
Language and Speech Technology
Technical Report Series

Report Number LST-14-01

FoLiA: Format for Linguistic Annotation

version 1.3 – Revision 6.0

Documentation

Maarten van Gompel

January 2nd, 2014 (published) – August 4th, 2016 (last revision)

PI Group Language and Speech Technology
Centre for Language Studies
Radboud University Nijmegen
P.O. Box 9103
NL-6500 HD Nijmegen
The Netherlands
http://www.ru.nl/lst

Series editors:
Nelleke Oostdijk
Antal van den Bosch
David van Leeuwen

ISSN 2352-3107

Contents

1 Introduction 6

1.1 History . 10

1.2 Status Information . 11

2 Document Format 12

2.1 Global Structure . 12

2.2 Identifiers . 12

2.3 Paradigm & Terminology . 13

2.3.1 Speech . 15

2.4 Annotation Declaration . 17

2.5 Structure Annotation . 18

2.5.1 Basic Structural Elements 18

2.5.2 Paragraphs, Sentences and Words 22

2.5.3 Divisions . 23

2.5.4 Quotes . 24

2.5.5 Gaps . 26

2.5.6 Whitespace and Linebreaks 28

1

2.5.7 Events . 29

2.5.8 Lists . 30

2.5.9 Figures . 31

2.5.10 Tables . 31

2.5.11 Notes . 33

2.5.12 Structure References . 34

2.5.13 Parts . 36

2.5.14 Entries, definitions & examples 37

2.6 Token Annotation . 41

2.6.1 Part-of-Speech Annotation 41

2.6.2 Lemma Annotation . 42

2.6.3 Language Identification Annotation 43

2.6.4 Lexical Semantic Sense Annotation 44

2.6.5 Domain Tags . 44

2.6.6 Subjectivity Annotation 45

2.7 Span Annotation . 46

2.7.1 Entities . 46

2.7.2 Syntax . 48

2.7.3 Dependency Relations 49

2.7.4 Chunking . 52

2.7.5 Time Segmentation . 53

2.7.6 Semantic Roles . 57

2

2.7.7 Coreference Relations 59

2.7.8 Observation Annotation 61

2.7.9 Sentiment Analysis . 63

2.7.10 Statement Annotation (Attribution) 64

2.8 Morphological Annotation . 66

2.9 Speech Annotation . 70

2.9.1 Speech Structure Annotation 70

2.9.2 Phonetic Content . 71

2.9.3 Phonological Annotation 72

2.9.4 Distortion . 72

2.10 Higher-order Annotation . 73

2.10.1 Human-readable Descriptions 74

2.10.2 Comments . 74

2.10.3 Alternative Token Annotations 75

2.10.4 Alternative Span Annotations 77

2.10.5 Feature Annotation . 78

2.10.6 Part-of-Speech Tags with Features 80

2.10.7 Metrics . 81

2.10.8 Corrections . 82

2.10.9 Alignments . 94

2.10.10 Aligned Corrections . 98

2.10.11 Translations . 99

3

2.10.12 Text Content . 99

2.10.13 Substrings . 103

2.10.14 Text Markup . 106

2.10.15 Hyperlinks . 111

2.10.16 Foreign Annotation . 112

2.11 Metadata . 113

2.12 External documents and full stand-off annotation 115

3 Set Definition Format 121

3.1 Introduction . 121

3.2 Types and Classes . 121

3.3 Concept Link . 122

3.4 Class Hierarchy . 123

3.5 Subsets . 123

3.6 Constraints . 124

4 Querying 127

4.1 XPath . 127

4.2 FoLiA Query Language . 129

4.2.1 Global variables . 130

4.2.2 Declarations . 130

4.2.3 Actions . 131

4.2.4 Text . 135

4.2.5 Query Response . 136

4

4.2.6 Span Annotation . 138

4.2.7 Corrections and Alternatives 139

4.2.8 Dealing with context . 143

4.2.9 Shortcuts . 145

A Validation 147

A.1 Extending FoLiA . 148

B Implementations 149

C FoLiA Tools 151

C.1 Introduction . 151

C.2 Installation . 152

C.3 Usage . 153

5

Chapter 1

Introduction

FoLiA is a Format for Linguistic Annotation. It is an XML-based[4] annota-
tion format, suitable for the representation of linguistically annotated language
resources. FoLiA’s intended use is as a format for storing and/or exchanging lan-
guage resources, including corpora. Our aim is to introduce a single rich format
that can accommodate a wide variety of linguistic annotation types through a
single generalised paradigm. We do not commit to any label set, language or
linguistic theory. This is always left to the developer of the language resource,
and provides maximum flexibility.

