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A B S T R A C T   

Landslides are geomorphological processes that shape the landscapes of all continents, dismantling mountains 
and contributing sediments to the river networks. Caused by geophysical and meteorological triggers, including 
intense or prolonged rainfall, seismic shaking, volcanic activity, and rapid snow melting, landslides pose a 
serious threat to people, property, and the environment in many areas. Given their abundance and relevance, 
investigators have long experimented with techniques and tools for landslide detection and mapping using 
primarily aerial and satellite optical imagery interpreted visually, or processed by semi-automatic or automatic 
procedures or algorithms. Optical (passive) sensors have known limitations due to their inability to capture Earth 
surface images through the clouds and to work in the absence of daylight. The alternatives are active, “all- 
weather” and “day-and-night”, microwave radar sensors capable of seeing through the clouds and working in 
presence and absence of daylight. We review the literature on the use of Synthetic Aperture Radar (SAR) imagery 
to detect and map landslide failures – i.e., the single most significant movement episodes in the history of a 
landslide – and of landslide failure events – i.e., populations of landslides in areas ranging from a few to several 
thousand square kilometres caused by a single trigger. We examine 54 articles published in representative 
journals presenting 147 case studies in 32 nations, in all continents, except Antarctica. Analysis of the 
geographical location of 70 study areas shows that SAR imagery was used to detect and map landslides in most 
morphological, geological, seismic, meteorological, climate, and land cover settings. The time history of the case 
studies reveals the increasing interest of the investigators in the use of SAR imagery for landslide detection and 
mapping, with less than one article per year from 1995 to 2011, rising to about 5 articles per year between 2012 
and 2020, and an average period of about 4.2 years between the launch of a satellite and the publication of an 
article using imagery taken by the satellite. To detect and map landslides, investigators use a common framework 
that exploits the phase and the amplitude of the electromagnetic return signal recorded in the SAR images, to 
measure terrain surface properties and their changes. To discriminate landslides from the surrounding stable 
terrain, a classification of the ground properties is executed by expert visual (heuristic) interpretation, or through 
numerical (statistical) modelling approaches. Despite undisputed progress over the last 26 years, challenges 
remain to be faced for the effective use of SAR imagery for landslide detection and mapping. In the article, we 
examine the theoretical, research, and operational frameworks for the exploitation of SAR images for landslide 
detection and mapping, and we provide a perspective for future applications considering the existing and the 
planned SAR satellite missions.   

* Corresponding author. 
E-mail address: alessandro.mondini@irpi.cnr.it (A.C. Mondini).  

Contents lists available at ScienceDirect 

Earth-Science Reviews 

journal homepage: www.elsevier.com/locate/earscirev 

https://doi.org/10.1016/j.earscirev.2021.103574 
Received 11 October 2020; Received in revised form 19 February 2021; Accepted 21 February 2021   

mailto:alessandro.mondini@irpi.cnr.it
www.sciencedirect.com/science/journal/00128252
https://www.elsevier.com/locate/earscirev
https://doi.org/10.1016/j.earscirev.2021.103574
https://doi.org/10.1016/j.earscirev.2021.103574
https://doi.org/10.1016/j.earscirev.2021.103574
http://crossmark.crossref.org/dialog/?doi=10.1016/j.earscirev.2021.103574&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Earth-Science Reviews 216 (2021) 103574

2

1. Introduction 

In all continents landslides contribute to shape landscapes (Den
smore et al., 1997; Lavé and Burbank, 2004; Malamud et al., 2004b; 
Chang et al., 2014), and in many areas they pose a serious threat to 
people, properties, and the environment (Brabb and Harrod, 1989; 
Dowling and Santi, 2013; Guthrie, 2013; Nadim et al., 2013; Petley, 
2012; Badoux et al., 2016; Grahn and Jaldell, 2017; Froude and Petley, 
2018; Herrera et al., 2018; Salvati et al., 2018; Rossi et al., 2019). For 
geological and geomorphological studies, and for landslide hazard and 
risk assessments, investigators have long experimented techniques, 
tools, and methods for mapping landslides, in the field or exploiting 
terrestrial, aerial, and satellite imagery (Guzzetti et al., 2012). 

In the last four decades, Earth Observation (EO) imagery – and many 
related processing and visualisation techniques and tools – have 
increased significantly the ability to prepare landslide maps (Joyce 
et al., 2009; Sassa and Canuti, 2009; Guzzetti et al., 2012; Scaioni, 2013; 
Casagli et al., 2016). Today, a variety of solutions exist to detect and map 
landslides applicable in areas of small to very large extent using EO 
imagery, including the visual interpretation of stereoscopic aerial 
photography, and the semi-automatic or automatic classification of 
optical, monoscopic or stereoscopic, imagery taken by space, airborne, 
drone, or terrestrial platforms (Gokceoglu and Sezer, 2009; Guzzetti 
et al., 2012; Scaioni, 2013; Scaioni et al., 2014; Casagli et al., 2016, 
2017a; Giordan et al., 2018; Zhao and Lu, 2018). 

The alternatives to passive (optical) sensors are active sensors. Syn
thetic Aperture Radar (SAR) remote sensing from airborne and satellite 
platforms exploits active emissions of electromagnetic radiation in the 
microwave spectral range – between 0.23 GHz (130 cm, P-band) and 40 
GHz (0.65 cm, Ka-band) – to illuminate the Earth’s surface. Since active 
radar sensors do not require illumination from the Sun, and microwaves 
penetrate the clouds, SAR imagery can – in principle – capture the 
occurrence (or recurrence) of landslides all day long, even in areas 
where clouds obstruct optical sensors (European Space Agency, 2020c). 
This makes SAR imagery a potentially ideal solution for the detection 
and mapping of landslides. 

In this article, we attempt a systematic, critical review of the litera
ture on the use of airborne and satellite SAR imagery to detect and map 
landslide failures – where a failure is “the single most significant 
movement episode in the [...] history of a landslide”, as defined by 
Hungr et al. (2014) – and landslide failure events i.e., populations of one 
or many landslides in an area caused by a single trigger (Guzzetti et al., 
2012). Similar systematic reviews of the literature on landslide detection 
and mapping techniques that exploit airborne and satellite, optical 
(multispectral) imagery, or airborne Lidar terrain data, were completed 
by e.g., Gokceoglu and Sezer (2009), Guzzetti et al. (2012), Scaioni 
(2013), Scaioni et al. (2014), Casagli et al. (2017a), and Ray et al. 
(2020). Our work complements and updates these reviews. Multi- 
temporal DInSAR techniques (e.g., Ferretti et al., 2001; Berardino 
et al., 2002; Lanari et al., 2004; Ferretti et al., 2011) have also been used 
extensively to detect and measure ground surface displacements caused 
by slow moving landslides – in the range from mm to cm per year – to 
update geomorphological and multi-temporal landslide inventory maps 
(Guzzetti et al., 2012), and to determine and rank the degree of activity 
(UNESCO Working Party on World Landslide Inventory, 1993) of single 
or multiple landslides (Bovenga et al., 2006; Farina et al., 2006; Lauknes 
et al., 2010; Notti et al., 2010; Righini et al., 2012; Bianchini et al., 2012; 
Ciampalini et al., 2012; Cigna et al., 2013; Bardi et al., 2014; Raspini 
et al., 2015; Michoud et al., 2016; Solari et al., 2019; Lu et al., 2019a). 
These techniques were reviewed extensively by e.g., Ciampalini et al. 
(2015), Casagli et al. (2016), Casagli et al. (2017a), Casagli et al. 
(2017b), Solari et al. (2020), and are not covered in our work. 

The article is organised as follows. After an explanation of the ter
minology used in the work (Section 2), we describe the construction of 
the literature database on which we base our review (Section 3). Next, 
we give a brief description of SAR systems (Section 4). Then we present 

the theoretical basis, and the practical use of SAR amplitude (Section 
5.1) and phase (Section 5.2) for landslide failure detection and mapping. 
This is followed by a critical analysis of the literature (Section 6), and a 
comparison of different approaches and methods for landslide detection 
and mapping using SAR imagery (Section 7). Ultimately, we discuss the 
theoretical, research, and operational frameworks, and we provide a 
perspective for the future exploitation of SAR imagery for detecting and 
mapping landslides (Section 8). We conclude (Section 9) by summaris
ing the main lessons learnt. 

2. Terminology 

The term “landslide” describes the movement of a mass of rock, 
debris, or earth down a slope (Cruden and Varnes, 1996; Hungr et al., 
2014). Landslides are of different types and forms, span multiple orders 
of magnitude in size and velocity (Cruden and Varnes, 1996; Hungr 
et al., 2014; Guzzetti et al., 2012), can evolve through multiple move
ment episodes (Leroueil et al., 1996; Hungr et al., 2014), and often 
happen where they have already occurred, through repetitions, re
currences, and reactivations (Temme et al., 2020). The large variability 
of the landslides complicates the terminology used to describe the slope 
failures. 

We use the term “landslide” to encompass all types of mass move
ments, and the terms “mass movement” and “slope failure” as synonyms 
for “landslide”. We use the terms “failure” and “landslide failure” as 
synonyms, to describe the single most significant movement episode in 
the history of a landslide (Hungr et al., 2014), and the term “landslide 
event” to describe a population of landslides, encompassing one to many 
landslide failures in the same general area caused by a single trigger e.g., 
an earthquake, a rainfall period, a rapid snowmelt event. To describe the 
individual landslides, we use the same terms and classification schemes 
adopted by the authors of the original studies, including terms used to 
describe the type (e.g., “fall”, “flow”, “slide”, “spread”, “compound”, 
“complex” (Cruden and Varnes, 1996; Hungr et al., 2014)) and the rate 
of movement (UNESCO Working Party on World Landslide Inventory, 
1995), the areal extent and volume of the single landslides (e.g., “small”, 
“medium”, “large” (Fell, 1994; Hungr et al., 2001; Jakob, 2005)), and 
the magnitude (numerousness) of the landslide populations (Malamud 
et al., 2004a). We adopt the same approach to describe the quality (e.g., 
“precision”, “accuracy”, “completeness” (Jackson Jr et al., 2012; San
tangelo et al., 2015)) of the landslide mapping process. We acknowledge 
that some inconsistency exists in the use of landslide descriptive terms in 
the literature. 

In the article, “landslide detection” (or “detection”) refers to the 
action of noticing or discovering single or multiple landslide failures in 
the same general area, and “landslide mapping” (or “mapping) refers to 
the action of delineating the geometry of a landslide and, where 
possible, the geometry of the landslide internal features – including e.g., 
the landslide main boundary, the separation between the source, travel, 
and deposition areas, fractures, pressure ridges – and to portray the 
landslide information in map form. Given that to map a landslide the 
landslide has to be known to the interpreter, “mapping” encompasses 
“detection”. We adopt the terminology proposed by Guzzetti et al. 
(2012) to classify the different types of landslide inventory maps, 
separating geomorphological, event, seasonal, and multi-temporal 
inventories. 

A “quantitative” mapping method extracts information on the pres
ence (or absence) of landslides from EO imagery using mathematical, 
statistical or computational techniques (Given, 2008). Most of these 
methods exploit machine learning classification techniques, including e. 
g., thresholds, logistic regression, random forest, unsupervised clus
tering (Michie et al., 1994; Richards and Jia, 2006). A “qualitative” 
mapping method obtains information on the presence (or absence) of 
landslides through an empirical and heuristic visual interpretation of EO 
imagery – also called “visual investigation”, “visual analysis”, “visual 
photograph data interpretation”. When applied to map validation, the 
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terms “qualitative” and “quantitative” refer to methods and techniques 
that exploit the expert-based recognition of landslides, and mathemat
ical and statistical procedures and associated results, respectively. A 
“study area” is a geographical area where a landslide event was inves
tigated. Multiple articles may have investigated the same study area 
using the same or different approaches. A “case study” is a specific 
landslide event investigated using a single approach and discussed in a 
single article. 

3. Construction of the literature database 

To construct the literature database, we first considered all the 
relevant articles already known to us. Next, we searched peer-reviewed 
articles in the Core Collection of the “Web of Science” online platform 
using keywords and the Boolean search criteria AND, OR, NOT, SAME, 
NEAR applied to the “title”, “abstract”, and “keywords” of the publica
tions. Keywords we used were “map / mapping”, “detect / detection”, 
“recognition”, “identification”, “SAR”, “amplitude”, “intensity”, “back
scatter / backscattering”, “coherence”, and “InSAR / DInSAR”, in com
bination with landslide descriptive terms defined by Cruden and Varnes 
(1996) and Hungr et al. (2014), including “landslide”, “slope insta
bility”, “landslip”, “rock fall”, “slump”, “slide”, “earth flow”, and “debris 
flow”. For our search, we included terms like “recognition” and “iden
tification” used in the literature as a synonyms for “detection”. 

We checked the list of references in all the selected articles, and we 
repeated the search multiple times from April 2019 to November 2020 
to obtain a preliminary list of 126 articles. We examined thoroughly the 
articles in the preliminary list, and we excluded 72 of them (57%) 
because they were not relevant, mostly because they dealt with the 
evolution of single landslides (Hungr et al., 2014). Our final literature 
database lists 54 articles published between January 1995 and 
November 2020 in 26 peer-reviewed journals, including 17 remote 
sensing journals, six earth-science journals, and three multi-disciplinary 
journals (Fig. 1A). We consider the collection representative of the sci
entific literature on the use of SAR imagery for landslide detection and 
mapping in the 26-year period 1995–2020. A first conclusion we draw is 
that, despite the recognised need for landslide maps (Guzzetti et al., 
2012), and the alleged capability of SAR imagery to detect and map 
landslides (Guzzetti et al., 2012; Scaioni et al., 2014; Casagli et al., 
2016), the literature on the exploitation of SAR imagery for landslide 
event detection and mapping remains limited. Inspection of Fig. 1B re
veals a constant increase in the number of published articles per year, 
with the rate of publications increased first in 2012, and more signifi
cantly from 2018. 

To characterise the individual studies in our collection, we searched 
for information of five categories, namely: (i) the characteristics of the 
study areas, including the extent of the areas and their geological, 
geomorphological, land cover, climate, and seismicity settings; (ii) the 
characteristics of the landslide event, including the number, type, and 
size of the triggered landslides, and the main landslide trigger (e.g., 
intense or prolonged rainfall, earthquake); (iii) the image pre-processing 
approaches; (iv) the image classification methods used in the studies; 
and (v) additional ancillary data. This information was not available for 
all the studies. Two recent papers (Mondini et al., 2019; Burrows et al., 
2020) examined multiple case studies, influencing the statistics of the 
case studies. We found that 70% of the studies provided information on 
the event landslide trigger, but only 26% gave information on the extent 
of the study area. Considering the landslides, 28% of the studies reported 
information on the exact or approximate number of the detected or 
mapped landslides, 48% gave information on the type, or types of 
landslides, and only 30% of the studies provided information on the size 
(area, volume) of the landslides. Overall, we consider the information on 
the landslide characteristics given in the articles limited, and we 
recommend to provide more, and more accurate, landslide information 
when presenting the results of landslide detection and mapping studies. 

We also found that 78% of the studies provided information on the 

image pre-processing approaches. We attribute this high percentage to 
the fact that most of the articles (42, 77.7%) were published in remote 
sensing journals (Fig. 1A). We further found that only 40% of the studies 
gave information on the land cover type, important for many EO remote 
sensing applications. Only one article provided information on the 
geological, morphological, climate, and seismicity settings. Ultimately, 
we found that 68% of the articles provided information on the validation 
of the landslide detection and mapping results. The figure is similar to 

Fig. 1. Articles and journals in the literature database. (A) The 26 journals 
represented in the literature database. Horizontal bars show number of articles 
in each journal. Numbers on the side of the bars show the year of publication of 
the articles. Pie charts show number and percentage of journals and articles in 
the three journal categories. (B) Temporal distribution of the articles in the 
literature database. Vertical bars show number of published articles per year 
(left y-axis). Blue line shows cumulated number of articles per year (right y- 
axis). Colour shows journal category: pink, remote sensing; green, Earth sci
ences; brown, multi-disciplinary. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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the percentage of statistically-based landslide susceptibility assessment 
studies that accomplished model validation (Reichenbach et al., 2018). 

Fig. 2 portrays the geographical distribution of the study areas in the 
literature database. 

4. Background on Synthetic Aperture Radar 

Airborne and space-borne radar systems are active microwave sen
sors with an onboard, side looking antenna that illuminates the ground 
surface (i.e., the “target”) with single band pulses of electromagnetic 
radiation. Their common operational range of interest for this work 
includes the central frequencies of ~ 9.6 GHz, ~ 5.4 GHz, or ~ 1.3 GHz, 
named X-band, C-band, and L-band, respectively (IEEE, 2020) (Table 1). 
The antenna receives the returning signal (i.e., the “echo”), and mea
sures the strength of the echo and the time it takes the signal to return to 
the antenna. The strength of the echo depends on the properties of the 
scattering ground surface in relation to the radiation frequency (e.g., the 
dielectric constant, the terrain roughness), the distance between the 
antenna and the ground, and the satellite view angle (Fig. 3), and it is 
recorded in the “amplitude” of the electromagnetic wave. The echo re
turn time depends on the relative distance between the antenna and the 
illuminated object (the “scatterer”) on the ground surface and it is 
recorded in the “phase” of the electromagnetic wave (Meyer, 2019). 

The side looking configuration of SAR systems (Fig. 3) introduces a 
number of peculiarities. The pixel coordinates in sensor geometry are 
expressed in terms of distance from the radar track (“range direction” or 
“across-track”), and of the sensor flying direction (“azimuth direction” 
or “along-track”). The “slant range” measures the distance between the 

radar antenna and the portion of the illuminated ground represented by 
the pixel, inferred from the time delay. The “azimuth” is perpendicular 
to the slant range direction, and measures the along-track distance be
tween the antenna and the scatterer (Fig. 3). 

The spatial resolution of the SAR images varies along the range di
rection – decreasing with the increase of the distance between the illu
minated area and the sensor – and is constant and independent from the 
range along the azimuth direction (Fig. 3). Both resolutions depend on 
multiple factors, including the sampling frequency, the orbital param
eters, and the acquisition mode (Oliver and Quegan, 2004). Image pre- 
processing procedures (e.g., interpolation, filtering, multi-looking) can 
also change the resolution of SAR images. Hence, a comparison with 
optical products in terms of pixel size or ground sampling distance (GSD) 
is meaningful only when a SAR image is projected to ground coordinates 
(“geocoding”). 

