies are sorted by rankscores as shown in Table 3.
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2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

1. CF-IDF Sliding window All .99 .97 .72 .22 .12 .00 .00 .00 .00 .00 .00
2. HCF-IDF Sliding window All .99 .99 .99 .99 .00 .00 .00 .00 .00 .00
3. HCF-IDF Sliding window Title .99 .99 .99 .00 .00 .00 .00 .00 .00
4. HCF-IDF Exponential decay Title .99 .99 .01 .00 .00 .00 .00 .00
5. CF-IDF Exponential decay All .99 .04 .00 .00 .00 .00 .00
6. HCF-IDF Exponential decay All .12 .02 .00 .00 .00 .00
7. CF-IDF Exponential decay Title .99 .99 .41 .28 .01
8. CF-IDF Sliding window Title .99 .84 .61 .03
9. LDA Exponential decay Title .99 .99 .72
10. LDA Sliding window Title .99 .99
11. LDA Exponential decay All .88

Table 5: Three-way repeated-measure ANOVA with
Greenhouse-Geisser correction with F-ratio, effect
size η2, and p-value.

Factor F η2 p

Profiling Method 58.40 .48 .00
Decay Function 1.17 .01 .28
Document Content 5.18 .04 .02
Profiling Method × Decay Function 4.63 .04 .01
Profiling Method × Document Content 17.09 .14 .00
Decay Function × Document Content 4.69 .04 .03
Profiling Method × Decay Function ×
Document Content

3.35 .03 .04

spite having tweeted about that field. Apart from this, we
received many positive comments (e .g., interesting, useful).

7. DISCUSSION
The strategies with HCF-IDF perform almost equally well

compared to the best performing strategy CF-IDF × Slid-
ing window × All. There is no significant difference between
them as described in Table 4. The strong advantage of HCF-
IDF is that it reaches its performance already when using
only the titles of the scientific publications. The reason is
that spreading activation over the hierarchical knowledge
base used in HCF-IDF successfully reveals concepts that
are not explicitly mentioned in the texts. CF-IDF works
well when full-texts are available. Referring to LDA, the
recommendation performance of the strategies with LDA is
overall low, even if full-texts are available. A possible rea-
son is that LDA cannot construct accurate user profiles be-
cause of the shortness and sparseness of social media items.
Without accurate user profiles it is impossible to make good
recommendations, even if full-texts are available. In fact,
a slight correlation between the rankscores of LDA and the
number of tweets is observed [20]. It indicates that par-
ticipants with more tweets receive better recommendations.

Please note as documented in [20], rankscores are almost
exact same values with Precision@5 and nDCG. Although
rankscores are slightly different with MAP and MRR, the or-
der of performance of strategies are almost identical. Thus,
the arguments described in this paper do not be influenced
by differences among those evaluation metrics.

Our dataset covers scientific publications in the broader
field of economics. Thus, although the dataset is obtained
from a portal of economics literature, it contains scientific
publications from various fields including, e .g., social sci-
ences, political sciences, and information sciences. In the
experiment, 31 of 123 participants do not have a major in
economics. We have conducted an ANOVA test to identify
whether the recommendation performance is significantly
different for participants from economics and those not in
economics. The result shows that majors make no signif-
icant difference (F (1, 121) = 0.01, n.s., p = .94). Thus,
we assume that our approach may be transferred to other
domains. Furthermore, there are a lot of domain-specific
hierarchical knowledge bases in other domains freely avail-
able such as Medical Subject Headings (MeSH) for medicine
and ACM Computing Classification System (ACM CCS) for
computer science. An overview of freely available hierarchi-
cal knowledge bases is maintained by the W3C as cited in
the introduction. The knowledge bases are of similar struc-
ture to the STW used in this paper. They are of high quality
as they are manually crafted by domain experts. Therefore,
HCF-IDF can be easily applied to other fields. Our approach
could be integrated with other social media platforms (e .g.,
Facebook, LinkedIn), where users generate short and sparse
texts. In addition, HCF-IDF is robust against the number
of tweets a user published, because there is no correlation
between the number of tweets and the rankscores of the
strategies with HCF-IDF.

Our results may potentially be influenced by the amount
of time that each participant spent for evaluating the 5 ×
12 = 60 recommended publications by the twelve strategies
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in the experiment. However, they spent on average 517.54
seconds (SD: 376.72) to complete the evaluation of the 60
recommendations. In addition, we randomized the order of
the strategies presented to the participants to counterbal-
ance any influence on the order of the strategies. Thus, we
think that our results are not influenced by it. Another po-
tential threat to the validity of our results could be the pro-
cedure how we recruited the participants. We believe that
the risk is low since we collected enough participants regard-
ing each demographic factor (as shown in Section 5.2). Re-
garding the demographic factors, we found significant differ-
ences only for the participants’ highest academic degree and
participants’ gender (details are documented in the TR [20]).
However, they do not affect the order of the recommendation
performance of the different strategies.

8. CONCLUSIONS
This paper contributes to content-based recommender sys-

tems for scientific publications based on user profiles ex-
tracted from social media platforms. We have constructed
twelve different recommendation strategies along three fac-
tors, namely profiling method, decay function, and docu-
ment content. The online experiment revealed that titles
of scientific publications are sufficient to achieve competi-
tive recommendation results when employing the profiling
method HCF-IDF. Thus, the spreading activation over the
hierarchical knowledge base enables HCF-IDF to extract a
sufficient number of concepts from titles to compute com-
petitive recommendations. This is an important result as
full-texts are not always available, e. g., due to legal reasons.
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