XML is an inherently hierarchic format. FoLiA does justice to this by utilising a
hierarchic, inline, setup where possible.

The most important characteristics of FoLiA are:

• Generalised paradigm - We use a generalised paradigm, with as few ad-
hoc provisions for annotation types as possible.

• Expressive - The format is highly expressive, annotations can be expressed
in great detail and with flexibility to the user’s needs, without forcing
unwanted details. Moreover, FoLiA has generalised support for representing
annotation alternatives, and annotation metadata such as information on
annotator, time of annotation, and annotation confidence.

• Extensible - Due to the generalised paradigm and the fact that the format
does not commit to any label set but used externally defined set definitions,
FoLiA is fairly easily extensible.

6

• Formalised - The format is formalised, and can be validated on both a
shallow and a deep level (the latter including tagset validation), and easily
machine parsable, for which tools are provided.

• Practical - FoLiA has been developed in a bottom-up fashion right along-
side applications, libraries, and other toolkits and converters. Whilst the
format is rich, we try to maintain it as simple and straightforward as pos-
sible, minimising the learning curve and making it easy to adopt FoLiA in
practical applications.

The FoLiA format makes mixed-use of inline and stand-off annotation. Inline
annotation is used for annotations pertaining to single tokens, whilst stand-off
annotation in a separate annotation layers is adopted for annotation types that
span over multiple tokens. This provides FoLiA with the necessary flexibility and
extensibility to deal with various kinds of annotations.

Inspiration for parts of FoLiA has been drawn from study of similar initiatives,
such as the Kyoto Annotation Format [1] and its successor NAF [7], as well as
the TCF format [8] and the PAULA format [11].

In publication of research that makes use of FoLiA, a citation should be given
of: “Maarten van Gompel (2014). FoLiA: Format for Linguistic Annotation.
Documentation. Language and Speech Technology Technical Report Series 14-
01. Radboud University Nijmegen.”. The latest version of the documentation
is always available from http://proycon.github.io/folia. FoLiA is open-
source and all technical resources are licensed under the GNU Public License
v3.

Notable features of the FoLiA format include:

• XML-based, validation against RelaxNG schema.

• Full Unicode support; UTF-8 encoded.

• Support for text as well as speech.

• Document structure consists of divisions, paragraphs, sentences and word-
s/tokens, and more specific elements.

• Support for annotation of transcribed speech.

7

• Can be used for both tokenised as well as untokenised text, though for
meaningful linguistic annotation, tokenisation is mandatory.

• Provenance support for all linguistic annotations: annotator, type (auto-
matic or manual), time.

• Support for alternative annotations, optionally with associated confidence
values.

• Support for features using subsets, allowing for more detailed user-defined
annotation.

• Not commited to any label set, label sets are user-defined.

• Agnostic with regard to metadata. External metadata schemes such as
CMDI [5] are recommended. A limited native metadata format is available
as well.

• Associate descriptions or comments with any annotation.

• Link to other internal annotations or to external resources from within any
annotation.

There is support for the following linguistic annotations:

• Attribution, statement annotation

• Event annotation

• Co-reference Annotation

• Chunking/Shallow parses

• Dependency Relations

• Domain Annotation

• Language Annotation

• Lemmatisation

• Named Entity Annotation, Multi-word expressions, Time expressions

• Morphological Analysis

8

• Observations

• Part-of-speech annotation

• Phonetic Analysis

• Semantic Role Labelling

• Semantic sense annotation

• Sentiment Analysis / Subjectivity Annotation

• Spelling corrections on both a tokenised as well as an untokenised level

• Syntactic Constituency Parses

• Time Segmentation

FoLiA support is incorporated directly into the following software:

• ucto1 - A tokeniser which can directly output FoLiA XML

• Frog2- A PoS-tagger/lemmatiser/parser suite

• FLAT3 - A web-based annotation environment for FoLiA

• Gecco4 - Spelling correction software

• CLAM5- Computational Linguistics Application Mediator, will eventually
have viewers for the FoLiA format.