The side looking geometry of SAR sensors introduces geometric 
distortions in the images, including “foreshortening”, “layovering”, and 
“shadows”, in particular in mountainous or hilly terrain (Fig. 3B). 
Foreshortening occurs when illuminated slopes are mapped with a 
compressed scale relative to its appearance. A layover is an extreme 
form of foreshortening where the top of a backscattering object (e.g., a 
mountain top) is recorded closer to the radar (in slant range) than are 
the lower parts of the object (e.g., the base of the slope). Shadows are 
caused by the lack of radar illumination (Fig. 3B) (European Space 
Agency, 2020b; Meyer, 2019). Geometric distortions depend on the 
satellite orbit parameters (e.g., ascending or descending), the satellite 
configuration (e.g., side of look), and the acquisition parameters (e.g., 
look angle, Θ), and their presence remains a problem for landslide 

Fig. 2. Geographical distribution of 70 study areas in the literature database. Countries coloured based on the number of studies, in seven classes. Symbols show the 
approximate location of the study areas. Colour of symbol shows SAR band: green, X-band; blue, C-band; red, L-band. Shape of symbol shows main landslide trigger: 
square, seismic; circle, weather; hexagon, unknown trigger; diamond, human induced slope failures. Capital letter in the symbol shows the adopted approach: C, 
coherence; D, differential interferometry (DInSAR); M, multi (dual, full) polarisation; S, single polarisation. Number to the side of the symbol shows number of case 
studies. Inset map on the right side of the main map portrays enlargement for Japan. Small black dots show non-earthquake-induced fatal landslides between 2004 
and 2016 inventoried by Froude and Petley (2018) and updated recently to cover the period from January 2004 to December 2017 (Froude and Petley, personal 
comm. 2019). Map uses the Equal Earth map projection (EPSG:8857). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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studies that exploit SAR imagery. An additional limitation of the side 
looking geometry of SAR systems is related to the fact that along-track 
displacements cannot be measured. Hence, ground movements along 
about the NS direction can hardly be detected. 

5. Literature review 

5.1. SAR amplitude 

In the radar sensors of interest for landslide detection and mapping 
(Table 1), the amplitude of the transmitted and the received radiation 
can have a horizontal (H) or a vertical (V) geometrical orientation, or 
“polarisation”. For most of the sensors, the amplitude is acquired in 
single (HH or VV) polarisation (SP) or in dual (HH + HV, or VV + VH) 
polarisation (DP). Fully-polarimetric systems acquire all the possible 
combinations of polarised backscatter i.e., HH, HV, VH, and VV (FP) 
(Czuchlewski et al., 2003). In the following, we first address works that 
performed a multi-polarimetric (full- or dual-polarimetric) analysis. 
Next, we present articles that exploited single-polarimetric analyses. 

5.1.1. Multi-polarisation 
From a theoretical perspective, where a landslide removes the 

vegetation that covers a slope, the terrain microwave scattering prop
erties change from the adjacent areas that were not affected by the 
landslide, and where the vegetation has remained unchanged. As an 
example, a forested slope has a typical “volume” or “diffuse” back
scatter, whereas an area where a landslide has removed the forest (i.e., 
the vegetation) cover exhibits a backscatter signal typical of a rough, 
bare surface (Yamaguchi, 2012). In the case of landslide failure detec
tion and mapping, the single scattering components are obtained mainly 
through decompositions of matrices describing the overall scattering 
behaviour of the targets, namely, the Sinclair scattering matrix S for 
pure scatterers, or the covariance ([C2], [C3]) or coherence ([T2], [T3]) 
matrixes for distributed scatters, with subscripts 2 and 3 referring to dual 
and full polarisation systems, respectively, and whose elements are 
proportional to the backscattering coefficients for the different channels 
(i.e., σxy where subscripts x and y represent one of the possible polar
isation configurations of the sent and the return wave, respectively) 

(Cloude, 1992; van Zyl, 1993; Cloude and Pottier, 1996; Praks et al., 
2009; European Space Agency, 2020d). The decompositions allow to 
obtain parameters closely related to the physics of the various scattering 
mechanisms, including e.g., Entropy H, the “weighted average scat
tering” α, Anisotropy A , and Pedestal height PH (Cloude and Pottier, 
1996; European Space Agency, 2020d). For visualisation purposes, the 
single bands can be combined to form Red, Green, Blue (RGB) or Hue, 
Saturation, Intensity (HSI) colour space composites, together with other 
indices, including e.g., (i) the direct analysis of correlations of HH-VV, 
HH-HV, HV-VH; (ii) the power ratios of HH/HV, HH/VV, VV/HV; and 
(iii) the Radar Vegetation Index, RVI that increases with the vegetation 
cover (Kim and van Zyl, 2001; Kim and Zyl, 2009). 

In the literature database, five studies adopted qualitative methods 
and 15 studies used quantitative methods to classify multi-polarimetric, 
satellite or airborne, images and derivative products, including two 
studies that used dual-polarimetric images (Plank et al., 2016). 

Rodriguez et al. (2002) were the first to use a hybrid classification 
scheme to identify polarimetric parameters for the visual detection of 
landslides on SAR imagery. Using L-band airborne FP AIRSAR images 
(NASA Jet Propulsion Laboratory, 2020a) taken about one year after the 
21 September 1999, Mw 7.7, Chi Chi earthquake in Central Taiwan, the 
authors were able to detect and map visually the ≈ 1.25 × 108m3 

Tsaoling rockslide (Hung et al., 2002; Chigira et al., 2003; Chen et al., 
2006). In the landslide area, the σvv, σhvσhh backscattering coefficients 
(Oliver and Quegan, 2004) proved sensitive to the scattering properties 
of the bare, rocky ground surface, whereas Entropy (H), Pedestral height 
(PH), and the Radar Vegetation Index (RVI) characterised well the 
backscatter properties of the undisturbed forest surrounding the land
slide. The same landslide was studied by Czuchlewski et al. (2003) who 
performed an empirical analysis of the backscattering indices H, PH, and 
A , obtained from the same L-band airborne FP AIRSAR images. Contrast 
between the surface scatter inside the landslide depletion and deposi
tional areas, and the diffuse scatter of the untouched forest outside the 
landslide, allowed for the visual recognition and mapping of the large 
rockslide. Czuchlewski et al. (2003) pointed out that in landscapes 
characterised by a complex land cover, and where the landslide back
scatter signature is not unique, the proposed method may result in 
misclassifications. 

Table 1 
Past and present SAR satellites and constellations useful for landslide detection and mapping, listed from oldest to most recent.  

Satellite N. Band Ch Mode - Resolution Revisit Period Oper. Used 

ERS-1 1 C, 5.3 GHz, 5.6 cm S (IM) 30a×26r m 35 d 7/1991–4/2001 ESA Y 
JERS-1 1 L, 1.2 GHz, 23.5 cm S 18 m (ML) 44 d 11/1992–11/1998 * Y 
ERS-2 1 C, 5.3 GHz, 5.6 cm S (IM) 30a×26r m 35 d 4/1995–9/2011 ESA Y 
Radarsat 1 C, 5.3 GHz, 5.6 cm S (SM) 28a×25r m 24 d 11/1995–3/2013 CSA Y 
Envisat ASAR 1 C, 5.3 GHz, 5.6 cm S (IM) 30a ×30r m 35 d 3/2002–4/2012 ESA Y 
ALOS 1 L, 1.2 GHz, 23.6 cm S (SM) 10 m (ML) 46 d 1/2006–5/2011 JAXA Y 
COSMO-SkyMed 4 X, 9.6 GHz, 3.1 cm D (SM) 5 m (ML) 16 d 6/2007– ASI Y 
TerraSAR-X 2 X, 9.6 GHz, 3.1 cm F (SM) 3.3a×1.70r m 11 d 6/2007– DLR Y 
Radarsat-2 1 C, 5.4 GHz, 5.5 cm F (SM) 28a×25r m 24 d 12/2007– MDA Y 
Risat-1 1 C, 5.3 GHz, 5.6 cm F (FRS-2) 3a×4r m 25 d 4/2013– ISRO N 
Kompsat-5 1 X, 9.6 GHz, 3.2 cm D (ST) 3 m (ML) 28 d 3/2014– KARI N 
Sentinel-1 2 C, 5.4 GHz, 5.5 cm D (IW) 14.1a×2.3r m 12 d 3/2014– ESA Y 
ALOS-2 1 L, 1.2 GHz, 22.9 cm F (SM) 3 m (ML) 14 d 5/2014– JAXA Y 
PAZ 1 X, 9.6 GHz, 3.1 cm D (SM) 3 m (ML) 11 d 4/2018– Hisdesat N 
Saocom-1 2 L, 1.2 GHz, 23.5 cm D (SB) 3 m (ML) 6 d 10/2018– CONAE N 
Radarsat Cons. 3 C, 5.4 GHz, 5.5 cm F (MR) 16 m (ML) 12 d 4/2019– CSA N 
Capella 36 X, 9.6 GHz, 3.1 cm S min 0.5 m nyd 9/2020– Capella  

Legend: N.; number of satellites in a constellation. For Capella, the deployment of 36 satellites is planned for 2021; one operational satellite and one test satellite are 
currently in orbit. Band; X, C, L, frequency (GHz), wavelength (cm). Ch; channels: S, single polarisation, D, dual polarisation, F, full polarisation. Resolution (m); a, 
azimuth; r, range; most commonly used resolution is listed. Revisit; revisit cycle, in days (d). For constellations, the revisit cycle can be obtained dividing the listed 
revisit cycle by the number of satellites in the constellation (N). nyd, not yet defined. Period; period during which the satellite or constellation was/is operational. 
Oper., satellite operator; *, JERS-1 was jointly operated by NASDA, MITI, and STA. Used; imagery used (Y) or not used (N) for landslide detection and mapping in the 
literature database. All the listed satellites allow for multiple products configurations. For used sensors (Y), we list the most comm acquisition modes i.e., SM, 
“StripMap”; IW, “Interferometric Wide Swath”; IM, “Image Mode”, and the related spatial resolutions. We add ML when the resolution is given after “Multilooking” 
filtering. For sensors that were not used (N), we list modes similar to the modes used in similar missions, or modes of potential interest based on swath and spatial 
resolution i.e., ST, Standard mode; SB, Single beam. 
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Watanabe et al. (2012) used pre-event and post-event L-band FP 
ALOS imagery with 30 m × 30 m ground resolution (Table 1) to map 
eleven of the thirteen landslides triggered in the Dozow-sawa area, NE 
Japan, by the 14 June 2008, 6.9 Mw, Iwate-Miyagi Nairuku earthquake. 
For the purpose, they adopted the semi-empirical model proposed by 
Yisok (2004) that combines backscattering coefficients with terrain 
surface properties (i.e., roughness and dielectric constant) to reduce the 
number of landslide false positives in some land cover classes, including 
pasture, grassland with sparse trees, and lakes. The same landslide event 
was investigated by Yonezawa et al. (2012) who used a Freeman-Durden 
decomposition (Freeman and Durden, 1993; Freeman and Durden, 
1998) of the same pre-event and post-event L-band FP ALOS images. The 
decomposition was based on a fitting of a physically-based, three- 
component scattering mechanism model, including the canopy scatter, 
the Bragg surface scatter, and the double-bounce scattering mechanism. 
The authors attributed high values of surface backscatter to the presence 
of newly formed, seismically induced landslides. In parallel, an unsu
pervised classification that used the H − α plane of the eigenvector 
decomposition (Cloude, 1992; European Space Agency, 2020d) allowed 
the authors to discriminate landslide areas from lakes and areas covered 
by snow. 

Konishi and Suga (2018b) used three polarimetric indices obtained 
by processing pre-event and post-event L-band FP ALOS-2 imagery to 
detect and map landslides triggered by the 6 April 2016, 7.0 Mw, 

Kumamoto earthquake, Kyoshu, Southern Japan. Adopting a change 
detection approach, the authors trained a random forest classifier using 
separately α, H, and polarimetric correlation coefficients (European 
Space Agency, 2020d) between the HH and VV channels in bare soil 
(considered to be landslides), forest, grass and crop, paddy, and urban 
(built-up) areas. Overall accuracy (OA) was high for the three classifi
cations (0.86, 0.85, and 0.73, respectively), confirming the potential of 
the technique for landslide detection and mapping. 

Park and Lee (2019) also used pre-event and post-event L-band FP 
ALOS-2 images and polarimetric eigenvector decomposition (Cloude, 
1992; European Space Agency, 2020d), to detect and map landslides 
triggered by the same Kumamoto earthquake in Kyoshu island, Japan. 
Quad-polarisation parameters capturing signal depolarisation proper
ties revealed noticeable landslide-induced temporal changes for all local 
incidence angles (the angle between the satellite and the normal to the 
surface of the target cell), allowing for an automatic threshold-based 
detection of the seismically-induced landslides. The last two studies 
suggest that landslide detection from L-band images are useful when 
pre-event and post-event imagery is available. 

To map 22 landslides caused by intense rainfall brought by typhoon 
Talas in August and September 2011 in a forested mountain region of 
Japan, Shibayama et al. (2015) used L-band FP ALOS-2 and FP L-band 
airborne Pi-SAR-L2 images (Table 1), and found that the backscattering 
in the landslide areas – and hence, the ability to discriminate the 

Fig. 3. SAR geometry. (A) Exemplification of the side looking geometry of a typical SAR system. The example is for a right-looking satellite flying along a descending 
orbit. Coloured polygons on the shaded relief image exemplify landslides of different types. (B) Geometric distortions and shadows typical of a SAR system. Modified 
after Meyer (2019). The proportions of objects, distances, and angles are exaggerated, and are not in scale. 
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landslides from the forested terrain – decreased with the increase of the 
local incidence angle. To improve the landslide detection accuracy, the 
authors used multiple thresholds on the backscattering based on the 
local incidence angle. The same landslide event was studied before by 
Shimada et al. (2014) who used only the airborne FP Pi-SAR-L2 images. 
Interestingly, in this earlier study a dependance of the backscattering on 
the image incidence angle was not found, probably because of the very 
different image acquisition angles. A sensitivity to the observational 
direction of the Pi-SAR-L2 images was also found by Watanabe et al. 
(2016) who detected and mapped rainfall-induced landslides caused by 
Typhoon Wipha in October 2013, in the Izu Oshima Island, Japan (Yang 
et al., 2015). The authors found that the adoption of a modelled back
scattering coefficient σ0 (Ulaby et al., 1982), H, α, A (Cloude, 1992; 
European Space Agency, 2020d), and coherence between HH and VV 
channels (Ferretti et al., 2007; Richards, 2009b), improved discrimina
tion between landslide areas and forested areas when using small image 
incidence angles. 

In a recent work, Ohki et al. (2020) repeated the mapping experi
ments executed previously by Watanabe et al. (2012), Shimada et al. 
(2014), Shibayama et al. (2015), Watanabe et al. (2016), and partially 
by Park and Lee (2019), and used 3 m × 3 m resolution, FP ALOS-2 
images to map landslides triggered by heavy rainfall on 5–6 July 
2017, in Kyushu, Japan (Ochiai et al., 2017), and by the 6 September 
2018, 6.6 Mw, Hokkaido Eastern Iburi earthquake, Northern Japan. The 
authors proposed empirical thresholds for the Pauli components of the 
coherency matrix [T3](Cloude and Pottier, 1996; European Space 
Agency, 2020d), and found that their mapping results depended on the 
site and the local image incident angle, with Cohen’s k (Cohen, 1960) in 
the range from 0.37 to 0.66. 

Based on the results of these studies, we conclude that the image 
local incidence angle i.e., the angle between the radar line-of-sight (LOS) 
and the normal vector to the slope surface, affects the sensitivity of L- 
band imagery to the surface and volume backscatter and, hence, to the 
possibility to detect and map landslides. 

Shorter wavelength, X-band and C-band imagery was also used in 
multi-polarisation configurations for landslide detection and mapping, 
often in combination with machine learning classification methods. Li 
et al. (2014a, 2014b) used imagery taken by an undefined Chinese high- 
resolution airborne FP X-band SAR system to detect and map large 
landslides caused by the 12 May 2008, 7.9 Mw, Wenchuan (or Sichuan) 
earthquake, South-central China. The authors tested various de
compositions, and found that the Yamaguchi four component decom
position (Yamaguchi, 2012) – which adds the Helix to the three standard 
components – performed better where the reflection symmetry condi
tion, HV = VH did not hold, and that the Cloude decomposition (H-α) 
(Cloude, 1992; European Space Agency, 2020d) revealed complicated 
scattering mechanisms in the landslide areas, which the authors attrib
uted to the landslide surface becoming relatively “rough” at the X-band 
scale (≈ 3.1 cm). The authors classified the landslide areas using a su
pervised Wishart classifier (Lee et al., 1994b), and verified a posteriori 
that landslide areas had higher Polarimetric Scattering Similarity (PSS) 
parameters (Jian Yang et al., 2001; Chen et al., 2018) compared to the 
surrounding forested terrain, indicating stronger surface scattering and 
double-bounce scattering components. The latter information proved 
useful to tune a PSS threshold-based classifier. The authors also studied 
the Pauli’s coherent decomposition of the Sinclair scattering matrix S 
(Cloude and Pottier, 1996; European Space Agency, 2020d), and used its 
three components to fill an HSI colour space (Haydn et al., 1982; Carper, 
1990) in which the H channel was sensitive to both landslide areas and 
noise. Ultimately, a k-means unsupervised classifier (Jin and Han, 2010) 
was used to discriminate between the different terrain classes, including 
the landslide areas (Li et al., 2014a, 2014b). 

A different attempt to exploit X-band DP TerraSAR-X imagery was 
conducted by Plank et al. (2016) who identified changes in the vege
tation cover caused by two landslides, one in Charleston, West Virginia, 
USA, and another near Bolshaya Talda, Kemerovo Oblast, Russia. In the 

dual-polarisation [C2] eigenvector decomposition (Lee and Pottier, 
2017), both landslides showed low dual-polarimetric H in post-event 
images in areas where before the landslides the ground was covered 
by vegetation. Use of the dual-polarimetric α proved critical, due to the 
heterogeneity of the landslide material. 

Luo et al. (2016) used C-band FP Radarsat-2 (Table 1) images to 
detect and map landslides triggered by the 12 May 2008, 7.9 Mw, 
Wenchuan earthquake, China. The study revealed the efficacy of the 
polarimetric eigenvector (Cloude and Pottier, 1996; European Space 
Agency, 2020d) and the target decompositions (Freeman and Durden, 
1998) to detect and map the seismically-induced landslides. The com
ponents of the two polarimetric decompositions were first clustered, the 
clusters were grouped into nine land-cover classes using a Wishart 
classifier (Lee et al., 1994b), and the landslide class was assigned to the 
class segments showing a dominant surface scattering component. The 
authors acknowledged the high false positive rate (FPR) of their classi
fication, which jeopardised the widespread application of the proposed 
method. 

Ultimately, in a landslide susceptibility modelling exercise, Tien Bui 
et al. (2018) used FP AIRSAR L-band and P-band imagery, and SP 
AIRSAR, C-band imagery, in addition to a re-sampled 10 m × 10 m 
resolution DEM, to confirm the presence of 92 landslides in the Cameron 
highlands, central Malaysia, detected and mapped interpreting visually 
very-high-resolution WorldView-1 multispectral satellite imagery and 
digital aerial photographs, aided by field surveys. The authors 
concluded that the spatial resolution of the SAR images was insufficient 
to separate the different land cover types, but details were not given in 
the article. 

5.1.2. Single-polarisation 
For single polarisation (SP) imagery, the interaction between matter 

and radiation is recorded in the amplitude of the return wave and in its 
derivative products, including intensity I, and the backscattering co
efficients (e.g., σ0, β0, or γ0) (Oliver and Quegan, 2004; El-Darymli et al., 
2014), whose values depend on the combination of land cover, including 
landslide, surface dielectric properties, shape, and roughness, and on 
system parameters (Oliver and Quegan, 2004). 

In the literature database, 26 articles reported results of the use of 
single polarimetric, satellite or airborne, SAR imagery. 