• PyNLPl6- Python Natural Language Processing Library, comes with a li-
brary for parsing FoLiA

• libfolia7- C++ library for parsing FoLiA

FoLiA is used in various projects (list may not be complete):

1https://languagemachines.github.io/ucto
2https://languagemachines.github.io/frog
3https://github.com/proycon/FLAT
4https://github.com/proycon/gecco
5https://languagemachines.github.io/ucto
6https://github.com/proycon/pynlpl
7https://github.com/LanguageMachines/libfolia

9

https://languagemachines.github.io/ucto
https://languagemachines.github.io/frog
https://github.com/proycon/FLAT
https://github.com/proycon/gecco
https://languagemachines.github.io/ucto
https://github.com/proycon/pynlpl
https://github.com/LanguageMachines/libfolia

• SoNaR (STEVIN)

• DutchSemCor (NWO)

• TTNWW (CLARIN)

• DU-VNC (CLARIN)

• Ticclops (CLARIN)

• Valkuil.net

• Basilex (NWO)

• LIN (NWO)

To clearly understand this documentation, note that when we speak of “ele-
ments” or “attributes”, we refer to XML notation, i.e. XML elements and XML
attributes.

1.1 History

FoLiA’s origins are derived from the D-Coi format[2] developed as part of the D-
Coi project by project partner at Polderland Language and Speech Technologies
B.V. The D-Coi format was designed for use by the D-Coi corpus, as well as by
its successor, the SoNaR corpus [9]. It posits to be loosely based on a minimal
subset of TEI[6].

Though being rooted in the D-Coi format, the D-Coi format is very limited.
FoLiA instead introduces a rich generalised framework for linguistic annotation.
FoLiA development started at the ILK research group, Tilburg University, and
is continued at the Centre of Language and Speech Technology of Radboud
University Nijmegen. It is being adopted in multiple projects, primarily in the
Dutch and Flemish Natural Language Processing community.

Because of the introduction of a new and much broader paradigm, FoLiA is not
backwards-compatible with D-Coi.

10

1.2 Status Information

The FoLiA format, this documentation, and the libraries implementing FoLiA are
a constant work in progress. In this documentation, the status and implementa-
tion of a certain annotation type is indicated as follows:

Status: final since v0.4 · Implementations: pynlpl,libfolia

The above example states that the particular section is final since version 0.4
of FoLiA and that it is implemented in the libraries pynlpl (python) and libfolia
(C + +). You may also see portions of this documentation that are proposals,
which means the functionality is still open for debate and not final yet. Example:

Status: PROPOSED in v0.9 · Implementations: not implemented yet

Any version of FoLiA and its libraries should be compatible with earlier releases.
When things have changed between versions, this is indicated in the documen-
tation.

11

Chapter 2

Document Format

2.1 Global Structure

In FoLiA, each document/text is represented by one XML file. The basic structure
of such a FoLiA document is as follows and should always be UTF-8 encoded.

<?xml v e r s i o n="1.0" e n c o d i n g="utf-8"?>
<FoLiA xmlns="http://ilk.uvt.nl/FoLiA"

x m l n s : x s i="http://www.w3.org/2001/XMLSchema -instance"

v e r s i o n="0.5"

x m l : i d="example">
<metadata>

<a n n o t a t i o n s>
. . .

</ a n n o t a t i o n s>
</ metadata>
<t e x t x m l : i d="example.text">

. . .
</ t e x t>

</ FoLiA>

2.2 Identifiers

Many elements in the FoLiA format specify an identifier by which the element is
uniquely identifiable. This makes referring to any part of a FoLiA document easy
and follows the lead of the D-Coi format. Identifiers should be unique in the entire

12

document, and can be anything that qualifies as a valid ID according to the XML
standard, that is, it is a non-colonized name (NCName) that starts with either a
letter or an underscore and contains none other than letters, digits, underscores,
hyphens and periods. A well proven convention for IDs is of a cumulative nature,
in which you append the element name, a period, and a sequence number, to
the identifier of a parent element higher in the hierarchy. Identifiers are always
encoded in the xml:id attribute.

The FoLiA document as a whole also carries an ID.

Identifiers are very important and used throughout the FoLiA format, and manda-
tory for almost all structural elements. They enable external resources and
databases to easily point to a specific part of the document or an annotation
therein. FoLiA has been set up in such a way that identifiers should never
change. Once an identifier is assigned, it should never change, re-numbering is
strictly prohibited unless you intentionally want to create a new resource and
break compatibility with the old one.

Certain FoLiA elements take an id attribute in the FoLiA XML namespace in-
stead of of the XML namespaces, these are always references to the ID of another
element.

2.3 Paradigm & Terminology

The FoLiA format has a very uniform setup and its XML notation for annotation
follows a generalised paradigm. We distinguish several different categories of
annotation, three main categories and several higher-order annotation categories,
each contain a number of annotation types.

• Structural annotation - Annotations marking global structure, such as
chapters, sections, subsections, figures, list items, paragraphs, sentences,
words, morphemes, phonemes etc... Section 2.5 will discuss most structure
annotation elements in FoLiA. Morphemes and phonemes are discusses in
separate sections.

• Token annotation - Annotations pertaining to a specific structural ele-
ment, most often a word token (w) (hence the name). These annotations
appear within of the element they apply to. Linguistic annotations in this
category are for example: part-of-speech annotation (lexical categories),

13

lemma annotation, sense annotation. Various token annotation elements
may be used on higher levels (e.g. sentence/paragraph) as well and may
then be referred to as Extended Token Annotation. Section 2.6 will
discuss all token annotations.

• Span annotation - Annotations spanning over multiple tokens. Each type
of annotation will be in a separate annotation layer with stand-off nota-
tion. These layers are typically embedded on the level that also contains all
the element that are being reference. This is often the sentence level, but
possibly also higher levels (paragraph/division/text) for certain annotation
types. Examples in this category are: the labelling of syntactic constituent
structure, syntactic dependencies, chunks, co-reference, semantic roles and
named entities. Section 2.7 will discuss all span annotations.

• Higher-order annotation - Higher-order annotation consists of several
categories of annotation. These all have in common that they annotate
either other annotations, or in some way modify or point at other annota-
tions.

– Feature annotation - Feature annotation allows for more detailed
annotation. It acts as a feature or attribute to an annotation. This
category of annotation will be explained in Section 2.10.5.

– Alignment annotation - Allows for associations between arbitrary
annotations within or across FoLiA documents.

– Corrections - Allows corrections or suggestions for correction to be
associated with annotations.

– Alternatives - Allows annotations to be marked as alternative.

Almost all annotations are associated with what we call a set. The set determines
the vocabulary of the annotation, i.e. the tags or types of the annotation. An
element of such a set is referred to as a class. For example, we may have a
document with part-of-speech annotation according to the CGN set, a tagset for
Dutch part-of-speech tags [10]. The CGN set defines main tag classes such as
WW, BW, ADJ, VZ. FoLiA itself never commits to any tagset but leaves you
to define this. You can also use multiple tagsets in the same document if so
desired, even for the same type of annotation.

Most annotation elements take a set attribute, the value of which points to the
URL of the set definition file that defines the set. Such an element then usually
also carries a class attribute, which selects a particular class from the set, for
a particular annotation instance.

14

In the metadata section of the FoLiA document, sets are declared. This means
that for each annotation type you specify the set you are going to use, this is
again done by means of a URL pointing to a set definition file.

In addition to this, various other generic FoLiA attributes are available for all
annotation elements. These are never mandatory:

1. annotator – The name or ID of the system or human annotator that made
the annotation.

2. annotatortype – “manual” for human annotators, or “auto” for auto-
mated systems.

3. confidence – A floating point value between zero and one; expresses the
confidence the annotator places in his annotation.

4. datetime – The date and time when this annotation was recorded, the
format is YYYY-MM-DDThh:mm:ss (note the T in the middle to separate
date from time), as per the XSD Datetime data type.

5. n – A number in a sequence, corresponding to a number in the original
document, for example chapter numbers, section numbers, list item num-
bers.

The following example shows a simple Part-of-speech annotation without fea-
tures, but with various generic attributes according:

<pos s e t="http://ilk.uvt.nl/folia/sets/CGN" c l a s s="WW"

a n n o t a t o r="Maarten van Gompel" a n n o t a t o r t y p e="manual"

c o n f i d e n c e="0.76" d a t e t i m e="1982-12-15T19:01" />

The FoLiA paradigm is visualised in Figure 2.1. Note that the more advanced
aspects of the FoLiA paradigm, the higher-order annotation categories, will be
introduced later in Section 2.10.

2.3.1 Speech

Status: Final since v0.12 · Implementations: pynlpl,libfolia

FoLiA is also suited for annotation of speech data. The following additional
generic FoLiA attributes are available for all structure annotation elements in a
speech context:

15

Figure 2.1: The FoLiA Paradigm

• src – source – Points to a file or full URL of a sound or video file. This
attribute is inheritable.