In his pioneering work Singhroy (1995) used C-band images taken by 
the Canada Centre for Remote Sensing (CCRS) C-HH airborne SAR at a 
resolution of 6 m × 6 m, to improve the quality of a landslide inventory 
for a part of the Fraser River valley, British Columbia, Canada. Visual 
interpretation of changes in tones in the SAR images allowed for the 
recognition of rock slumps and block slides (Hungr et al., 2014), which 
had not been recognised before. For visualisation purposes, Singhroy 
(1995) used an HSI transformation (Haydn et al., 1982; Carper, 1990) to 
combine the SAR images projected into geographical coordinates with a 
re-sampled, 6 m × 6 m, multi-spectral Landsat Thematic Mapper (TM) 
image (NASA, 2020) projected onto a 1:20,000 topographic base map. 
The Landsat TM image provided visual information useful for landslide 
mapping, including the presence of sparse or dense vegetation, of thin 
soil with exposed rocks, and of clear cut areas. 

Vargas Cuervo (1997) described a similar experiment in an area of 
the Easter Cordillera, Colombia, where the use of optical images to 
detect and map landslides was hampered by a persistent cloud cover. 
The author interpreted visually a C-band ERS-1 amplitude image to 
identify seven landslides in a list of 458 obtained through field mapping 
and the visual interpretation of an optical stereoscopic pair of SPOT and 
Landsat TM images. In the SAR amplitude image, landslide deposits 
exhibited higher backscattering coefficients (shown by bright grey 
tones) than the unaffected areas (shown by dark grey tones), due to 
higher terrain roughness. 

Singhroy et al. (1998) performed a similar experiment in the Sas
katchewan, Fraser, and Ottawa valleys study areas, in Canada. For the 
first two experiments, he used C-band Radarsat images, and for the third 
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experiment images taken by the Canada Centre for Remote Sensing 
(CCRS) C-HH airborne SAR (Table 1). A result of the study was a qual
itative analysis on the impact of different Radarsat viewing geometries 
in the Fraser valley where the Radarsat Extended High beam mode, EH6 
(57–59), proved more effective in recognising landslide features than 
the Standard beam mode, S1, on the steep slopes of the valley. 

Chorowicz et al. (1998) used a C-band ERS-1 (12.5 m × 12.5 m pixel) 
and an L-band JERS-1 (18 m × 18 m pixel) images (Table 1), together 
with a coarse resolution, 100 m × 100 m DEM, to prepare two simulated 
image stereo-pairs. Visual interpretation of the pseudo-stereoscopic 
images allowed for the recognition of small “geomorphic features” in 
the landslide areas, and the identification and mapping of fourteen 
landslides in Paz de Rio, Colombia. Details on the type and size of the 
landslides were not given in the article, but inspection of Fig. 4 in the 
article indicates that the largest landslide was about 600 m2. The 
conclusion of the study was that variations in the backscatter inside and 
outside the landslides due to different terrain roughness, were not suf
ficiently large for the visual recognition of all the landslides, and that 
only the largest landslides could be mapped, due to the limited ground 
resolution of the imagery. 

After these early works, there is a gap of about a decade in the 
literature database before the next article describing the visual inter
pretation of SAR images to detect and map landslides. While mapping 
the disruption caused by the 12 May 2008, 7.9 Mw, Wenchuan earth
quake in Beichuan, China, Balz and Liao (2010) recognised and mapped 
the seismically induced landslides using post-event X-band, Stripmap 
TerraSAR-X intensity images with a resolution of about 3 m × 3 m 
(Table 1). Visual recognition of the landslides was possible due to the 
different backscatter of the landslide areas, compared to the nearby 
built-up areas. In the images, the presence of the landslides was revealed 
by abrupt tonal changes in the landslide scarp (source) and toe (depo
sitional) areas. 

In a later work, Xue et al. (2011) discussed the use of SAR σ0, in 
combination with optical imagery, to identify landslide-related geolog
ical features and faults. Where the landslide surface was bare, and al
luvial Quaternary deposits cropped out, the radar echo was affected 
mainly by terrain roughness, and by the water content and structure of 
the shallow soil. Where the soil water content was high, and the terrain 
surface was rough, the σ0 image tone appeared light grey, revealing the 
presence of the landslide, whereas where the terrain was stable (i.e., free 
of recent landslides) and vegetated, the image tone was dark grey. 

The synergic use of optical and SAR imagery was further explored by 
Mwaniki et al. (2017) who tested the possibility of using C-band 
Sentinel-1 imagery to increase edge identification when “fused” to 
Landsat 8 Operational Land Imager (OLI) images, to recognise landslides 
in Kenya. The authors filtered the SAR data using the (Frost et al., 1982) 
and (Lee, 1986; Lee et al., 1994a) filters to outline the image textural 
information. 

A few authors attempted to use indices and measures of backscat
tering changes for landslide detection and mapping. Furuta and 
Tomiyama (2008) were able to detect and map a few seismically- 
induced landslides triggered by the 29 October 2008, Mw 6.4, Zirat 
earthquake, in Western Pakistan, using the normalised difference be
tween pre-event and post-event scatter (NDSI) L-band ALOS σ0 imagery. 
However, the authors failed to recognise a large, seismically-induced 
rock slide. Spatial variations in the NDSI changes were also used by 
Konishi and Suga (2017) who mapped large debris flows caused by a 
high-intensity rainfall event on 20 August 2014 in Hiroshima, Central 
Japan (Wang et al., 2015) exploiting changes in the backscattering 
properties of the topographic surface caused by sediments and driftwood 
mobilised by the large debris flows. Tessari et al. (2017) interpreted 
visually amplitude changes in X-band COSMO-SkyMed images to detect 
a 60 m wide by 400 m long roto-translational landslide triggered by 
heavy rainfall in November 2017, in the Val Maso municipality, NE 
Italy. 

To map landslides caused by record-breaking rainfall brought by 

Typhoon Talas in the Kii Peninsula, south-central Japan, beginning on 
30 August 2011, Suga and Konishi (2012) and Konishi and Suga (2018a) 
investigated the potential of thresholded backscattering coefficient dif
ference and intensity correlation measures, obtained from pre-event and 
post-event X-band, COSMO-SkyMed images multi-looked at a ground 
resolution of 5 m × 5 m. In particular, Konishi and Suga (2018a) showed 
that the intensity correlation measures obtained by applying the Lee 
(1981) and Frost et al. (1982) filters with different-sized moving kernels 
(Matsuoka and Yamazaki, 2004), outperformed the backscattering co
efficient. Results were compared to a landslide inventory prepared 
exploiting a 0.7 m × 0.7 m resolution EROS-B optical image. Large 
kernels of 19 × 19 pixels (9025 m2) for the backscattering coefficient 
difference, and of 25 × 25 pixels (15,625 m2) for the intensity correla
tion, proved to be the best options to detect and map landslides up to AL 
≈ 3.7 × 105m2. 

Liu et al. (2018) also attempted to use changes of the intensity 
measured for C-band Sentinel-1 images to visually detect and map three 
new landslides occurred on 1 October 2017 in the loess area of Dang
chuan, Southern China, for a total volume of mobilised debris of VL =

33.9 × 104m3. However, given the ground resolution of the satellite 
imagery (16 m × 16 m), and the relatively small size of the landslides (≈
140 m × 270 m), mapping of the landslides was not accurate. 

Mondini et al. (2019) were the first to use changes in the β0 back
scattering coefficient, also called radar brightness coefficient, between 
pre-event and post-event C-band Sentinel-1 images for the systematic 
detection and mapping of rapid moving landslides. For a set of 32 
landslides of very different sizes (0.01 × 106m2 ≤ AL ≤ 21.0 × 106m2) 
selected randomly in different geological, morphological, and environ
mental settings globally, a team of geomorphologists trained in the vi
sual interpretation of aerial and satellite imagery for landslide mapping 
identified correctly 27 (84%) of the studied landslides, without any a- 
priori knowledge on the location, type, and size of the slope failures. In 
one case, they recognised the landslide only after knowing its exact 
location. In at least six cases, the landslide events included multiple 
slope failures. In three of the four unsuccessful cases, the geometry of the 
acquisition was considered responsible for the failed detection, and not 
the size or the type of the landslide. 

Attempting to map landslides triggered by the 16 April 2016, 7.0 Mw, 
Kumamoto earthquake in Kyushu, Southern Japan, Uemoto et al. (2019) 
used airborne, X-band Pi-SAR2 images (Table 1) and combined thresh
olded changes in amplitude and terrain elevation in highly coherent 
pixels. A conclusion of the work was that, in forested areas, the occur
rence of landslides (of unknown type and size) should result in (i) an 
increase of the amplitude and a decrease in the terrain elevation in the 
upper part of the landslide (i.e., the source or depletion area), (ii) a 
decrease of both amplitude and elevation in the main landslide deposit, 
and (iii) an increase of amplitude and elevation in the lower part of the 
landslide (i.e., in the deposition area). Absolute amplitude changes 
(resulting from changes in the surface backscatter) ≥ 5 Db, and changes 
in elevation ≥ 5 m were selected as thresholds to detect landslides. To 
measure the performance of their classifications, the authors confronted 
their new landslide map against an existing inventory prepared through 
the visual interpretation of stereoscopic areal photographs taken by the 
Japanese National Research Institute for Earth Science and Disaster 
Resilience (NIED). The two maps showed an inter-rater reliability of 
0.60 and 0.46 in two separate areas, which was deemed moderate by the 
authors. Detection problems were related mainly to the inability to 
detect “small” (≈ 50 m × 50 m, AL = 2500 m2) landslides, and the limited 
detectability of “medium size” (≈ 200 m × 500 m, AL = 1.0 × 105m2) 
landslides, mainly due to limits in the information of the terrain eleva
tion changes. 

The remaining articles in the literature database are recent, and 
address the problem of landslide recognition and mapping using ma
chine learning techniques (Michie et al., 1994; Richards and Jia, 2006). 

Mondini et al. (2017) measured the increase in the spatial autocor
relation (Griffith, 1987; Griffith and Chun, 2016) of a time series of 
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Fig. 4. Gigantic, rainfall-induced Tozang landslide, Myanmar, July 2015. (A) In radar azimuth–range coordinates, image shows natural logarithm of the ratio 
between post-event and pre-event β0 radar brightness coefficient of VV polarised, C-band, ESA Sentinel-1 images taken along descending orbits. Red box shows 
approximate location of (C). (B) Enlargement of a portion of (A). “Salt & pepper” pattern reveals forested terrain where landslides did not occur. Clusters of similar 
black or white pixels show the Tozang landslide. (C) GeoEye image of the landslide area, in UTM WGS84 Zone 46 projected coordinates. Whitish areas are landslide 
areas. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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measurements of changes of the β0 radar brightness coefficient in C-band 
Sentinel-1 images, which the author attributed to a group of rainfall- 
induced landslides – mainly debris flows and slide flows – caused by 
heavy rainfall in Tozang, Myanmar, in July 2015. Landslides appeared 
as organised clusters within a matrix of speckles in an image showing the 
natural logarithm of the ratio between the post-event and the pre-event 
β0 radar brightness coefficient images. An image optimal segmentation 
revealed that the size of the segments delineating the landslides was 
within the 95% percentile of the distribution of the areas of the 
segments. 

A similar experiment was conducted by Esposito et al. (2018) who 
used a “mean shift” clustering method (Yizong Cheng, 1995; Comaniciu 
and Meer, 2002) to detect and map seismically-induced landslides 
triggered on 25 February 2018 by the 7.5 Mw Papua New Guinea 
earthquake in the Tagari River Valley of central Papua New Guinea. The 
experiment was extended recently by Esposito et al. (2020) who intro
duced an automatic selection of the segments containing landslides 
using statistics of the image changes. The algorithm was calibrated on 
landslides triggered by the 25 February 2018 earthquake, and then 
applied to detect landslides triggered by the 6 March 2018, 6.7 Mw 
earthquake in the same area. The work confirmed the potential of 
continuous SAR-based satellite monitoring of areas where seismically- 
induced landslides are frequent and abundant. 

In a study of landslides triggered by the 6 September 2018, 6.6 Mw, 
Hokkaido Eastern Iburi earthquake, Northern Japan, Ge et al. (2019) 
compared the performances of the intensity difference and its absolute 
value, and the average of the absolute value over a moving window 
whose size was optimised through an AUC ROC analysis. The indices 
were used as covariates in a linear discriminant analysis, obtaining 
classification performance indices (i) for the correlation coefficient dabs2, 
OA = 69.36%, recall = 87.76%, precision = 47.04%, and F1-score =
61.25%, and (ii) for the correlation coefficient difference, OA = 64.57%, 
recall = 81.68%, precision = 42.59%, and F1-score = 55.99%. The high 
recall indicated that the parameters were relevant to detect landslides, 
whereas the low precision was the result of many false positive non- 
landslide pixels, mainly in the vicinity of a landslide, where surface 
erosion was indistinguishable from landslide related changes, including 
vegetation tilt. The same landslide event was studied by Aimaiti et al. 
(2019) who used the same ALOS-2 images and the same performance 
indices to construct a decision tree based on geomorphological variables 
and “ad-hoc” thresholds. The study revealed that imagery taken along 
descending orbits performed better than the corresponding imagery 
taken along ascending orbits, because of the more favourable view 
point, and that the combined use of images taken along ascending and 
descending orbits performed better than the images taken from a single 
orbit, either ascending or descending. 

Mabu et al. (2020) applied a Convolutional Neural Network (CNN) 
(Goodfellow et al., 2016) to a post-event L-band, 3 m × 3 m, ALOS-2 
image (Table 1) to detect landslides triggered by heavy rainfall on 5–6 
July 2017, in Kyushu, Japan (Ochiai et al., 2017). The trained CNN was 
capable of distinguishing between different size patches (from 8 × 8 to 
128 × 128 pixels) of (probably) intensity values having (and not having) 
landslides, with a best accuracy of 0.67 and a best F-score of 0.70. 

Ultimately, to map landslides triggered by the 6 September 2018, 6.6 
Mw Hokkaido Eastern Iburi earthquake, Northern Japan, Jung and Yun 
(2020) used 3 m × 3 m, L-band HH ALOS-2 imagery, 16 × 16 multi
looked, and investigated the potential of bi-temporal, de-trended multi- 
temporal intensity and intensity-correlation change detection ap
proaches in different land cover types. The bi-temporal intensity 
approach proved able to detect landslides in urban areas – due to the 
strong backscatter changes – and in forest terrain with relative low 
noise, but resulted in a high rate of false positives in croplands, where 
better performances were obtained by the intensity-correlation 
approach, which was closely related to the spatial distribution of the 
backscatter changes. 

5.2. SAR phase 

The electromagnetic radiation transmitted by a radar antenna rea
ches the ground and returns to the antenna in a time that depends on the 
two-way travel distance, 2R of the radiation (Fig. 3A). Under the 
approximation of a purely sinusoidal nature of the transmitted signal, 
the delay τ corresponds to a phase change ϕ i.e., the portion of the 
wavelength that measures the last fraction of the two-way travel dis
tance, between the transmitted and the received signals (Ferretti et al., 
2007; Richards, 2009a). The phase is measured recording twice the 
amplitude with an offset in phase of π/2 radians, in-phase and quadra
ture components (Ferretti et al., 2007; Richards, 2009a) and, by itself, it 
does not provide any useful information for landslide detection and 
mapping, because it cannot estimate the radiation backscattering. This is 
because individual scatterers within each image pixel are of much 
smaller size than the resolution of the SAR image to be uniformly 
distributed in the range [− π,+π] (“speckle-like”) (Oliver and Quegan, 
2004). Further, a single image cannot be used to measure the distance 
between the antenna and the ground surface, because no geometric 
relationship exists between the phases of the different pixels. 

5.2.1. Bi-temporal differential interferometry 
Flying around the Earth along different orbits, a SAR sensor illumi

nates the same target on the ground surface from (slightly) different 
viewing angles during different passages. If the target area on the ground 
has moved between two satellite acquisitions (e.g., it was displaced by a 
landslide), with a component of the movement, along the satellite line of 
sight (LOS), the phase difference between the two images obtained by 
cross multiplying the “first scene” image with the complex conjugate of 
the “second scene” image (i.e., the “interferogram”), has a component 
related to the ground deformation (caused e.g., by a moving landslide) 
and other components that can be removed entirely using pre-processing 
techniques, removed partially using filters, or reduced using the same 
acquisition geometry and short revisit times (Rocca et al., 2000; Ferretti 
et al., 2007; Richards, 2009a). Changes in the interferometric phase 
between adjacent pixels in an interferogram allow to outline the spatial 
pattern of the surface deformation caused e.g., by a slope movement 
occurred between two successive images. For visualisation purposes, the 
deformation pattern is shown typically using a colour scheme that re
peats every 2π cycles i.e., each colour “fringe” represents a (relative) 
displacement along the satellite LOS of about λ/2 (Ferretti et al., 2007; 
Richards, 2009a). To obtain the “true” deformation, one has to add to 
the wrapped phase the number of 2π-multiples, measuring the two way 
distance between the satellite and the ground target (“phase unwrap
ping”) (Rocca et al., 2000; Ferretti et al., 2007; Richards, 2009a). Phase 
unwrapping can be important in the case of landslide scenarios, where 
usually sharp discontinuities are caused at the landslides borders 
(Manconi, 2019). 

In the literature database, seven articles discuss the use of bi- 
temporal differential interferometry – or DInSAR – techniques to 
detect and map landslide failures. 

Moro et al. (2007) used DInSAR to investigate the surface deforma
tion caused by the 1997 Colfiorito seismic sequence (Basil et al., 1998) – 
one of the first earthquakes whose surface deformation was measured 
using DInSAR (Stramondo et al., 1999), and found local anomalies in the 
fringes obtained by processing a pair of C-band ERS-1/2 images taken 
one before and the other after three, moderate-magnitude, 5.6, 5.9, and 
5.5 Ms earthquakes occurred on 26 September and 14 October 1997, in 
Central Italy. The local anomalies could not be explained by the fault 
displacement modelled adopting the (Okada, 1985) elastic formulation. 
A detailed photogeological analysis of the areas where the “anomalous” 
surface deformations were observed, revealed evidence of morpholog
ical elements that were associated to co-seismic (because they were 
evident in the interferometric fringes) activity of deep-seated gravita
tional slope deformations, or to (re-)activations of parts of large, deep- 
seated, dormant landslides. Interestingly, the slope deformations 
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detected by DInSAR were not observed by Bozzano et al. (1998) and by 
Esposito et al. (2000), who performed independent surveys of the 
earthquake-generated surface effects, including landslides, nor by 
Antonini et al. (2002), who used post-event aerial photography to pre
pare a geomorphological and landslide event inventory map of the area 
affected by the seismic sequence. Most probably, this was because the 
surface deformations were too small to be seen in the field or in the 
aerial photography. 

Furuta and Tomiyama (2008) applied DInSAR to L-Band ALOS im
agery taken before and after the 28 October 2008, 6.4 Mw Ziarat 
earthquake, Western Pakistan (Rafi et al., 2013) to detect and map a 
large, seismically induced rockslide. Visual inspection of a DInSAR- 
based surface displacement map allowed for the detection of the sin
gle, large landslide that generated displacements along the LOS smaller 
than 6 cm. Furuta and Sawada (2013) performed a similar experiment 
using L-Band polarimetric ALOS imagery to detect a rainfall induced 
landslide of unknown type (Furukawa et al., 2009; Nagano et al., 2011) 
occurred on 21 July 2009 in Hofu, Yamaguchi Prefecture, Southern 
Japan. The authors attributed the phase changes in the HH and HV ALOS 
imagery to changes in the position of the trees caused by the slope failure 
inside the landslide failure deposit, which allowed them to detect the 
landslide. 

Working in the Molise Region of Central Italy, an area where land
slides of different types and sizes are abundant (Trigila et al., 2010), 
Barra et al. (2016) tested the use of C-band Sentinel-1 imagery for 
regional-scale landslide mapping and monitoring. The authors inte
grated DInSAR-derived products with geological and geomorphological 
information in a GIS environment, to detect 62 active landslides, thir
teen of which were “new” failures i.e., event landslides triggered by 
intense rainfall in the season from December 2014 to March 2015. The 
result led to the production of a seasonal landslide inventory, but the 
authors argued that manual processing, visual analysis of the imagery, 
and interpretation of the results, were cumbersome, and that further 
developments were necessary for the automatic recognition and map
ping of landslides using DInSAR techniques to be effective, in their study 
area. 

Kyriou and Nikolakopoulos (2018b) also used C-band Sentinel-1 
imagery to generate interferograms, which they used to map ground 
deformations caused by a landslide triggered by rapid snow melting on 
20 January 2016 in the Patras area, Greece. A similar result was ob
tained for the same landslide by Kyriou and Nikolakopoulos (2018a) 
who paired their DInSAR analysis with information obtained by pro
cessing optical, Sentinel-2 imagery. Lastly, Huang et al. (2017) proposed 
an “earthquake-derived landslide detecting method” capable of out
lining high frequency areas (considered “landslides”) by subtracting 
from an original interferogram obtained from two C-band Sentinel-1 
images, a low pass filtered interferogram, followed by thresholding. 
The authors tested the method to map the ground deformation caused by 
the 21 January 2016, 5.9 Mw Menyuan earthquake, China. To adjust the 
phase change threshold, high frequency areas were visually classified as 
glaciers, landslides, or mudslides, exploiting very-high resolution opti
cal imagery. 

In addition to the previous articles, the works by Barboux et al. 
(2014) and García-Davalillo et al. (2014) provided valuable insight on 
the visual interpretation of DInSAR products for landslide detection and 
mapping. Barboux et al. (2014) used DInSAR to update existing 
regional-scale, geomorphological landslide inventory maps with daily, 
monthly, and yearly frequencies, and offered guidelines on how to 
interpret surface displacements in relation to factors that could induce a 
loss of coherence, including e.g., the imaging geometry, DEM errors, soil 
moisture, snow, atmosphere, and vegetation. The authors concluded 
that, where possible, landslides detected using DInSAR-derived products 
should be compared against field data (“ground truth”), pre-existing 
information (i.e., landslide inventories), and geodetic data. García- 
Davalillo et al. (2014) assessed the performances of DInSAR applied to L- 
band ALOS imagery to measure the degree of activity of very slow 

moving landslides (of unknown type) in the Valle de Tena, in the 
Spanish Pyrenees. The authors detected secondary – possibly event- 
triggered – landslides, apparently independent from the movement of 
the main, larger and pre-existing landslides. 

Ultimately, we note that a number of authors have used multi- 
temporal DInSAR techniques (e.g., Ferretti et al., 2001; Berardino 
et al., 2002; Lanari et al., 2004; Ferretti et al., 2011) to measure the 
surface displacements caused by active, slow moving landslides. This 
information has been used to update geomorphological and multi- 
temporal landslide inventory maps, adding information on the degree 
of activity (UNESCO Working Party on World Landslide Inventory, 
1993) in a period of single or multiple known landslides Bovenga et al., 
2006; Farina et al., 2006; Lauknes et al., 2010; Notti et al., 2010; Righini 
et al., 2012; Bianchini et al., 2012; Ciampalini et al., 2012; Cigna et al., 
2013; Bardi et al., 2014; Ciampalini et al., 2015; Raspini et al., 2015; 
Casagli et al., 2016; Michoud et al., 2016; Casagli et al., 2017a, 2017b; 
Solari et al., 2019; Lu et al., 2019a), to detect potential slope failures, 
confirmed or confuted by field checks (Raspini et al., 2018), and to 
model and anticipate the kinematics of known deep-seated, slow-mov
ing, active landslides (Herrera Garcia et al., 2009; Del Ventisette et al., 
2013; Herrera Garcia et al., 2013; Calò et al., 2014; Herrera Garcia et al., 
2017). Overall, we maintain that these studies are different in scope 
from the articles considered in our work and, hence we have not pre
sented them in detail here. Reviews covering extensively this type of 
studies are available e.g., in Ciampalini et al. (2015), Casagli et al. 
(2016), Casagli et al. (2017a), Casagli et al. (2017b), Solari et al. (2020). 

5.2.2. Coherence 
Atmospheric disturbances, temporal variations in the location and 

properties of the ground scatterers, slightly different image look angles, 
volume scattering due to e.g., the presence of a forest, and image pre- 
processing procedures can all introduce noise in the interferometric 
phase (Prati et al., 1990; Rodriguez and Martin, 1992; Rocca et al., 2000; 
Richards, 2009a), affecting the coherence γ between two SAR images, 
measured by combining phase and amplitude from the two complex SAR 
images (Ferretti et al., 2007; Richards, 2009a). Besides being used to 
assess the reliability of multi-temporal DInSAR analyses (Prati and 
Rocca, 1993; Ferretti et al., 2007; Richards, 2009a), maps showing the 
geographical distribution of the magnitude of the coherence, γ and its 
spatial and temporal changes, are used for multiple purposes, including 
e.g., mapping land cover and its changes (Khalil and Saad-ul-Haque, 
2018; Jacob et al., 2020; Bai et al., 2020), mapping areas inundated 
by river floods (Nico et al., 2000; Pulvirenti et al., 2017; Tay et al., 2020) 
or burnt by forest fires (Donezar et al., 2019), and even for damage 
assessment (Oxioli et al., 2018). Occurrence of a rapid (compared to the 
time between the two images) landslide in an area may result in sig
nificant modifications of the ground surface and its scattering proper
ties, and therefore of the coherence between the interferometric pair, 
allowing for the detection and mapping of the landslide. 

In our literature database, 13 articles reported results on the 
exploitation of coherence variations to detect and map landslides. The 
studies are all recent, and their number has increased in the most recent 
years. 

First, Furuta and Sawada (2013) interpreted local changes in the the 
polarimetric coherence (Cloude and Papathanassiou, 1998) of the HH 
and VV bands of L-band ALOS images as evidence of the presence of 
landslide failures caused by heavy rainfall in the period from February to 
March 2011, in the Paranagua area, Brazil. 

Mapping the extent of the damage caused by the 25 April 2015, 7.8 
Mw Gorkha earthquake, Nepal, using L-band ALOS-2 and X-band 
COSMO-SkyMed images, Yun et al. (2015) identified three landslides in 
the Langtang Valley, one of the most popular trekking destinations in the 
Himalayas. Rock falls and debris falls were visually detected by a 
decrease of coherence in the ALOS-2 images, allowing the authors to 
delineate – albeit only roughly – the extent of the landslide debris. 
Similarly, Konishi and Suga (2017) used changes of coherence in X-Band 
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COSMO-SkyMed images to detect some of the 107 debris flows and 59 
shallow slides caused by heavy rainfall in Hiroshima, Japan, on 20 
August 2014 (Wang et al., 2015). 

Using C-band Sentinel-1 coherence time series for 2017, Olen and 
Bookhagen (2018) detected eight changes – of a minimum of ten pixels 
in size, 300 m2 – in the magnitude of the coherence from 18 to 30 March 
2017, in the Quedraba del Toro area, Central Argentina, which they 
attributed to new mudflows and other landslides caused by heavy sea
sonal precipitation. Detection of the landslides was conducted by ana
lysing the geometrical shape of the changes, and assuming a high 
susceptibility of the local geo-environmental setting. Also using C-band 
Sentinel-1 imagery, Burrows et al. (2019) exploited a method proposed 
by the NASA’s Advanced Rapid Imaging and Analysis (ARIA) project to 
prepare urban damage proxy maps (Yun et al., 2015), which they used to 
classify large landslides caused by the 25 April 2015, 7.8 Mw Gorkha 
earthquake, Nepal. Landslides showed a drop in the co-event coherence 
map values compared to the pre-event map values. 

Ge et al. (2019) used L-band ALOS-2 images, and tested the use of the 
coherence, and changes in coherence, to detect and map landslides 
caused by the 6 September 2018, 6.6 Mw Hokkaido earthquake, North
ern Japan (Fujiwara et al., 2019). In apparent contrast with results ob
tained earlier by Plank (2014) and Konishi and Suga (2017), the 
coherence and its changes were not good predictors of the presence (or 
absence) of the event triggered landslides. The authors attributed the 
(unsatisfactory) result to the vegetation present in their study area. 
Similar conclusions were reached by Aimaiti et al. (2019) who, when 
interpreting local surface deformations caused by the same Hokkaido 
earthquake, found changes in coherence in L-band ALOS-2 images, 
which they attributed to the presence of newly formed, event landslides. 
Visual inspection of the map showing changes in coherence allowed for 
the accurate mapping of the landslide areas. The positive results was 
counterbalanced by many false positives. 

Jung and Yun (2020) used coherence-based approaches to map 
landslides triggered by the 6 September 2018, 6.6 Mw Hokkaido Eastern 
Iburi earthquake in Northern Japan (Fujiwara et al., 2019). For the 
purpose, the authors exploited bi-temporal and multi-temporal, de- 
trended coherence difference and normalised coherence difference 
changes, obtained from 3 m × 3 m, L-band ALOS-2 imagery, to map 
the seismically induced landslides, which were detected as statistical 
anomalies in the imagery in the considered time intervals. The approach 
performed well where the pre-event coherence was high (i.e., in urban 
areas, where artificial structures were present), and proved less effec
tively in areas prone to decorrelation (e.g., in forested terrain, 71% of 
the study area), confirming the results obtained by Ge et al. (2019). 

Goorabi (2020) used C-band, Sentinel-1 images to detect the giant – 
3,570 m in length × 2,300 m in width – Maleh-Kabood landslide caused 
by the 12 November 2017, 7.3 MS Kermanshah earthquake, Iran. The 
slope failure caused a decease in coherence of 0.3 in a time series 
spanning the earthquake, with the coherence increasing after the main 
shock. The evidence allowed the authors to detect the landslide. A 
similar multi-temporal approach was used by Tzouvaras et al. (2020) to 
detect rainfall-induced landslides caused by heavy precipitation on 15 
and 20 February 2019 along two main roads in Cyprus. Through sta
tistical analysis, the authors calibrated optimised change thresholds for 
the 17 February landslide, and then applied the thresholds to detect the 
20 February landslides. The experiment revealed that changes in 
coherence, and in normalised coherence difference in the landslides 
varied with the satellite orbit and the acquisition angle. 

Recently, Burrows et al. (2020) have completed a comprehensive 
comparison of five coherence-based methods to estimate landslide 
density at different spatial resolutions using ESA, C-band, Sentinel-1, 
and JAXA, L-band, ALOS-2 imagery, for four seismically induced land
slide events caused by (i) the 2015 7.8 Mw Gorkha, Nepal, earthquake, 
(ii) the 2018, 6.6 Mw Hokkaido, Japan, earthquake, and (iii) the 6.8 Mw 
and 6.9 Mw earthquakes in the 2018 Lombok, Indonesia, seismic 
sequence. The authors used two existing methods that exploited pre- 

event and co-event coherence estimation, the Co-Event Coherence 
Loss (CECL) (Yun et al., 2015) and the boxcar–sibling method (Burrows 
et al., 2019), and proposed three new methods that add and combine in 
different ways post-event coherence measures, including the Post-Event 
Coherence Increase (PECI), the sum of the coherence increase and 
decrease (ΔC_sum), and the maximum of coherence increase or decrease, 
(ΔC_max). The results showed significant variations for the different 
events and sensors, making it difficult to select an “optimal” method, 
even if a general preference was given to the three new ones, in 
particular when used at low resolution (200 m × 220 m). A relevant 
conclusion of the work was that SAR-based classification methods 
should be tested on multiple events, as one cannot assume that a method 
that performs well with one SAR dataset will be equally successful on 
imagery taken by a different sensor. 

Table 2 
Summary list of recommendations.  

Recommendation Aim Section 

Provide accurate landslide 
information 

Avoid misinterpretations; favour 
comparison & interaction 

3 

Use and explain accepted, 
standard terminology 

Avoid misinterpretations; favour 
comparison & interaction 

6.1 

Increase application of SAR 
imagery 

Reduce and manage landslide risk 6.2 

Expand number of studies and 
study areas; focus on poorly 
investigated physiographical 
settings 

Reduce & manage landslide risk; 
improve detection & mapping; 
improve understanding of 
landslide phenomena 

6.2 

Perform systematic investigations 
of landslide failure events in all 
physiographical settings 

Portfolio of detection & mapping 
solutions for different landslide 
types 

6.4 

Test new sensors & combinations 
of sensors 

Expand sensors understanding 6.5 

Test image pre-processing 
designed for landslide failure 
detection and mapping methods 

Improve detection & mapping 6.6 

Execute physically based 
backscatter response studies 

Improve detection & mapping 6.7 & 
8.2 

Combine different bands, for both 
qualitative and quantitative 
approaches and classification 
methods 

Improve detection & mapping 6.7 & 
8.2 

Evaluate the detection and 
mapping efforts using common 
set of performance indices 

Favour comparison & interaction 6.8 

Provide geomorphological insight 
for numerical results 

Avoid misinterpretations; improve 
understanding of landslide 
phenomena 

6.8 

Compare SAR bands performances 
in different settings and for 
different types of landslides 

Portfolio of detection & mapping 
solutions for different landslide 
types 

7.3 

Perform field measurement of 
surface backscatter in landslide 
areas 

Theoretical models validation 8.2 

Foster the use of fully-polarimetric 
imagery 

Improve detection & mapping 8.2 

Combine amplitude and phase 
products 

Improve detection & mapping 8.2 

Experiment with sophisticated 
machine learning 

Improve detection & mapping 8.2 

Implement operational SAR-based 
services 

Mitigate landslide hazard and 
associate risk 

8.3.2 

Adopt standards for landslide 
failure detection & mapping 

Enhance products credibility & 
usefulness 

8.4 

Missions to adopt flexible data 
acquisition programs and 
distribution policies 

Expand use of SAR imagery for 
landslide detection & mapping 

8.4 

Define interpretation criteria for 
landslide failure detection & 
mapping based on SAR imagery 

Favour comparison 8.4 

A cost-benefit analysis of a 
dedicated landslide failure 
detection & mapping mission 

Scientific & operational 
advancement 

8.4  
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6. Literature analysis 

6.1. Terminology and ontology 

We noted in the selected literature a lack of homogeneity in the se
mantic use of the technical language. Key words used in the articles in 
different, and sometimes contrasting, ways included “resolution, “pre
cision”, “accuracy”, “recognition”, “identification”, “mapping”, “classi
fication”, “validation”, “new” (referred to landslides), and “event”. In a 
few articles, “landslide mapping”, and its synonyms (e.g., to “construct” 
or “prepare” landslide inventories), referred to mapping or updating 
properties of existing landslides, chiefly the activity of slow moving 
landslides. In a few articles, the detection (and the synonyms, e.g., 
“recognition”, “identification”) and mapping of new landslides was in 
fact the (retrospective) characterisation of the backscattering properties 
of known landslide areas, and not the detection, mapping, and classifi
cation of new slope failures. We further noted a lack of consensus on the 
meaning of the term landslide “reactivation”, and on how to interpret 
and classify displacements inside pre-existing landslides (Temme et al., 
2020). 

We conclude that, despite the existing landslide classifications 
(Cruden and Varnes, 1996; Sidle and Ochiai, 2006; Hungr et al., 2001, 
2014; Temme et al., 2020), including recommended terminology and 
ontology, issues related to the contrasting, and sometimes improper, use 
of the technical language remain. We consider the problem relevant, 
because it hampers the comparison of different methods, and it limits 
the credibility and usefulness of the results (Guzzetti et al., 2012; 
Reichenbach et al., 2018; Guzzetti et al., 2020). We encourage in
vestigators to use accepted, standard terminology, as this will facilitate 
multi-disciplinary cooperation. We further recommend that authors 
explain the terminology they use in their works. This will contribute to 
avoid misinterpretations, and will favour the interactions among the 
different disciplines involved in the detection and mapping of landslides 
exploiting SAR imagery, including e.g., geomorphology, remote sensing, 
machine learning, visualisation (Table 2). 

6.2. Geographical analysis 

The 54 articles in our literature collection discussed the use of SAR 
imagery and related processing approaches and methods for landslide 
detection and mapping in 147 case studies and 70 study areas located in 
32 nations, in all continents, except Antartica (Fig. 2). Japan has the 
largest number of case studies (50, 34.0%) and of articles published (19, 
35.1%), followed by Indonesia (21 case studies, 14.3%), and by China 
and Nepal (12 case studies each, 8.1%). Asia is by far the continent with 
most case studies (112, 76.2%, 40 in a single work (Burrows et al., 
2020)) and published articles (31, 57.0%), followed by South America 
and Europe (9 case studies each, 6.1%), and by North America (8 case 
studies, 5.4%). With no article published, Oceania and Africa have the 
least number of case studies (5, 3.4%, and 3, 2.0%, respectively) (Fig. 2). 

Although the exact or the approximate extent of the study areas was 
given only in 97 studies, 72 of which in two articles (Mondini et al., 
2019; Burrows et al., 2020), visual inspection of Fig. 2 reveals that the 
studies cover a very small percentage of the global terrain potentially 
affected by landslides (Nadim et al., 2006; Kirschbaum Bach et al., 2009; 
Nadim et al., 2013). Comparison of the location of the case studies with 
(i) the global distribution of fatal, non-seismically-induced landslides 
from 2004 to 2016 compiled by Froude and Petley (2018), updated to 
cover the period from January 2004 to December 2017 (black dots in 
Fig. 2), and with (ii) a global database of inventories of earthquake- 
induced landslides (Tanyaş et al., 2017), confirms that many areas 
where landslides are abundant and landslide risk is high were not 
covered by studies in the literature database. This is surprising, given the 
well known extent of the global landslide problem (Brabb, 1991; 
Schuster and Highland, 2001; Nadim et al., 2006; Kirschbaum Bach 
et al., 2009), and the proclaimed need for modern landslide mapping 

tools, specifically tools that exploit remotely sensed imagery to prepare 
landslide maps covering large and very large areas (Guzzetti et al., 2012; 
Zhao and Lu, 2018; Guzzetti, 2021) and to obtain information on event 
landslides for the validation of geographical landslide early waning 
systems (LEWSs) (Piciullo et al., 2018; Guzzetti et al., 2020; Calvello 
et al., 2020). 

We recommend increasing the application of remotely sensed SAR 
imagery to detect and map landslides, focusing where landslide risk is 
high or very high, and in areas not yet covered by previous studies 
(Table 2). 