• begintime – begin time – A timestamp in HH:MM:SS.MMM format, indi-
cating the begin time of the speech. If a sound clip is specified (src); the
timestamp refers to a location in the soundclip.

• endtime – end time – A timestamp in HH:MM:SS.MMM format, indicating
the end time of the speech. If a sound clip is specified (src); the timestamp
refers to a location in the soundclip.

• speaker – speaker – A string identifying the speaker. This attribute is
inheritable. Multiple speakers are not allowed, simply do not specify a
speaker on a certain level if you are unable to link the speech to a specific
(single) speaker.

Read more about speech annotation in Section 2.9.1.

16

2.4 Annotation Declaration

The annotation declaration is a mandatory part of the metadata that declares all
types of annotation and the sets that are present in the document. Annotations
are declared in the annotations block.

The follow example declares four annotation levels with fictitious sets and several
default attributes:

<a n n o t a t i o n s>
<token−a n n o t a t i o n

s e t="http://ilk.uvt.nl/folia/sets/ucto-tokconfig -nl"

a n n o t a t o r="ucto" a n n o t a t o r t y p e="auto" />
<pos−a n n o t a t i o n s e t="http://ilk.uvt.nl/folia/sets/CGN"

a n n o t a t o r="Frog" a n n o t a t o r t y p e="auto" />
<lemma−a n n o t a t i o n s e t="http://ilk.uvt.nl/folia/sets/

lemmas-nl"

a n n o t a t o r="Frog" a n n o t a t o r t y p e="auto" />
<sense−a n n o t a t i o n s e t="http://ilk.uvt.nl/folia/sets/

Cornetto"

a n n o t a t o r="SupWSD1" a n n o t a t o r t y p e="auto" />
</ a n n o t a t i o n s>

The set attribute is mandatory1 and refers to a URL of a FoLiA Set Defini-
tion file (see Chapter 3). In the above example, the set URLs are mostly ficti-
tious. Throughout the documentation, we will either be using the dummy value
http://url/to/your/set for sets, or we will point to an actual set definition,
in which case you need to be aware this is merely and example or suggestion
which you are never obliged to use. You can always point to your own sets.

A set definition specifies exactly what classes are allowed in the set. It for example
specifies exactly what part-of-speech tags exist. This information is necessary to
validate the document completely at its deepest level. If the sets point to URLs
that do not exist or are not URLs at all, warnings will be issued. Validation can
still proceed but with the notable exception of deep validation of these sets.

Though we recommend using and creating actual sets. FoLiA itself is rather
agnostic about their existence for most purposes. For deep validation, proper
formalisation, and for certain applications they may be required; but as long as
they serve as proper unique identifiers you can work with non-existing sets. In
this case, simply do not use a URL but another arbitrary identification string.

1Technically, it can be omitted, but then the set defaults to “undefined”. This is allowed
for flexibility and less explicit usage of FoLiA in limited settings, but not recommended!

17

If multiple sets are used for the same annotation type, they each need a separate
declaration, as illustrated with the following fictitious sets:

<pos−a n n o t a t i o n s e t="http://ilk.uvt.nl/folia/sets/CGN"

a n n o t a t o r="Frog" a n n o t a t o r t y p e="auto" />
<pos−a n n o t a t i o n s e t="http://ilk.uvt.nl/folia/sets/brown" /

>

If only one set is declared, then in the document itself you are allowed to skip
the set attribute on these specific annotation elements. The declared set will
automatically be the default. This is common practice as usually there is only
one set per annotation type.

The annotator and annotatortype attributes act as defaults for the specific
annotation type and set. Unlike set, you do not need, and it is in fact prohibited,
to declare every possible annotator here!

Annotator defaults can always be overridden at the specific annotation elements.
But declaring them allows for the annotation element to be less verbosely ex-
pressed. Explicitly referring to a set and annotator for each annotation element
can be cumbersome and pointless in a document with a single set and a sin-
gle annotator for that particular type of annotation. Declarations and defaults
provide a nice way around this problem.

2.5 Structure Annotation

2.5.1 Basic Structural Elements

Basic structural elements for textual documents occur within the text element.
These are the most basic ones:

• p - Paragraph

• s - Sentence

• w - Word (token)

These are typically nested, the word elements cover the actual tokens. This is
the most basic level of annotation; tokenisation. Let’s take a look at an example
where we have the following text:

18

This is a paragraph containing only one sentence.