Landscape morphology is known to control the occurrence of land
slides (Turner and Schuster, 1996). For each study area, we collected 
information on terrain elevation and relief – a joint proxy for the land
scape topographic and morphological variability and complexity. We 
note that the case studies were conducted in a broad range of terrain 
elevation – from sea level to almost 5300 m of elevation in Nepal 
(Burrows et al., 2019) – and relative relief (from less than 10 m to more 
than 1880 m). We conclude that, overall, the variability and complexity 
of the landscape do not limit the application of SAR imagery for the 
detection and mapping of landslides. This is a positive conclusion. 
However, due to limitations inherent to the side-looking geometry of 
SAR sensors (Fig. 3) terrain morphology, chiefly slope angle and 
orientation, affect the ability of the radar sensors to properly illuminate 
the terrain, and consequently of an investigator to detect and map the 
landslides. In steep mountain terrain, the number and proportion of the 
slopes that are not illuminated by a radar sensor because of shadows or 
layover effects (Fig. 3B) can be significant, preventing the detection and 
mapping of landslides. 

Geology, seismicity, meteorology, climate, land use and land cover 
are all known to condition the distribution and abundance of landslides 
(Turner and Schuster, 1996; Sidle and Ochiai, 2006; Hungr et al., 2014; 
Vanmaercke et al., 2014; Gariano and Guzzetti, 2016; Tanyaş et al., 
2017; Vanmaercke et al., 2017; Fan et al., 2019). Hence, we investigated 
the local or regional settings of the study areas searching for relations 
with the SAR detection and mapping methods and capabilities. 

We first used the map showing the Generalized Geology of the World 
compiled by Chorlton (2007) to assign a prevalent geological domain to 
each study area, considering five rock type domains (i.e., igneous, 
metamorphic, sedimentary, tectonic, and volcanic rocks). We found that 
the study areas were in all the geological domains, and primarily in 
sedimentary rocks (58.5%), and subordinately in crystalline meta
morphic rocks (12.8%), volcanic and intrusive rocks (8.5%), volcanic 
rocks (7.1%), intrusive rocks (5.7%), sedimentary and volcanic rocks 
(4.2%), in a combination of crystalline, intrusive and sedimentary rocks 
(2.8%), and in other rock combinations in smaller percentages. 

We then used the Global Seismic Hazard Map of Giardini et al. (2003) 
to attribute a seismicity level to each study area, in four classes (low, 
moderate, high, very high). We found that the study areas were in all 
seismic classes, and more numerous in the moderate (30.0%) and the 
high (30.0%) classes, followed by the very high (24.2%) and the low 
(15.8%) classes. Considering the location of the 30 studies that detected 
and mapped seismically-induced landslides, we found that most of the 
studies were in compressive tectonic regimes where the movement of 
regional thrusts was the primary cause of the landslides. This was ex
pected, given the known global distribution of earthquake-induced 
landslides (Fan et al., 2019). 

Next, we used the world climate map of Peel et al. (2007) to assign a 
dominant, or prevalent Köppen-Geiger climate type (i.e., tropical, arid, 
temperate, cold, polar), and the high resolution, interpolated annual 
precipitation information of Hijmans et al. (2005) to assign an estimate 
of the mean annual precipitation (MAP) – or a range of MAP – to each 
study area. We found that the study areas were in all climate types, 
except the polar climate. The temperate climate type, with 36 study 
areas (51.4%), sixteen of which in the hot summer sub-group (Cfa), has 
twice as many study areas than the cold (15, 21.4%) and the tropical 
(13, 18.5%) climate types. In the study areas, the MAP ranges from a 
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minimum of 244 mm ⋅ y− 1 at Quadreba del Toro, Argentina, to a 
maximum of 4477 mm ⋅ y− 1 in the Karnatak Province, India. In both 
areas landslides were rainfall-induced. 

Ultimately, we used Google Earth to assign visually a predominant 
land cover type to each study area. Adopting the Corine Land Cover 
(CLC) second level nomenclature (European Environment Agency, 
1992, 2007), we assigned the “forest” type (3.1) to 25 study areas 
(35.7%), “open spaces with little or no vegetation” (3.3) to seven study 
areas, “shrub, herbaceous vegetation” (3.2) to three study areas, and 
“mine, dump, construction sites” to two study areas. To the remaining 

33 study areas, we attributed two predominant land cover types i.e., 3.1 
and 3.2 in 11 study areas, 3.2 and 3.3 in eight study areas, and 3.1 and 
3.3 in six study areas. A few study areas exhibited percentages of “pas
tures” (2.3), “heterogeneous agricultural areas” (2.4), and “urban fab
ric”. The presence of forest in at least 47 study areas (67.1%) suggests 
that multi-, single-polarisation, and in some cases coherence based 
products are well suited to detect and map landslides in forested terrain. 
This is a positive result because SAR sensors can complement optical 
sensors in the absence of direct solar illumination to detect and map 
landslides. However, we note that Mondini et al. (2019) failed to detect 
landslides in four study areas in Colombia where an equatorial forest 
was present. 

From this geographical analysis, we conclude that SAR imagery can 
be used to detect and map landslides in most of the morphological, 
geological, seismic, meteorological, climate, and land cover settings. 
This is good news. However, we note that for some of the settings the 
number of studies was limited, reducing the significance of the results. 
We therefore recommend to expand the number of studies and of study 
areas, focusing on physiographical settings poorly or not previously 
investigated (Fig. 2), as this will foster our understanding of possible 
limitations of the SAR imagery in specific settings (Table 2). We expect 
the role of SAR imagery to be more relevant in equatorial, tropical, and 
sub-tropical areas where landslides are abundant and the cloud coverage 
can be persistent, hampering the use of optical imagery. 

6.3. Temporal analysis 

Of the 147 case studies in the literature database, 139 (94.5%) 
provided information on the time, date, or period of occurrence of the 
landslides, including four articles for which we inferred the temporal 
information from the date or period of the landslide-triggering event e. 
g., an earthquake, a typhoon. 

Inspection of Fig. 1B reveals a constant increase in the number of 
articles published, with a rate of about one article per year between 
1992 and 2011, increased to about 5 articles per year between 2012 and 
2017, and increased further to exceed 7 articles per year between 2018 
and 2020 – with the figure for 2020 limited to the eleven-month period 
from January to November. We take this as evidence of the increasing 
interest of investigators in the use of SAR imagery for landslide detection 
and mapping. We further notice a nearly constant period of ≈2.7 years 
between the date of the triggering event and the publication of the 
article. This rather long period reveals the interest of the investigators to 
experiment with their detection and mapping techniques, as opposed to 
documenting the landslide events. Ultimately, we notice an average 
period of ≈4.2 years between the launch of a satellite and the first 
appearance of an article using the imagery taken by the satellite, and we 
observe that this latency has decreased over the years. We consider this 
evidence of the investigators’ confidence in the SAR capabilities, interest 
to experiment with new sensors, and the ability to obtain and process 
SAR images. 

The rising number of published articles per year is only partially 
related to the increasing availability of SAR imagery, and particularly of 
satellite imagery. Inspection of Fig. 5A reveals that (i) the availability of 
X-band sensors has increased rapidly from 2007 to 2010, and has 
remained about constant since then; (ii) following an early period 
(1991–1994) when only the ESA ERS-1/2 satellites were at hand, the 
availability of C-band sensors has remained about constant; and (iii) the 
availability of L-band sensors has also remained constant – albeit 
intermittent – until 2018. Further, inspection Fig. 5B reveals that, 
despite the larger availability of X-band sensors, investigators have 
preferred C-band, and L-band sensors. The sharp increase in the number 
of case studies that used C-band imagery in 2019, and C-band and L- 
band imagery in 2020, is due to the works of Mondini et al. (2019) and 
Burrows et al. (2020), with 32 and 40 case studies, respectively. 

Fig. 5. Temporal analysis. (A) Temporal coverage of SAR satellites. (B) Number 
of case studies that used different SAR bands. See Table 1 for details on the 
satellite sensors. 
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6.4. Landslide types and triggers 

Only 26 articles (48.1%), investigating 103 case studies, (70.0%), 
provided information on the type (or types) of landslides using standard 
nomenclature (Cruden and Varnes, 1996; Hungr et al., 2014), with 
“debris flow” (6), “shallow landslide” (5), and “mud flow” (3) the most 
commonly reported landslide types in the catalogue. This was expected, 
as these landslide types are among the ones that leave a distinct signa
ture on the ground surface. Further, only 18 articles (33.3%) gave 
quantitative information on the size (length, width, area, volume) of the 
landslides. We consider this a limitation of the published studies that 
prevents in-depth analyses of the relations among landslide types and 
sizes, the types and resolutions of the imagery used, and the methods 
used to detect and map the landslides. 

About 53% of the case studies concentrated on single landslides. For 
these studies, the study site coincided with the landslide area, the 
landslide area and its immediate surroundings, or the slope where the 
landslide was located. The remaining ≈ 47% of the studies detected or 
mapped landslide populations. In these more regional studies, the study 
area extended from a few tens (Moro et al., 2007) to several thousands 
(Ge et al., 2019; Aimaiti et al., 2019) square kilometres, and for most of 
the cases it was limited by the coverage of the available imagery. This 
limits the possibility to investigate and measure the extent and magni
tude of the landslide events (Malamud et al., 2004a). The evidence 
confirms that investigators were interested primarily in testing their 
detection or mapping techniques on single sites or areas of limited 
extent, and less interested in documenting the landslide events and in 
preparing landslide inventory maps for large and very large areas, albeit 
a few exceptions exist (Singhroy, 1995; Singhroy et al., 1998; Barra 
et al., 2016). This is confirmed by the prevalent type of journals where 
the articles were published, which are mainly remote sensing journals 
(Fig. 1A). 

A large proportion of studies were aimed at mapping event landslides 
i.e., individual landslides or populations of landslides caused by a single 
trigger – including an earthquake (35 studies), an earthquake sequence 
(three studies), a rapid snowmelt event (four studies), a rainfall event 
(40 studies), or a series of rainfall events in a season (one study) – with 
only seven studies aimed at updating geomorphological inventory maps 
(Guzzetti et al., 2012). We conclude that SAR imagery and related pre- 
processing and classification techniques are well suited to investigate 
event landslides, either single or populations of landslides, and we 
encourage investigators to perform systematic investigations of land
slide events in all physiographical settings, wherever this is possible. 
This will contribute to building a portfolio of detection and mapping 
solutions for different physiographic and landslide types (Table 2). 

6.5. Platforms and bands 

In the early days, airborne sensors were instrumental to prove that 
SAR imagery could be used to detect and map landslides successfully 
(Singhroy, 1995; Rodriguez et al., 2002; Czuchlewski et al., 2003). 
Today, the studies that exploit SAR images taken by satellites (134, 
91.1%) outnumber more than 10-to-1 the studies that use images taken 
by airborne sensors (10, 5.8%), with only four (2.7%) studies that 
exploit both (Singhroy et al., 1998; Yamaguchi, 2012; Shibayama and 
Yamaguchi, 2013; Shimada et al., 2014). This was expected, given the 
higher availability of SAR imagery taken by space-borne sensors, and the 
higher difficulty in obtaining and treating SAR imagery taken by 
airborne sensors (e.g., designing and running a campaign, removing the 
motion errors), despite the higher flexibility of the airborne platforms in 
resolution, flight direction, and configuration (e.g., in the choice of the 
band). Unfortunately, the only found example on the use of a band 
different from X,C, or L (Tien Bui et al., 2018), was not documented and 
then, it was not not taken into consideration in our analysis). 

Of all the satellite platforms, the most used are the ESA, C-band, 
Sentinel 1a/b (https://sentinel.esa.int/web/sentinel/missions/sentine 

l-1), which were used by the authors of 14 articles for 65 case studies 
– with 52 case studies in two works [182, 24] – followed by the Japa
nese, L-band, ALOS and ALOS-2, used in six and twelve articles, 
respectively, in 34 different case studies. 

An inspection of Fig. 5B reveals that, despite the larger availability of 
X-band sensors (Fig. 5A), investigators have preferred C-band and L- 
band sensors. Of all the satellite platforms, the most used are the ESA, C- 
band, Sentinel 1a/b (https://sentinel.esa.int/web/sentinel/missions/se 
ntinel-1) – used by the authors of 14 articles for 65 case studies – fol
lowed by the Japanese, L-band, ALOS and ALOS-2 – used in six and 
twelve articles, respectively, in 34 different case studies. We note that 
the sharp increase in the number of case studies that used C-band im
agery in 2019, and C-band and L-band imagery in 2020, is due to the 
works of Mondini et al. (2019) and Burrows et al. (2020), with 32 and 40 
case studies, respectively. We do not know if this is casual, or a shift in 
the scientific community towards a more systematic use of the two 
bands for landslide detection and mapping. The trend needs to be 
verified in the future. 

A number of SAR satellites potentially suited for landslide detection 
and mapping, including the Korean X-band KOMPSAT-5 (KARI, 2020), 
the Indian C-band RISAT-1 (Department of Space, Indian Space Research 
Organisation, I, 2020), the Canadian C-band Radarsat constellation 
(Canadian Space Agency, 2020), or the Argentinian L-band SAOCOM 1A 
(Comisión Nacional de Actividades Espaciales, 2020) (Fig. 5, Table 1), 
have not been used yet. This is surprising, considering that some of these 
satellites were used to monitor landslides with DInSAR (e.g., Lee, 2010; 
Bhattacharya and Mukherjee, 2017; Bovenga et al., 2018; Roa et al., 
2020). The lack of studies may be due to the fact that some of these 
satellites are recent (e.g., the C-band Radarsat constellation, the L-band 
SAOCOM 1A), whereas for others it may not be easy or it may be 
expensive to obtain the images. We encourage investigators to test the 
new sensors, wherever possible in combination with other sensors, as 
this will expand our understanding of the use of different platforms 
(Burrows et al., 2020) to detect and map landslides (Table 2). 

Ultimately, it is difficult to determine whether there is a relationship 
among the number of the case studies, of the available satellites (Fig. 5), 
and of the images used. In our review, we counted approximately 200 
images used in 26 years, a minute number. 

6.6. Pre-processing 

“Speckle”, illumination, geometric distortion, and geocoding were 
the primary problems faced by investigators in the preparation of the 
SAR images. Speckle (or “speckle-like”) hampers – or prevents – the 
heuristic, visual interpretation (Gabriel, 2002) and the quantitative use 
of SAR imagery. Various filters are used to reduce the speckle. In the 
catalogue, the most popular are the Lee filter (Lee, 1981, 1986; Lee et al., 
1994a) used ten times, two times in the “refined” or “advanced” version, 
and the Frost filter (Frost et al., 1982) used six times, followed by the 
“median” filter, used three times. Park and Lee (2019) used the IDAN 
(Vasile et al., 2006) filter, Li et al. (2014a, 2014b) an “averaging” filter, 
and Esposito et al. (2018) an “anisotropic” filter. Konishi and Suga 
(2018a) confronted the “median”, Lee, and Frost filters, and preferred 
the later, in terms of overall classification accuracy (OA), whereas 
Mwaniki et al. (2017) experimented the joint use of the Lee and Frost 
filters. When multi-look is applied to obtain images with a nominal pixel 
size, the averaging process on the original cells can introduce a filtering 
effect (Cantalloube and Nahum, 2000; Oliver and Quegan, 2004). Multi- 
look was performed by the authors of 24 articles, but only eight articles 
considered filtering (Luo et al., 2016; Mondini, 2017; Konishi and Suga, 
2018a; Fujiwara et al., 2019; Mondini et al., 2019; Esposito et al., 2020; 
Burrows et al., 2020; Goorabi, 2020). Interestingly, Czuchlewski et al. 
(2003) deliberately did not perform any speckle filtering, speculating 
that their scattering mechanism extraction approach was sensitive 
enough to detect the gigantic Tsaoling rockslide at the spatial resolution 
of the L-band airborne FP AIRSAR imagery used. 
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Illumination issues are a consequence of the side-looking geometry 
typical of SAR systems (Meyer, 2019), and consist of shadows, foreshort 
and layover (Fig. 3B). Only a few authors assessed or considered the 
impact of geometric distortions on their analyses (Singhroy et al., 1998; 
Balz and Liao, 2010; Watanabe et al., 2012; Konishi and Suga, 2017; Liu 
et al., 2018; Mondini et al., 2019; Adriano et al., 2020; Goorabi, 2020; 
Tzouvaras et al., 2020), and others excluded from the analyses (i.e., 
masked) the areas affected by shadows or in layover (Chorowicz et al., 
1998; Li et al., 2014a, 2014b; Mondini, 2017; Tessari et al., 2017; 
Konishi and Suga, 2018a; Burrows et al., 2020; Esposito et al., 2020; 
Jung and Yun, 2020; Ohki et al., 2020). To mitigate geometric distor
tions distortions, Aimaiti et al. (2019) used images taken along 
ascending and descending orbits, whereas Luo et al. (2016), for their 
change detection approach, considered irrelevant the geometric distor
tions. Only Mondini et al. (2017) gave the percentage of pixels affected 
by geometric distortion in his analysis, key information to quantify the 
areas in which landslides could not be detected. 

We note that for most of the studies the image pre-processing was not 
designed specifically for landslide detection and mapping, but for other 
applications. Studies that exploited the SAR phase through DInSAR and 
coherence products used pre-processing designed chiefly for interfer
ometry. Studies that exploited multi-polarisation used some form of 
signal decomposition, whereas the multi-temporal studies exploited 
different forms of calibration and co-registration. We conclude that 
there is no guarantee that the performed pre-processing was “optimal” 
for landslide detection and mapping. We consider this a limitation, and 
we encourage investigators to experiment with image pre-processing 
approaches designed specifically for the purpose of detecting and 
mapping landslides in particular in relationship to filters and terrain 
correction (Table 2). 

6.7. Detection and mapping methods 

For the detection and mapping of landslide failures, investigators 
have experimented multiple methods, which – for descriptive purposes – 
we group loosely into qualitative and quantitative methods. The quali
tative methods consist of the expert, visual interpretation of images 
derived, in various ways, from SAR images. This is similar to the visual 
interpretation of aerial photography or optical satellite imagery (Guz
zetti et al., 2012). A total of 23 articles (42.6%) discussed qualitative, 
visual interpretation methods applied to 58 case studies (39.4%) with a 
nearly constant rate of ≈ 1.5 studies per year until 2019, a maximum of 
three studies in 2018, and no studies in 2020. The visual interpretation 
methods were applied mainly to images showing the ground backscatter 
and its changes obtained by processing C-band imagery (Fig. 7A). 

The quantitative methods include empirical investigations based on 
numerical and/or statistical techniques. This is equivalent to 
statistically-based landslide susceptibility modelling (Reichenbach 
et al., 2018). In 31 articles discussing results in 33 different study areas, 
investigators have used 89 times a quantitative method – including 70 
times a threshold based method, eight times unsupervised, and seven 
times supervised classification methods – and four times mixed, 
thresholds and decision tree methods (Fig. 7). Beginning in 2012, the 
rate of articles exploiting quantitative methods has risen continuously, 
with Burrows et al. (2020) and Ohki et al. (2020) who repeated exper
iments conducted by previous authors. Regardless of the method, all the 
investigators interpreted landslides as “anomalies” in regular patterns in 
the imagery and maps. Interpretation was facilitated where multi- 
polarisation derived products were available, mainly because the de
compositions allowed for the visual discrimination between forested or 
vegetated (i.e., stable) terrain and bare terrain, the later inferred to be a 
landslide. Where multi-temporal approaches were adopted, landslide 
detection and mapping was further facilitated by the fact that in the 
imagery landslides appeared as clusters of homogeneous pixels sur
rounded by a “salt and pepper” matrix of random changes (Fig. 4). 

For quantitative methods, most authors preferred multi-polarisation 

Fig. 6. Analysis of approaches in the literature database. (A) Tree chart shows 
number of case studies that used (i) the type of approaches (single polarisation, 
multiple (dual, full) polarisation, coherence, DInSAR) and (ii) the selected band 
type (X-band, C-band, L-band). (B) Bar chart shows the temporal trend of 
the approaches. 
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products obtained from L-band imagery. This was expected, because of 
the high information content of the imagery. Inspection of the literature 
reveals a large number of studies (15, 27.7%) that exploited FP L-band 
imagery, with most of the study areas in Japan. We maintain that this is 
the result of the availability of L-band, ALOS and ALOS-2 imagery taken 
after large landslide triggering events in Japan, and not an a-priori 
research design based on the specific properties of the L-band imagery 
(e.g., its high penetration capacity). 

Overall, the quantitative methods exploited the statistical behaviour 
of the backscatter properties of different land cover classes (e.g., forest, 
bare ground), or their temporal and spatial variations, and did not 
investigate the physical properties of the observed objects. We note that 
the covariates used in the statistically-based classification models follow 
different statistical distributions whose shape can change when the 
images are over- or sub-sampled, filtered, or transformed (Oliver and 
Quegan, 2004; Lopès et al., 2008), with consequences on the use of the 
quantitative methods. We recommend to address these issues, and to 
design and execute physically based (i.e., “theoretical”) studies in which 
the backscattering response of the landslide surface structures are 
related to the penetrating capacity of the different radar bands. We 
further recommend designing experiments that combine different 
bands, for both qualitative and quantitative approaches and classifica
tion methods (Table 2). 

Considering on the relationships between the SAR bands and the 
methods used to detect and map the landslides, Fig. 6A reveals that: (i) 
C-band imagery was used in 75 case studies (51.0%), L-band imagery in 
58, (39.4%), and X-band imagery in only 14 studies (9.5%); (ii) the case 
studies that used amplitude data, including single-polarimetric (61, 
41.4%) and multi-polarimetric (26, 17.6%) approaches, outnumbered 
the case studies that used phase data, including coherence (54, 36.7%) 
and DInSAR (6, 4.0%) approaches; (iii) the case studies that used C-band 
amplitude, single-polarimetric approaches were the single most 
numerous (44, 29.9%), followed by case studies that used L-band and C- 
bands coherence approaches (27, 18.3% and 26, 29.9% respectively) – 
with the figures influenced by the works of Mondini et al. (2019) and 
Burrows et al. (2020); and (iv) no study used DInSAR techniques with X- 
band data, whereas only one study used coherence of X-band imagery, 
and one study C-band, multi-polarimetric approaches. 

6.8. Quality analysis 

For a quality analysis, we consider two, equally important aspects: (i) 
the completeness of the information, and (ii) the analysis of information 
on the validation of the results of the landslide detection or mapping 
exercises. 

To quantify the abundance of information in each study, we selected 
eight information types, which we consider of primarily relevance for 
the quality of a study i.e., (i) areal extent of the study area – most 
relevant for case studies dealing with populations of landslides, (ii) land 
cover types, (iii) number of landslides, (iv) landslide type(s), (v) land
slide size, (vi) landslide trigger, (vii) the type of SAR imagery and the 
description of the pre-processing, and (viii) whether a validation was 
performed. Next, for each article, we counted the number of information 
types for which data was available. Then, we attributed to each article a 
“completeness score” equal to the number of information types, from 
zero to eight. Inspection of the frequency of the completeness scores 
(Fig. 8) reveals that no article has the lowest completeness score (0), one 
article has the highest score (8), and the average score is 4.7 (st.dev =
1.7). We stress that the completeness score does not measure the quality 
of the information given in the articles, but we maintain that more in
formation characterises a better quality article. 

Analysis of the landslide detection and mapping experiments 
revealed that 24 studies (44.4%) performed a qualitative validation, 20 
studies (37.0%) a quantitative validation, and the remaining 10 studies 
(18.6%) did not perform any form of validation (Fig. 9A). The quanti
tative analyses performed the validation using multiple combinations of 

six different performance indices obtained from standard confusion 
matrices, including the overall accuracy (OA), Recall (Rc), Precision 
(Pr), Cohen’s k (Cohen, 1960), F1-score (F1), and Success rate (Sr). 

Most of the qualitative validations were executed comparing the 
landslide detection or mapping results with satellite optical images or 
ortho-photographs that captured the same landslide events. Three au
thors preferred to validate their landslide detection results using inde
pendent information obtained in the field or from chronicles. In some 
articles, in particular where photo-interpretation was used to classify the 
images, validation was not discussed or was missing entirely. For the 
quantitative validations, the necessary confusion matrix was prepared 
using independent landslide information obtained from official sources 
(Balz and Liao, 2010; Mwaniki et al., 2017; Ge et al., 2019; Aimaiti et al., 
2019; Ohki et al., 2020; Jung and Yun, 2020; Adriano et al., 2020), or 
from landslide inventory maps prepared for validation purposes using 
satellite optical imagery. 

Fig. 9B illustrates the temporal trend of the performed validations. 
We note that the number of quantitative validations has increased over 
time. This is a positive finding. We also note that the number of com
binations of performance indices is large (Fig. 9A), and we encourage 
investigators to perform the evaluations of their detection and mapping 
exercises using a common set of performance indices. This will facilitate 
the quantitative comparison of the results of different studies. We 
further recommend authors to provide a geomorphological insight for 
their numerical results, and in particular to motivate the false classifi
cations (Table 2). 

7. Comparison of approaches and results 

A few investigators have confronted the results of the application of 
different techniques in the same study areas, or the application of the 
same or similar techniques using different imagery. In this section we 
summarize these comparisons. 

7.1. Amplitude and phase products 

Konishi and Suga (2017), Ge et al. (2019), Aimaiti et al. (2019), and 
Jung and Yun (2020) confronted coherence and various amplitude- 
based products. To detect and map the numerous large debris flows 
triggered by torrential rainfall in Hiroshima, Japan, on 20 August 2014 
(Wang et al., 2015), (Konishi and Suga, 2017) preferred coherence over 
NDSI obtained by processing X-band COSMO-SkyMed images. The 
choice was based on an heuristic, qualitative assessment. Differently, to 
map shallow landslides (Yamagishi and Yamazaki, 2018) triggered by 
the 6 September 2018, 6.6 Mw, Hokkaido Eastern Iburi earthquake, 
Northern Japan, Ge et al. (2019), Aimaiti et al. (2019), and Jung and 
Yun (2020), processed a set of ALOS-2 images and obtained better OA 
scores using intensity difference and intensity correlation rather than 
coherence based products. 

We explain the contrasting result with (i) the presumed higher 
sensitivity of SAR coherence to subtle or minor land cover changes, and 
the corresponding higher sensitivity of SAR backscatter to major land 
cover changes (Plank, 2014), in particular in forested areas where 
coherence is typically low; (ii) the different landslide types (debris flows 
and shallow landslides); and (iii) the different characteristics of the 
images used, namely a 3 m × 3 m, shorter wavelength, X-band COSMO- 
SkyMed image for the first study, and a 1.43 m × 1.95 m, longer 
wavelength, L-Band ALOS-2 image for the last studies. As pointed out by 
Ge et al. (2019), more tests on different events are needed to confirm 
these results. 

To map a single, large, seismically-induced rockslide triggered by the 
6.4 Mw earthquake that hit western Pakistan on 28 October 2008, Furuta 
and Tomiyama (2008) preferred DInSAR to NDSI obtained by processing 
an L-band ALOS-2 image, originally at 10 m × 10 m resolution. DInSAR 
analysis showed a maximum, local, LOS deformation of about 6 cm in 
the landslide area, which was too small to produce changes visible in the 
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NDSI. Conversely, other landslides causing large displacements were 
captured by the NDSI, and not by DInSAR. 

7.2. Polarisation products 

In the attempt to map the giant, 1.25 × 108m3 Tsaoling rockslide 
(Hung et al., 2002; Chigira et al., 2003; Chen et al., 2006) triggered by 
the 21 September 1999, Mw 7.7, Chi Chi earthquake in Central Taiwan, 
Czuchlewski et al. (2003) preferred post-event full-polarisation to dual- 
polarisation (HV-HH) L-band, airborne AIRSAR imagery (NASA Jet 
Propulsion Laboratory, 2020a), because the decomposition of the 
backscattering matrix allowed for a direct identification of two types of 
terrain useful to detect landslides i.e., bare, rocky terrain (the landslide), 
and forest (the stable terrain). Still, the authors were able to recognise 
the same landslide proposing a dual-polarisation based, simplified 
vegetation index, and concluded that an L-band system with dual co- 
polarisation and cross-polarisation channels was sufficient to identify 
landslides that took out the vegetation. The large areal extent of the 
landslide, the high resolution of the airborne imagery, and the strong 
ground changes caused by the landslides facilitated its detection. 

In an experiment aimed at mapping six seismically-induced land
slides – three in forested terrain and three in grassland and shrubs – 
triggered by the 16 April 2016, 7.0 Mw Kumamoto earthquake, Kyushu, 
Southern Japan, Park and Lee (2019) used two fully-polarimetric L-band 
ALOS-2 images, one taken before and one after the earthquake. They 
preferred changes of P, H, and A (sec. 5.1.1) between the pre-event and 
the post-event images, than P, H, and A obtained from the single post- 
event image. 

Although the authors did not provide information on the type of 
landslides, Xu et al. (2017) reported independently that most of the 
seismically-induced landslides were shallow, disrupted falls, with a few 
flow-type slides, and rock and soil avalanches. Large, deep-seated, co- 
seismic landslides were also identified by Mukunoki et al. (2016). The 
study revealed that thresholded changes of single- and dual-polarisation 
backscatter coefficient allowed for high detection rates, but suffered 
from a large number of false positives (commission errors). The map 
prepared using change detection products obtained from pre-event and 
post-event, fully-polarimetric images performed better (Cohen’s k =
0.45) than all the other products – i.e., single, post-event fully-polari
metric image; post-event, dual-polarisation image; change detection of 
pre-event and post-event single-polarisation imagery – when compared 
to a reference inventory map obtained through the visual analysis of 
post-event aerial photography. The same conclusions were reached by 
Ohki et al. (2020) who mapped landslides triggered by heavy rainfall on 
5–6 July 2017, in Kyushu, Japan (Ochiai et al., 2017), and by the 6 
September 2018, 6.6 Mw, Hokkaido Eastern Iburi earthquake, Northern 
Japan, using 3 m × 3 m resolution, FP ALOS-2 images. The authors found 
that the single polarimetric (SP) imagery was not useful to detect the 
event triggered landslides, but did not provide information on the pa
rameters used for the comparison. 

Konishi and Suga (2018b) used three polarimetric indices obtained 
from processing pre-event and post-event L-band ALOS-2 imagery to 
detect and map landslides triggered by the 6 April 2016, 7.0 Mw, 
Kumamoto earthquake, Kyushu, Southern Japan. Adopting a change 
detection approach, the authors trained a random forest classifier using 
separately the α, entropy H, and polarimetric correlation coefficient in 
bare soil (considered to be landslides), forest, grass and crop, paddy, and 
urban (built-up) areas. Overall accuracy was high for the three classi
fications (OA = 0.86, 0.85, and 0.73, respectively), confirming the po
tential of the technique for landslide detection and mapping. 

7.3. Band comparison 

To map landslides of unknown type and size in the Chicamocha 
valley, Northern Colombia, Chorowicz et al. (1998) used 12.5 m × 12.5 
m C-band ERS-1 and 18.0 m × 18.0 m L-band JERS-1 images in simulated 

pseudo-stereoscopic amplitude-based products. The authors preferred 
the JERS-1 images due to the larger acquisition incidence angle (≈35◦

vs. ≈23◦), which facilitated the 3-D stereoscopic view of the surface 
deformations caused by the landslides. They also concluded that the 
different wavelengths (C, L) and spatial resolutions were not important 
for landslide detection and mapping. 

In an attempt to detect rainfall-induced landslides caused by typhoon 
Talas, in Totsukawa-mura, Japan, in August and September 2011, Shi
mada et al. (2014) compared airborne Pi-SAR-L2 L-band and X-band 
TerraSAR-X imagery. The experiment revealed that polarimetric en
tropy, H and the HH/HV power ratio were both effective in detecting 
land cover changes (from forest to bare ground) caused by the occur
rence of the landslides, and more so when using the L-band airborne 
SAR. The experiment also showed that the X-band TerraSAR-X was less 
sensitive to land cover changes, probably because of the reduced 
penetration through forest of the shorter wavelength, X-band, compared 
to the longer wavelength, L-band, imagery (Shimada et al., 2014). 

Burrows et al. (2020) confronted low resolution (200 m × 220 m) and 
high resolution (20 m × 22 m) landslide density maps (Guzzetti et al., 
2000) prepared using C-band, Sentinel-1 and L-band, ALOS-2 imagery 
for the areas affected by (i) the 2015, 7.8 Mw Gorkha, Nepal, earth
quake, (ii) the 2018, 6.6 Mw Hokkaido, Japan, earthquake, and (iii) the 
6.8 Mw and 6.9 Mw earthquakes in the 2018 Lombok, Indonesia, seismic 
sequence. Results obtained using the L-band imagery outperformed the 
results obtained using the C-band imagery. Despite, the authors argued 
that Sentinel-1 imagery was a valuable choice for emergency manage
ment due to the mission 6-day revisit time (Table 1). 

The number of experiments that compared the performance of SAR 
bands is too limited, and the results are too dependent on the local 
settings to allow for a general conclusion. We recommend performing 
experiments to compare systematically the performance of SAR bands 
for landslide failure detection and mapping in different environmental 
and physiographical settings, and for different landslide types. 

8. Discussion and perspective 

Our literature review shows empirical evidence that satellite or 
airborne SAR imagery can be used to detect and map landslide failures in 
a variety of settings. However, no clear evidence is provided on the 
characteristics of SAR imagery that allow it to be used for detecting and 
mapping landslide failures. To fill this gap, we first examine if the SAR 
imagery commonly used for landslide failure detection and mapping 
(Table 1) are theoretically adequate for the scope, and we present a 
general framework for the detection and mapping of landslide failures 
and of populations of event failures using SAR imagery (Fig. 10). Next, 
we outline the main research needs to consolidate the theoretical 
framework, and to improve the existing capabilities to detect and map 
landslide failures. Ultimately, we consider the potential for SAR-based 
operational landslide mapping services, and we provide a perspective 
for the extensive use of satellite and airborne SAR-imagery for landslide 
failure event detection and mapping. 

8.1. Theoretical framework 

Where landslides occur, they leave discernible signs that can be 
recognised and mapped (Rib and Liang, 1978; Turner and Schuster, 
1996; Guzzetti et al., 2012). Most of the signs used to recognise a 
landslide in a landscape are changes in the ground surface characteris
tics from the situation before the landslide, including morphological, 
lithological, geological, and land-cover modifications. Depending on the 
landslide velocity (Cruden and Varnes, 1996; Hungr et al., 2014), the 
style of activity (Cruden and Varnes, 1996), and the landslide repetition, 
recurrence, and reactivation pattern (Temme et al., 2020), changes can 
be abrupt or gradual and multiple signs can coexist in an area, facili
tating the recognition of a landslide by trained investigators. 

When using remote-sensing imagery, the most relevant and effective 
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signs are related to morphological modifications and land-cover changes 
(Guzzetti et al., 2012). Morphological modifications – i.e., the landslide 
topographic or geometric “signature” (Pike, 1988) – consist of changes 
in the form, shape, position, or appearance of the topographic surface, 
and can occur at very different length-scales (from sub-centimetre to 
kilometre scale) depending on the size and type of the landslides. Land- 
cover changes result chiefly from the partial or total removal, or from 
the modification of the vegetation in the landslide area, or in parts of the 
landslide area, which result in radiometric differences in the imagery. 
The type and extent of the land-cover changes depend on the size, type, 
and velocity of the landslide (Sidle and Ochiai, 2006; Hungr et al., 
2014). 

Optical imagery taken by airborne or space-borne sensors has long 
been used to detect and map landslides of very different types in a va
riety of physiographical settings (Turner and Schuster, 1996; Guzzetti 
et al., 2012). In an optical image, landslides – and in particular “fresh”, 
event-triggered landslides – are easy to recognise by trained in
vestigators, mainly because they appear as (visual) morphological and 
land-cover “anomalies” compared to the surrounding stable terrain. The 
modern, automatic or semi-automatic methods used to detect and map 
landslides by processing optical images mimic the mental (heuristic) 
process performed by an investigator and attempt to capture “anoma
lies” in the imagery. This can be done by comparing pre-event and post- 
event conditions, or by searching for local differences in image patterns 
at various length scales (Mondini et al., 2011; Lu et al., 2011; Guzzetti 
et al., 2012; Lv et al., 2018; Tavakkoli Piralilou et al., 2019; Lu et al., 
2019b). 

When using optical imagery, the heuristic (human) or numerical 
(computer-based) interpretation and recognition process is “natural”, 
because optical sensors – including the human eyes – operate in the 
range of the electromagnetic spectrum to which we are accustomed 
(400–700 nm, 430–750 THz). Radar sensors commonly used for land
slide detection and mapping (Table 1) operate in a different region of the 
electromagnetic spectrum, and it is worth asking if landslides can – in 
principle – be detected by radar sensors. 

We first consider the wavelength and the ground resolution of the 
satellite SAR sensors. The first controls the size of the ground elements 
that can interact with the wave, and the second the size of the smallest 
geomorphological feature that can be detected and mapped. The SAR 
bands used to detect and map landslides range from ≈ 3.1 cm (X-band), 
to ≈ 5.5 cm (C-band), to ≈ 23 cm (L-band) (Table 1). These wavelengths 
are much smaller than the characteristic landslide length scales – in the 
range from meters to kilometres (Malamud et al., 2004a; Hungr et al., 
2014) – and comparable to the length scales of morphometric elements 
typical of landslides, including e.g., irregularities (“roughness”) in the 
landslide sliding surface, fractures, tension cracks, small pressure ridges 
and hummocks, and pebbles, cobbles, boulders and blocks (Blair and 
McPherson, 1999) typical of landslide deposits. The typical pixel size of 
a modern SAR image ranges from 3.0 m × 3.0 m to 16.0 m × 16.0 m 
(Table 1), much smaller or comparable to the size (area) of most of the 
small, shallow landslides. We conclude that the wavelengths of the SAR 
sensors, and the area covered by pixels of modern SAR sensors are – in 
principle – adequate to detect landslides, and their internal elements. 

We next consider that SAR sensors – differently from e.g., optical, 
passive sensors – are active sensors that illuminate the ground with 
pulses of electromagnetic radiation whose characteristics are known. 
The amplitude and phase of the echo (Sec. 4) depend (among others) on 
the geometrical and physical (mass) characteristics of the ground sur
face, which are assumed to be different in landslide areas and in stable 
terrain. Measured by amplitude, the terrain backscatter depends on the 
ground dielectric constant, related e.g., to soil moisture, and the surface 
roughness. Variations in coherence depend on the properties of the 
ground surface, including the presence or absence of vegetation and on 
target displacement. All these properties can be related to the presence 
(or absence) of a landslide, and interpretation of their spatial and tem
poral variations can be used to detect and map landslides. 