This is the second paragraph. This one has two sentences.

In FoLiA XML, this will appear as follows after tokenisation. Some parts have
been omitted for the sake of brevity:

<p x m l : i d="example.p.1">
<s x m l : i d="example.p.1.s.1">

<w x m l : i d="example.p.1.s.1.w.1"><t>This</ t></w>
<w x m l : i d="example.p.1.s.1.w.2"><t> i s</ t></w>
. . .
<w x m l : i d="example.p.1.s.1.w.8" s p a c e="no"><t>sentence</

t></w>
<w x m l : i d="example.p.1.s.1.w.9"><t> .</ t></w>

</ s>
</p>
<p x m l : i d="example.p.2">

<s x m l : i d="example.p.2.s.1">
<w x m l : i d="example.p.2.s.1.w.1"><t>This</ t></w>
<w x m l : i d="example.p.2.s.1.w.2"><t> i s</ t></w>
. .
<w x m l : i d="example.p.2.s.1.w.5" s p a c e="no"><t>paragraph<

/ t></w>
<w x m l : i d="example.p.2.s.1.w.6"><t> .</ t></w>

</ s>
<s x m l : i d="example.p.2.s.2">

<w x m l : i d="example.p.2.s.2.w.1"><t>This</ t></w>
<w x m l : i d="example.p.2.s.2.w.2"><t>one</ t></w>
. .
<w x m l : i d="example.p.2.s.2.w.5" s p a c e="no"><t>sentences<

/ t></w>
<w x m l : i d="example.p.2.s.2.w.6"><t> .</ t></w>

</ s>
</p>

FoLiA is not just a format for holding tokenised text, although tokenisation is
a prerequisite for almost all kinds of annotation. However, FoLiA can also hold
untokenised text, on for example paragraph and/or sentence level:

<p x m l : i d="example.p.1">
<s x m l : i d="example.p.1.s.1">

<t>This i s a paragraph conta in ing only one sentence .</ t>
</ s>

</p>
<p x m l : i d="example.p.2">

<s x m l : i d="example.p.2.s.1">

19

<t>This i s the second paragraph .</ t>
</ s>
<s x m l : i d="example.p.2.s.2">

<t>This one has two sentences .</ t>
</ s>

</p>

Higher level elements may also contain a text element even when the deeper
elements do too. It is very important to realise that the sentence/paragraph-
level text element always contains the text prior to tokenisation! Note also that
the word element has an attribute space, which defaults to yes, and indicates
whether the word was followed by a space in the untokenised original. This
allows for partial reconstructibility of the sentence in its untokenised form. See
Section 2.10.12 for a more elaborate overview of this subject.

The following example shows the maximum amount of redundancy, with text
elements at every level.

<p x m l : i d="example.p.1">
<t>This i s a paragraph conta in ing only one sentence .</ t>
<s x m l : i d="example.p.1.s.1">

<t>This i s a paragraph conta in ing only one sentence .</ t>
<w x m l : i d="example.p.1.s.1.w.1"><t>This</ t></w>
<w x m l : i d="example.p.1.s.1.w.2"><t> i s</ t></w>
. . .
<w x m l : i d="example.sp.1.s.1.w.8" s p a c e="no"><t>sentence<

/ t></w>
<w x m l : i d="example.p.1.s.1.w.9"><t> .</ t></w>

</ s>
</p>
<p x m l : i d="example.p.2">

<t>This i s the second paragraph . This one has two sentences .
</ t>

<s x m l : i d="example.p.2.s.1">
<t>This i s the second paragraph .</ t>
<w x m l : i d="example.p.2.s.1.w.1"><t>This</ t></w>
<w x m l : i d="example.p.2.s.1.w.2"><t> i s</ t></w>
. .
<w x m l : i d="example.p.2.s.1.w.5" s p a c e="no"><t>paragraph<

/ t></w>
<w x m l : i d="example.p.2.s.1.w.6"><t> .</ t></w>

</ s>
<s x m l : i d="example.p.2.s.2">

<t>This one has two sentences .</ t>
<w x m l : i d="example.p.2.s.2.w.1"><t>This</ t></w>
<w x m l : i d="example.p.2.s.2.w.2"><t>one</ t></w>
. .