By comparing amplitude-based or coherence-based products in 
different parts of a SAR image having and not having landslides (e.g., 
Singhroy, 1995; Czuchlewski et al., 2003; Balz and Liao, 2010; Furuta 
and Sawada, 2013), or the changes in SAR amplitude or coherence in 
images taken before (pre-event) and after (post-event) a landslide (e.g., 
Suga and Konishi, 2012; Konishi and Suga, 2017; Mondini et al., 2019), 
a trained investigator can detect and map the landslides. Variations in 
the SAR phase can also measure geometric (topographic) changes in the 
ground surface caused by the movement of a landslide (Sec. 5.2.1). We 
conclude that, although we cannot “see” landslides in SAR imagery in 
the same way we see them in optical imagery, the available SAR imagery 
are – in principle – well suited to detect and map landslides, even 
allowing for strategies not (easily) feasible with optical imagery. We 
maintain that the simultaneous sampling of different properties of the 
ground surface measured by the SAR amplitude and phase should 
facilitate landslide failure detection and mapping. 

Analysis of the literature (Sections 5.1 and 5.2) revealed that – in 
practice – the exploitation of this theoretical framework for landslide 
failure detection and mapping using SAR imagery requires a number of 
steps which, for descriptive purposes, can be loosely grouped into two 
main phases: (i) a first phase aimed at the preparation of SAR imagery 
(image “pre-processing”), and (ii) a second phase for the SAR image 
classification. 

For amplitude-based approaches (Sec. 5.1), pre-processing trans
forms the amplitude recorded in a SAR image into a measure of the 
surface backscatter, which can then be used to discriminate different 
surface classes, including landslides and some of their internal features 
(e.g., the source or depletion area, the transport and depositional areas). 
The image can be corrected radiometrically and geometrically, multi- 
looked, filtered, co-registered to other images, and projected or ortho- 
rectified. Multi-polarimetric imagery allows for more complex trans
formations because it carries more information on the surface charac
teristics. In principle, it should be possible to describe the backscatter 
from a complex ground surface as the sum of simpler components, 
including backscatter from the bare ground e.g., a landslide, and the 
volumetric backscatter of a forest, facilitating the detection of landslides 
and stable terrain. For interferometry-based products (Sec. 5.2.1), pre- 
processing transforms the phase changes in surface (ground) displace
ments caused by a moving landslide, or other geological processes (e.g., 
an earthquake, volcanic activity, subsidence). It includes an accurate co- 
registration of an image pair, usually multi-looking, eventually Earth 
curvature and topographic phase subtraction, and filtering, in particular 
when the interferogram is unwrapped. For coherence-based products 
(Sec. 5.2.2), pre-processing consists of the calculation of coherence or its 
changes, and it requires images co-registration, usually multi-looking, 
and eventually Earth curvature and topographic phase subtraction. 
Coherence is sensitive to changes in the position and the physical 
properties of the scatterers. 

Image classification is then executed through visual or numerical 
approaches, in which qualitative (heuristic, visual interpretation) or 
quantitative (statistical modelling) classification of the surface spectral 
response, or of changes in the surface response, are used to detect and 
map the landslides. Investigators have mainly (i) interpreted visually 
tonal changes, and their spatial variations, of amplitude-based and 
coherence-based products; (ii) considered the statistical properties of 
amplitude-based and coherence-based products in different land cover 
classes (including landslides) and their spatial and temporal changes; or 
(iii) used interferometry-based products to measure surface displace
ments. Interestingly, and with the exception of the interferometry-based 
products, the qualitative and the quantitative approaches are both 
similar to the corresponding classification approaches used for landslide 
detection and mapping using optical (multi-spectral) imagery (Guzzetti 
et al., 2012). And similar to the optical-based approaches, they require 
expert interpretation and geomorphological insight, mainly to resolve 
ambiguities (radiometric or morphological convergence), and to reduce 
the number of commission (false positive) and omission (false negative) 
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errors. 

8.2. Research framework 

Since the first application of SAR imagery for landslide failure 
detection and characterisation (Singhroy, 1995; Vargas Cuervo, 1997), 
significant research progresses have been made, driven manly by the 
increased availability of (mostly satellite) SAR imagery (Fig. 5), and the 
increased image processing capabilities, due to faster computer and 
more effective software. Despite the progress, a number of issues remain 
open. Here, we discuss four of them, which we consider most relevant 
and broad. 

First, we note the lack of rigorous, theoretical “radiation-matter” 
models that explain the interaction between the incoming SAR radiation 
and the geometrical and physical surface structures of different landslide 
types, at the sampled resolution, and specifically the geometrical 
structure and dielectric constant of the ground (i.e., the “matter”), at the 
sampled resolution (Ulaby et al., 1982; Watanabe et al., 2016). Such 
models will allow for the prediction of the backscatter, providing the 
theoretical basis for the detection of landslide failures and for the 
discrimination of unstable (“landslide”) from stable (“non landslide”) 
terrain, assuming that the backscattering responses will be different in 
landslide and in stable areas. Similar models exist e.g., for forests 
(Durden et al., 1989; Pulliainen et al., 1994), for inundated forested 
areas (Richards et al., 1987), for bare soil parameters, including soil 
moisture content (Altese et al., 1996; MirMazloumi and Sahebi, 2016; 
Ghorbanian et al., 2019), for agricultural areas (Sun et al., 2019). 

Likewise, there is a lack of rigorous, theoretical models to explain 
how coherence changes where and when a landslide failure occurs, 
depending on the landslide type and extent, the ground dielectric con
stant (dependent on soil moisture) and surface roughness, and on the 
land cover type. We further note the lack of systematic measurements 
and comparisons of the backscattering properties, coherence, and their 
geographical and temporal changes, in landslide areas, for different 
landslide types and extents, and in different physiographical settings. 
We recommend investing in the development of theoretical models able 
to predict the backscattering and coherence responses to different 
landslide types, and in the design and execution of systematic campaigns 
to obtain accurate measurements of the surface backscatter in landslide 
and stable areas, to test the models (Table 2). 

Second, we note that despite the high potential (Bruzzone et al., 
2004; Nielsen et al., 2015), and the clear advantages in determining the 
surface backscattering properties and their changes (useful for the image 
visual interpretation and for machine-learning based methods), use of 
fully-polarimetric imagery remains uncommon in the literature. The 
main reason is the limited availability of fully-polarimetric (satellite) 
imagery, a result of the lack of systematic acquisitions. Given the tech
nical problems that prevented the deployment of multi-channel SAR 
sensors on satellites (Bruzzone et al., 2004), access to fully-polarimetric 
imagery was limited to airborne systems until the advent of ALOS 
(2006), Radarsat-2 and TerraSAR-X (2007), and later on ALOS-2 (2014) 
(Table 1). Even the mentioned fully-polarimetric satellites have often 
been operated in single or dual polarisation modes, for power supply and 
coverage reasons (Nielsen et al., 2015), further limiting the availability 
of fully-polarimetric (satellite) imagery. Despite the inherent diffi
culties, we encourage the exploitation and testing of fully-polarimetric 
imagery for landslide failure detection and mapping (Table 2). 

Third, we note that studies that experimented with the combination 
or the “fusion” of SAR products with other imagery or products are rare 
(e.g., Singhroy, 1995; Singhroy et al., 1998; Mwaniki et al., 2017). The 
experiments were limited to the combined, visual interpretation of 
optical-based and SAR-based products. In the experiments, the optical 
and SAR images were processed separately for information and feature 
extraction; then, the separate classifications were combined through 
some decision, heuristic processes (Pohl and Van Genderen, 1998). The 
approach proves useful, but has drawbacks, the most important of which 

is the need for optical imagery, which prevents the use of the approach 
at night (Mondini et al., 2019) or during a rainfall event e.g., a typhoon 
(Mondini and Chang, 2014; Tay et al., 2020). We speculate that other 
fusion approaches can be used to improve the quality of the statistical 
classifications obtained exploiting SAR products. 

Learning from what is currently done exploiting optical imagery 
(Guzzetti et al., 2012; Scaioni et al., 2014; Zhong et al., 2020), we 
encourage investigators to experiment with the pixel level combination 
of images acquired in different bands, to fully exploit their different 
backscattering scales and measures (Table 2), although we acknowledge 
it may be difficult and costly to obtain imagery of different types for the 
same area, or for the same landslide event. In this context, pixel-based or 
terrain-based landslide susceptibility models (Reichenbach et al., 2018) 
can be used as “geomorphological filters” in probabilistic frameworks to 
reduce the number of false classification positives, excluding areas 
where landslides cannot, or are not likely to occur given the local set
tings (Mondini and Chang, 2014; Mondini et al., 2017; Alvioli et al., 
2018). 

A yet different way of combining SAR-based products is exemplified 
in the work of Ge et al. (2019), who used Linear Discriminant Analysis 
(LDA) to combine coherence, intensity difference, and the correlation 
coefficient between pre-event and post-event images, exploiting the 
different sensitivities of the products to ground changes caused by the 
landslide failures. Similarly, Ohki et al. (2020) combined Pauli matrix 
elements (Cloude and Pottier, 1996), coherence, phase variation 
(Fielding et al., 2005), and DEM derived slope and curvature using a 
Random Forest machine learning algorithm. 

As expected (Rossi et al., 2010; Reichenbach et al., 2018), applica
tion of the LDA resulted in a reduction in the number of false positives 
(commission errors), compared to the two single techniques, and the 
Random Forest algorithm increased the overall quality of the classifi
cation, with a Cohen’s k = 0.7 (Cohen, 1960). To the best of our 
knowledge, these are the only attempts to combine statistically different 
detection techniques. 

We encourage investigators to perform similar combination experi
ments using DInSAR products, to understand whether the image clas
sification would benefit from information on surface displacements 
(Table 2). For large displacement dynamics landslides, information on 
surface displacement can be obtained using pixel-offset tracking ap
proaches (Furuta and Tomiyama, 2008; Casu et al., 2011; Manconi et al., 
2014; Singleton et al., 2014; Sun and Muller, 2016; Darvishi et al., 
2018). Considering the peculiar statistical distributions of the pixels in 
the SAR images, we further recommend experimenting with more so
phisticated machine learning techniques (Table 2). 

Ultimately, our literature analysis (Sec. 6) revealed that (i) the 
combinations of product types and investigation methods (55) exceeded 
the number of published articles (54) (Sec. 3) and, (ii) the numerical 
predominance of threshold-based (40) and visual-based (34) classifica
tion methods (Fig. 7) was mainly determined by two articles (Mondini 
et al., 2019; Burrows et al., 2020). Such considerable fragmentation of 
research results may be indicative of the narrow interest of individual 
investigators to experiment and test their own detection or mapping 
techniques on single sites or areas of limited extent, without any stra
tegic interest or effort towards a common, shared result – like in other 
fields of landslide research (e.g., Reichenbach et al., 2018) – or it may 
outline the lack of a consensus in the research community on the “best” 
or optimal methods to detect and map landslide failures using SAR 
imagery. 

To explore further the advantages and limitations of the solutions 
proposed in the literature, and of new possible solutions, we recommend 
a more systematic use of the SAR imagery. In particular, we encourage 
repeating the detection and mapping experiments using qualitative and 
quantitative methods in different geomorphological settings, not just 
where the setting is favourable, and also using different imagery. This 
will help identifying a portfolio of solutions best suited for different 
conditions and data availability (Table 2). The extended use of the SAR 
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Fig. 7. Analysis of classification methods in the literature database. (A) Tree chart shows the number of case studies that used (i) the type of classification methods 
(visual interpretation, unsupervised, supervised, threshold-based) or a combination of them, and (ii) the pre-processing approaches (single polarisation, multiple 
(dual and full) polarisation, coherence, DInSAR), and of the combined approaches. (B) Bar chart shows the temporal trend of the classification methods. 
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imagery should be assisted by physically-based and empirical (“data 
driven”) models describing the properties of the pixels inside (and 
outside) the landslides. The models should consider the natural (e.g., 
surface geometry and structure, surface deformation, soil moisture, 
landcover type) and the engineering (e.g., wavelength, pixel size, 
channels) aspects. Besides contributing to obtain better detection and 
landslide inventory maps, the effort may help understanding whether 
the current resolutions in the different channels, spectral bands (Table 1) 
are the best options to detect and map landslides, or if more advanced 
technologies are needed. We stress that this research is highly multi- and 
inter-disciplinary, as it requires expertises in different areas, including e. 
g., signal processing, geomorphology, numerical modelling. 

8.3. Operational framework 

Our literature review revealed a consensus that SAR imagery can be 
used effectively to detect and map landslide failures of different types 
and sizes, and in a variety of environmental and physiographical set
tings. Then, a question to ask is whether scope exists for operational 
services for landslide detection and mapping based on SAR imagery. A 
second question to ask is if, or to what extent, such services are opera
tionally feasible with the imagery, technologies, and tools currently 
available, or that will soon be available. 

8.3.1. Scope for SAR-based landslide detection and mapping services 
In 2012, Guzzetti and his co-workers (Guzzetti et al., 2012) esti

mated that landslide maps covered less than 1% of the slopes in the 
landmasses, and concluded that, despite their relevance for landslide 
hazard and risk assessment, landslide maps were unexpectedly rare. We 
argue that the situation has not improved significantly in the last nine 
years, despite global community efforts to compile and organise 
geographical landslide information (Van Den Eeckhaut and Hervás, 
2012; Kirschbaum et al., 2015; Tanyaş et al., 2017; Herrera et al., 2018; 
Mateos et al., 2020), and the increased availability of optical satellite 
imagery, of high and very high resolution digital elevation and terrain 
models, of improved image classification models, and of enhanced vis
ualisation software, which, all together, can be exploited to identify 
landslides and to prepare landslide inventory maps (Guzzetti et al., 
2012; Casagli et al., 2016; Zhong et al., 2020). 

We stress that knowing where landslides are, where and when they 
occur, and how they evolve in space and time, is of primary importance 
for the construction and the validation of landslide susceptibility models 
and maps (Reichenbach et al., 2018) and of advanced spatio-temporal 
hazard models (Lombardo et al., 2020), for the validation of LEWSs 
forecasts (Piciullo et al., 2018; Guzzetti et al., 2020), to investigate the 
complex interactions between landslides, climate, and environmental 
changes (Sidle and Ochiai, 2006; Crozier, 2010; Gariano and Guzzetti, 
2016), to document and study the effects of severe geophysical (Tanyaş 
et al., 2017; Williams et al., 2018; Fan et al., 2019) and meteorological 
(Mondini et al., 2014; Konishi and Suga, 2017, 2018a; Tay et al., 2020) 
events on physical landscapes and social environments (Brabb, 1991; 
Glade et al., 2005; Kjekstad and Highland, 2009), and to study the 
evolution of landscapes dominated by mass-wasting processes (Hovius 
et al., 1997; Malamud et al., 2004a, 2004b; Guzzetti et al., 2009; Bucci 
et al., 2016; Vanmaercke et al., 2017). 

Part of the problem related to the rapid detection of landslides for e. 
g., the validation of LEWS forecasts (Guzzetti et al., 2020) or the timely 
production of landslide maps for emergency response and rescue oper
ations (Inyang and Daniels, 2009) following a major seismic (Yun et al., 
2015; Esposito et al., 2018; Williams et al., 2018; Aimaiti et al., 2019; Ge 
et al., 2019; Uemoto et al., 2019; Burrows et al., 2020) or meteorological 
(Mondini et al., 2014; Konishi and Suga, 2017, 2018a; Tay et al., 2020) 
event, lays in the difficulty of obtaining suitable optical imagery free of 
clouds that can be interpreted visually, or classified automatically or 
semi-automatically (Joyce et al., 2009; Guzzetti et al., 2012; Torres 
et al., 2012; Casagli et al., 2016). 

Fig. 8. Completeness of information in the 54 articles in the literature data
base. Bar chart shows the number of articles (y-axis) per each completeness 
score (x-axis). The darker the grey bar, the higher the completeness of the 
information. 

Fig. 9. Quality analysis. (A) Number and percentage of validation approaches. 
None, no validation performed. Qualitative, qualitative (visual) validation. 
Quantitative validation: OA, Overall accuracy index; Rc, Recall; Pr, Precision; k, 
Cohen k; F1, F1 score; Sr, Success rate. (B) Temporal distribution of application 
of the different validation methods. 
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Clouds can cover about 70% of the Earth’s surface (Stubenrauch 
et al., 2013). Fig. 11 shows the global cloud fraction map for September 
2019 i.e., the fraction of any given area that was cloudy, on average. One 
sees that the majority of the landmasses where landslides are known to 
exist or to be abundant were covered by clouds. Analysis of the NASA 
Earth Observations website for the 20-year period between February 
2000 and July 2020 (https://earthobservatory.nasa. 
gov/global-maps/MODAL2_M_CLD_FR) reveals that similar monthly 
cloud coverage fractions are the norm. Mondini et al. (2019) showed 

that the large, 6-km long, rainfall and snowmelt induced landslide of 16 
December 2017 in Villa Santa Lucia, Central Chile, was not visible to 
optical satellites until January 2018, due to the persistent cloud 
coverage. 

Similarly, Robinson et al. (2019) calculated that 40% of the global 
population at risk from earthquakes are obscured from optical satellite 
view for more than three days between June and August. However, the 
ESA C-band Sentinel-1 image used by Mondini et al. (2019) and Burrows 
et al. (2020) to detect seismically-induced landslides triggered by the 

Fig. 10. Logical framework for the detection and 
mapping of landslide failures – where a landslide 
failure is the single most significant movement 
episode in the history of a landslide (Hungr et al., 
2014) – and of landslide failure events i.e., pop
ulations of one or many landslides in an area caused 
by a single trigger (Guzzetti et al., 2012), using SAR 
imagery. Yellow rectangle shows amplitude domain, 
and red rectangle shows phase domain. Blue rect
angle shows pre-processing approaches, and green 
rectangle shows classification methods. See text for 
explanation. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   

Fig. 11. Map shows global monthly (September 2019) cloud fraction i.e., the percentage of each 0.1◦ × 0.1◦ pixel covered by clouds, measured daily using the 
Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra and Aqua satellites (NASA Earth Observations, 2020). Colours range from blue (no 
clouds) to white (totally cloudy). Red dots show locations of study areas in the literature database. See Fig. 2. Map uses Equal Earth map projection (EPSG:8857). 
Credits: Imagery by Reto Stockli, NASA’s Earth Observatory (NEO), using data provided by the MODIS Atmosphere Science Team, NASA Goddard Space Flight 
Center. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Iburi earthquake in southern Hokkaido, Japan, on 6 September 2018 at 
03:08 JST (5 September 2018 at 18:08 UTC), was taken during the night 
at 5:41 JST (5 September 2018 at 20:41 UTC) i.e., only about two and 
half hours from the earthquake. In principle, this could have allowed for 
the preparation of a preliminary landslide map within hours from the 
earthquake even in the absence of daylight. 

We argue that satellite SAR sensors, given their ability to penetrate 
the clouds (“all-weather” sensors), and to work in presence and absence 
of daylight (“day-and-night” sensors), represent – and will represent in 
the near future – the best available technological option for the rapid 
detection of landslides from space, and for the rapid preparation of event 
landslide inventory maps when optical images are not available. We 
further argue that there is scope for operational, satellite-based SAR 
services for the timely detection of event landslides, and for the pro
duction and updating of landslide inventory maps. 

8.3.2. Feasibility of operational landslide detection and mapping services 
The design, implementation, and operation of SAR-based landslide 

detection and mapping services is not trivial, and it requires the pre
liminary definition of user, system, and service requirements. One has to 
decide on the general (e.g., LEWS forecast evaluation, rapid disaster 
response, long term map update) and the specific (e.g., landslide failure 
detection, landslide mapping) goals of the service, on the optimal and 
the acceptable (minimum) product delivery time or period (e.g., hours, 
days, weeks, months), and on the geographical scale, or scales, of the 
system (e.g., covering a single slope, a catchment, a region, a nation, a 
continent, or the entire globe). One has also to evaluate the sustain
ability of the system in terms of current and future (foreseeable) avail
ability of adequate SAR imagery, of the feasibility of exploiting SAR 
imagery of different types (e.g., different bands, acquisition modes, area 
coverage), and of the availability and characteristics of ancillary infor
mation, including e.g., DEM, geological and land-cover maps. Addi
tional key issues to consider include the availability of (i) adequate 
computer processing and storage facilities “(hardware”), of (ii) suited 
processing, modelling, and visualisation tools (“software”), and of (iii) 
the personnel, who has to cover multiple expertise. The design of a SAR- 
based, operational landslide detection and mapping service is not within 
the scope of the article, but in the following we provide some general 
consideration. 

We first consider the image availability issue. Inspection of Fig. 5A 
reveals that availability of SAR satellites, and thus we assume of SAR 
imagery, has increased over the years. The revolutionary Capella (Space, 
2020) and (ICEYE, 2020) missions promising few hours repeat passes 
will soon be fully operational. New missions, including e.g., SAOCOM- 
1b (European Space Agency, 2020e), TerraSAR-X Next Generation 
(European Space Agency, 2020f), COSMO-SkyMed Second Generation 
(European Space Agency, 2020a), NISAR (NASA Jet Propulsion Labo
ratory, 2020b), will further increase the availability of SAR imagery in 
the near future. We conclude that image availability is not (and will not 
be) an issue for the design and the implementation of operational, SAR- 
based landslide detection and mapping services. 

However, we note that most of the past, existing and planned mis
sions were designed, and are and will be operated mainly – if not entirely 
– for interferometric scopes and related products, including multi- 
temporal DInSAR-based motion measurements and deformation ana
lyses. This limits their use for landslide failure detection and mapping 
purposes. We note that the ESA Sentinel 1 mission, which currently 
operates with the Interferometric Wide (IW) swath as the main acqui
sition mode designed chiefly for interferometric analyses, given its 
temporal resolution and the constant, scheduled, repeat passes (every 
six days, considering two satellites), proves very well suited for opera
tional landslide detection and mapping. 

We next discuss the image processing (hardware and software) issue. 
Considering the ESA Sentinel-1 mission as a reliable, economic, stable, 
medium-to-long term source of SAR imagery adequate for landslide 
detection and mapping, we tested the time necessary for the pre- 

processing of a pair of pre-event and a post-event ESA Sentinel-1 im
ages, with a 250 km swath and covering an area of ≈ 41,250 km2. Using 
an off-the-shelf, high-end laptop computer equipped with one i7 core 2.8 
GHz × 8 processor, 64 GB RAM, one TB disk, running Ubuntu 18.04, and 
the Sentinel Application Platform (SNAP) release 7.0 application soft
ware, the pre-processing phase took less than 10 min. Optional terrain 
correction took additional 2:30 min. The entire process used about 20 
GB disk space. Similarly, pre-processing of five bursts of a single 
polarimetric channel – sufficient to detect a landslide event over a large 
area – took less than six minutes and used less than 20 GB of disk space. 
Phase unwrapping was more time consuming, with the total time 
dependent on various settings and the extent of the area, but was less 
than 150 min (2.5 h) using the statistical-cost, network-flow algorithm 
implemented in SNAPHU (Chen and Zebker, 2000), with tiles of 100 
pixels. This simple experiment revealed that the processing of SAR im
agery necessary for the detection and mapping of landslide failures in 
areas of several thousands square kilometres (i.e., a large catchment, a 
nation) is well within the capabilities of modest computer (hardware 
and software) facilities. Extrapolating the result to a larger number of 
images covering a larger or much larger area, or even to the entire globe, 
or other, better performing processing chains, is not linear (nor trivial), 
but we maintain that it is computationally and economically feasible 
with the existing computer technology (e.g., the European Space 
Agency’s Geohazard Exploitation Platform (GEP) (https://geoh 
azards-tep.eo.esa.int/#!)) at low to reasonable costs. 

Ultimately, we consider the human factor. Landslide detection and 
mapping is by itself a difficult and uncertain operation, that requires 
expert investigators (Guzzetti et al., 2012). Use of SAR imagery is also 
not trivial; and it requires specific image processing tools and skills. The 
complexity of the SAR imagery, the variety of approaches and methods 
that can be used for image pre-processing and classification, and for the 
validation of the mapping results, and the complex – and often not 
considered – relationships between the image characteristics and the 
classification methods, also require expert investigators. We maintain 
that – to be successful – an operational landslide detection and mapping 
service has to relay on a team capable of covering multiple expertise 
including e.g., remote sensing, visualisation, machine learning, geo
morphology, landslide interpretation and analysis. With this respect, 
such services are candidates for the “convergence” approach emerging 
in medicine and in other research fields (National Research Council, 
2014; Sharp et al., 2016; Sharp and Hockfield, 2017). 

We recommend designing and implementing operational, SAR-based 
services. We expect this to contribute to prepare landslide maps and to 
mitigate landslide hazards and the associated risks. 

8.4. Perspective 

The legacy of 26 years of experimentation in the use of remotely- 
sensed SAR imagery to detect and map single landslide failures, or 
populations of triggered landslides in broad areas, is a portfolio of 
technical solutions encompassing different image pre-processing ap
proaches (Sec. 6.6) and classification methods (Sec. 6.7, Fig. 10), using 
different types of imagery (Sec. 7). The different technical solutions 
were tested in a variety of morphological, geological, climatic, seismic, 
and land-cover settings (Sec. 6.2, Fig. 2), and for different landslide 
types and triggering factors (Sec. 6.4). Despite the undisputed progress, 
important challenges remain to be faced for the future. 

First, our review of the literature revealed that standards for the 
effective detection and mapping of landslides using remotely sensed SAR 
imagery are missing. Standards for the assessment of the quality of the 
obtained results and mapping products are also lacking. We stress that 
the lack of standards limits the possibility to compare different detection 
and mapping methods. As indicated by Guzzetti (2005), this can reduce 
the credibility and usefulness of the results, with potential negative 
consequences on the derivative products and analyses, including e.g., 
landslide inventory maps (Guzzetti et al., 2012), landslide susceptibly 
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modelling and zonation (Reichenbach et al., 2018), landslide hazard and 
risk evaluations (Guzzetti et al., 2012), and the validation of 
geographical landslide early warning systems (Piciullo et al., 2018; 
Guzzetti et al., 2020). We encourage investigators to converge towards 
and to adopt common, standard approaches and methods for landslide 
detection and mapping, and for their quality evaluation. We expect that 
this will raise the credibility and usefulness of the related products. 

Second, the literature review also revealed that the full potential and 
the inherent limitations of the existing framework for landslide detec
tion and mapping using airborne or satellite SAR imagery (Fig. 10) has 
not been explored fully. Reasons are manifold, including (i) the lack of a 
systematic use of SAR imagery, a result of the costs and inherent diffi
culty in obtaining images with specific, suited characteristics; (ii) the 
apparent difficulty of treating SAR imagery, a result of the scarcity and 
the cost of adequate software; and (iii) a lack of accuracy in reporting the 
results of the experiments in the literature. The ESA, C-band Sentinel1-A, 
B, with the programmed continuity until 2030 with the launch of 
Sentinel1-C and 1-D, and the JAXA, L-band ALOS-2 missions, are already 
fostering the use of SAR imagery for landslide detection and mapping 
(Fig. 5). We recommend that the recent governmental (e.g., the Argen
tinian SAOCOM, the Canadian Radarsat Constellation Mission) and 
private (e.g., the Cappella Space constellation) missions, and the fore
seen private (e.g., Iceye) and governmental (e.g., the Italian COSMO- 
SkyMed Second Generation, the German TerraSAR-X Next Generation, 
and the joint U.S.A. and India NISAR) missions adopt flexible data 
acquisition programs and distribution policies. We expect this to favour 
the further expansion of the use of SAR imagery for landslide detection 
and mapping. 

Improved desktop software, including e.g., the open source Delft 
Institute of Earth Observation and Space Systems (Doris) of Delft Uni
versity of Technology, the ESA Polarimetric SAR Data Processing and 
Educational Tool (PolSARPro), the REdar Tools (RAT), the NASA JPL 
Repeat Orbit Interferometry PACkage (ROI_PAC), the ESA SentiNel 
Application Platform (SNAP), dedicated libraries and toolboxes for the 
Python high-level programming language, the commercial DIA
PASON®, ENVI® SARscape®, IMAGINE Radar Mapping®, and 
Gamma® packages, as well as large computing platforms, including the 
ESA Thematic Exploitation Platform (TEP), are also favouring a wider 
use of SAR imagery for landslide detection and mapping, making it 
accessible even to investigators who are not experts in radar technology 
and image processing. However, we also note some counter-trends, such 
as the recent (July 31, 2020) shutdown of the Research and User Support 
(RUS) Copernicus Service, launched in September 2017 “to prevent 
technical and knowledge barriers affecting user’s uptake of Copernicus 
datasets” (https://rus-training. 
eu/news/rus-virtual-machines-switch-off-on-july-31). 

Third, in their critical analysis of conventional and – at the time – 
innovative and emerging techniques for landslide mapping based on 
remote sensing imagery and technologies, Guzzetti et al. (2012) argued 
that a crucial problem was the lack of experienced image interpreters, 
and that adequate training in landslide detection and mapping was 
difficult to obtain. When using SAR imagery, the problem is even more 
severe because of the inherent difficulty in handling the radar images – 
compared to optical images, and because the interpretation criteria that 
are consolidated for optical images (Guzzetti et al., 2012) are poorly 
defined for SAR images. We encourage investigators to define and test 
image interpretation criteria specific for SAR-based products. This 
should not be too difficult when the images are ortho-rectified using 
high and very-high resolution terrain elevation data, obtained by 
exploiting e.g., LiDAR technology. We further recommend that in
vestigators define interpretation criteria for landslide detection and 
mapping based on SAR imagery. This will facilitate the production of 
homogeneous and comparable landslide detection and mapping prod
ucts, and will favour the integration of landslide information obtained 
from different remote sensing and spatial technologies. 

Fourth, Guzzetti et al. (2012) further argued that “a combination of 

satellite, aerial and terrestrial remote sensing data represented the optimal 
solution for landslide detection and mapping, in different physiographic, 
climatic and land cover conditions”. Before 2012, only 13 articles (24.1%) 
in our literature database had been published, indicating that SAR im
agery was only seldom used for landslide detection and mapping, and 
chiefly for experimenting the use of the technology (e.g., Singhroy, 
1995; Vargas Cuervo, 1997; Singhroy et al., 1998; Chorowicz et al., 
1998). The situation has changed significantly in the recent years, and 
today SAR imagery represents a mature, effective option for landslide 
detection and mapping. SAR imagery can be exploited to measure 
accurately the ground displacement caused by a strong earthquake and 
its cascading effects, including large populations of triggered landslides 
(Ge et al., 2019; Aimaiti et al., 2019; Ohki et al., 2020; Burrows et al., 
2020; Adriano et al., 2020; Jung and Yun, 2020) shortly after they have 
occurred, it can help detect and map recent landslide dams, which can 
be breached, causing inundations (Konishi and Suga, 2018b; Mondini 
et al., 2019), and it can be exploited to map landslides and inundated 
areas caused by a typhoon, hurricane, or intense rainfall event within 
hours from their occurrence (Mondini, 2017; Adriano et al., 2020). With 
this respect, SAR-based multi-hazard detection and mapping platforms 
are a realistic opportunity for a more integrated effort in disaster risk 
management. 

Ultimately, in the literature – and to a large extent in the daily 
practice – we note a persistent lack of interest in landslide mapping, both 
as a source of information for research activities, and for land and 
emergency management. We expect that the progress made and the 
expected developments in the exploitation of SAR imagery will facilitate 
greatly the timely detection and mapping of different types of landslides 
in a variety of morphological, geological, climatic and land cover 
context. 

We encourage the broad community of research investigators, 
practitioners, engineers, planners, rescue operators, risk and disaster 
managers, and decision makers, who exploit – routinely or occasionally 
– landslide data and information, to take advantage of the new oppor
tunities offered by remote sensing technologies, and specifically of SAR 
imagery and related processing techniques, for enhanced landslide 
detection and mapping. In this sense, a combined mission, optical and 
SAR, dedicated to landslide detection and mapping is a realistic op
portunity today, as demonstrated by Mondini et al. (2019). We stress 
that the current scientific knowledge and technological capabilities are 
sufficient to design, implement, and manage landslide detection and 
mapping services operating on different geographical and temporal 
scales in many areas of the world. Global coverage services are also 
within the existing capabilities. For the latter, what is missing is a 
realistic cost-benefit analysis of a dedicated landslide detection and 
mapping mission, and a lively institutional interest driven by strong 
demand from a large user community. 

9. Conclusions 

In this work, we examined almost 26 years of literature on the use of 
Synthetic Aperture Radar (SAR) imagery for the detection and mapping 
of landslide failure events and populations of event landslides published 
in peer-reviewed journals. Critical analysis of the results of 147 case 
studies in 70 study areas in all continents, except Antarctica (Fig. 2), and 
the analysis of the existing and foreseen SAR missions and their tech
nical and operational characteristics (Table 1), allows for the following 
general considerations. 

SAR imagery taken from aerial or satellite platforms, used appro
priately and with the necessary processing and visualisation software 
tools – which nowadays are widely available – represents a valuable 
asset for the efficient detection and mapping of individual landslides, 
and of populations of landslides of different types and sizes in broad 
areas, and in a variety of physiographical settings. The existing knowl
edge on landslide processes and the current technological capabilities 
are adequate to design, implement, and manage landslide detection and 
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mapping services operating on different geographical and temporal 
scales, including global coverage services. Such services may prove 
particularly useful for the validation of geographical landslide early 
warning systems (LEWSs) (Piciullo et al., 2018; Guzzetti et al., 2020; 
Calvello et al., 2020), including global rainfall-induced landslide now
casting systems (Kirschbaum and Stanley, 2018). The unique ability of 
microwave radar sensors of seeing through the clouds (“all-weather”), 
and to work in presence and absence of daylight (“day-and-night”), 
makes SAR sensors particularly well suited for the rapid detection and 
mapping of landslides caused by large geophysical (Aimaiti et al., 2019; 
Burrows et al., 2019; Ge et al., 2019; Park and Lee, 2019; Burrows et al., 
2020; Jung and Yun, 2020; Adriano et al., 2020) or meteorological (Suga 
and Konishi, 2012; Mondini and Chang, 2014; Konishi and Suga, 2018a; 
Tay et al., 2020; Adriano et al., 2020) events, when timely information 
on landslide occurrence is required e.g., for rescue operations and 
emergency management, as well as to construct multi-temporal land
slide inventories which can be used for advanced landslide hazard 
modelling (Lombardo et al., 2020). 

Despite 26 years of undisputed progress, a number of theoretical, 
research, and operational challenges remain to be faced for the effective 
use of SAR imagery for landslide detection and mapping. Table 2 lists the 
main recommendations that emerge from our review of the literature to 
meet the open challenges. For the challenges to be met, standards and 
shared best practices are needed to assess and hopefully reduce uncer
tainty, ensure repeatability and reproducibility, avoid misinterpretation 
and facilitate comparisons. 

Our last conclusion originates from the evidence that, despite land
slides being frequent and abundant, widely distributed, and locally 
extremely dangerous and destructive events caused by different 
geophysical and meteorological triggers, landslide events remain among 
the less documented natural events. This has negative consequences on 
our collective ability to understand landslide phenomena and their 
spatial and temporal evolution, to predict landslides and their impact, to 
measure the vulnerability to landslides of various elements at risk, 
including the population, and to mitigate landslide risk. Nowadays, 

knowledge and technology are available to document landslide events 
shortly after they have occurred. We encourage landslide scientists and 
professionals to take advantage of the opportunity and focus on sys
tematic landslide detection and mapping projects. We expect this to 
attract institutional and private interests, which could support the 
common goal of improving our collective ability to systematically detect 
landslide events and their consequences, a key step towards the reduc
tion of landslide risk. 

Data availability 
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Appendix A. List of abbreviations 

Acronyms and abbreviations used in the text.   

Acronym Description 

ARIA Advanced Rapid Imaging and Analysis 
ASI Agenzia Spaziale Italiana, Italian Space Agency (Italy) 
AUC Area and the ROC Curve 
CNN Convolutional Neural Network 
CCRS Canada Centre for Remote Sensing (Canada) 
CECL Co-Event Coherence Loss 
CONAE Comisión Nacional de Actividades Espaciales (Argentina) 
CLC Corine Land Cover 
CSA Canadian Space Agency (Canada) 
DBC Differential Backscattering Coefficient 
DInSAR Differential Interferometry Synthetic Aperture Radar 
DP Dual Polarisation 
DSGSD Deep-Seated Gravitational Slope Deformation 
ESA European Space Agency (Europe) 
FP Full Polarisation 
FPR False Positive Rate 
GIS Geographical Information System 
GSD Ground Sampling Distance 
HSI Hue, Saturation, Intensity 
LDA Linear Discriminant Analysis 
LOS Line of Sight 
MITI Ministry of International Trade and Industry (Japan) 
NASA National Aeronautics and Space Administration (USA) 
NASDA National Space Development Agency (Japan) 
NDSI Normalised Difference Scattering Index 

(continued on next page) 
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(continued ) 

Acronym Description 

NDVI Normalised Differential Vegetation Index 
NEO NASA Earth Observations 
NIED Japanese National Research Institute for Earth Science and Disaster Resilience 
OA Overall accuracy 
PECI Post-Event Coherence Increase 
PSS Polarimetric Scattering Similarity 
RCS Radar Cross Section 
RGB Red, Green, Blue 
ROC Receiver Operating Characteristic curve 
SAR Synthetic Aperture Radar 
SNAPHU Statistical-Cost, Network-Flow Algorithm for Phase Unwrapping 
SP Single Polarisation 
STA Science and Technology Agency (Japan) 
TEP ESA Thematic Exploitation Platform  

Appendix B. List of variables 

Variables used in the text.   

Variable Unit Description 

α  scalar Weighted average scattering 
β ◦/rad Synthetic beam width 
β0 scalar Radar brightness coefficient 
k cm− 1 Wavenumber 
γ scalar Interferometric coherence 
λ cm Wavelength 
ϕ ◦/rad Phase 
π scalar Pi 
RVI scalar Radar Vegetation Index 
σ0 scalar, dB Backscattering coefficient 
τ s π phase change 
A  scalar Anisotropy 
AL m2 Landslide area 
[T2, 3] unit2 Coherence matrix, for dual (2) and full (3) polarisation systems 
[C2, 3] unit2 Covariance matrix, for dual (2) and full (3) polarisation systems 
E units Expected value 
H scalar Entropy 
Ms scalar Earthquake surface wave magnitude 
Mw scalar Earthquake moment magnitude 
PH scalar Pedestal height 
R m Distance between the target and the receiving antenna 
RVI scalar Radar Vegetation Index 
Θi 

◦/rad Look angle 
VL m3 Landslide volume 
S units Sinclair scattering matrix  

Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.earscirev.2021.103574. 
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