20

<w x m l : i d="example.p.2.s.2.w.5" s p a c e="no"><t>sentences<
/ t></w>

<w x m l : i d="example.p.2.s.2.w.6"><t> .</ t></w>
</ s>

</p>

If this kind of redundancy is used (it is not mandatory), you may optionally point
back to the text content of its parent by specifying the offset attribute:

<p x m l : i d="example.p.1">
<t>This i s a paragraph conta in ing only one sentence .</ t>
<s x m l : i d="example.p.1.s.1">

<t o f f s e t="0">This i s a paragraph conta in ing only one
sentence .</ t>

<w x m l : i d="example.p.1.s.1.w.1">
<t o f f s e t="0">This</ t>

</w>
<w x m l : i d="example.p.1.s.1.w.2">

<t o f f s e t="5"> i s</ t>
</w>
. . .
<w x m l : i d="example.p.1.s.1.w.8" s p a c e="no">

<t o f f s e t="40">sentence</ t>
</w>
<w x m l : i d="example.p.1.s.1.w.9">

<t o f f s e t="48"> .</ t>
</w>

</ s>
</p>

Matters can become more complicated as multiple text-content element of dif-
ferent classes may be associated with an element, this will be discussed later on
in Section 2.10.12.

Paragraph elements may be omitted if a document is described that does not
distinguish paragraphs but only sentences. Sentences, however, may never be
omitted; FoLiA documents can never consist of tokens only.

The content element head is reserved for headers and captions, it behaves simi-
larly to the paragraph element and holds sentences.

21

2.5.2 Paragraphs, Sentences and Words

Paragraphs, sentences and words (or tokens) are amongst the most elementary
structure elements. As we saw in a previous section, word elements (w) can take
a class, pertaining to a certain set, at which point a declaration must be present
in the metadata:

Declaration

<a n n o t a t i o n s>
<token−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

Being part of a set, this implies that tokens themselves may be assigned a class,
as is for example done by the tokeniser ucto:

<s x m l : i d="example.p.1.s.1">
<t>I see 2 c h i l d r e n .</ t>

<w x m l : i d="example.p.1.s.1.w.1" c l a s s="WORD"><t>I</ t></w>
<w x m l : i d="example.p.1.s.1.w.2" c l a s s="WORD"><t>see</ t></w>
<w x m l : i d="example.p.1.s.1.w.3" c l a s s="NUMBER"><t>2</ t></w>
<w x m l : i d="example.p.1.s.1.w.4" c l a s s="WORD" s p a c e="no">

<t>c h i l d r e n</ t>
</w>
<w x m l : i d="example.p.1.s.1.w.5" c l a s s="PUNCTUATION"><t> .</ t>

</w>
</ s>

The same can be applied to paragraphs and sentences, which requires a declara-
tion of paragraph-annotation and sentence-annotation respectively when
classes are assigned.

Declaration

<a n n o t a t i o n s>
<paragraph−a n n o t a t i o n s e t="http://url/to/your/set" />
<s e n t e n c e−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

22

2.5.3 Divisions

Within the text element, the structure element div can be used to create
divisions and subdivisions. Each division may be of a particular class pertaining
to a set defining all possible classes.

Divisions and other structural units are often numbered, think for example of
chapters and sections. The number, as it was in the source document, can be
encoded in the n attribute of the structure annotation element.

Look at the following example, showing a full FoLiA document with structured
divisions. The declared set is a fictitious example:

<?xml v e r s i o n="1.0" e n c o d i n g="utf-8"?>
<?xml−s t y l e s h e e t t y p e="text/xsl"

h r e f="http://ilk.uvt.nl/FoLiA/FoLiA.xsl"?>
<FoLiA xmlns="http://ilk.uvt.nl/FoLiA"

x m l n s : x s i="http://www.w3.org/2001/XMLSchema -instance"

v e r s i o n="0.5"

x m l : i d="example">
<metadata>

<a n n o t a t i o n s>
<d i v i s i o n −a n n o t a t i o n

s e t="http://ilk.uvt.nl/folia/sets/divisions" />
</ a n n o t a t i o n s>

</ metadata>
<t e x t x m l : i d="example.text">

<d i v c l a s s="chapter" n="1">
<head><t>Int roduct ion</ t></ head>
<d i v c l a s s="section" n="1">

<d i v c l a s s="subsection" n="1.1">
<t>In the beginning</ t>

</ d i v>
</ d i v>
. . .

</ d i v>
</ t e x t>

</ FoLiA>

Divisions stem from D-Coi and are modified in FoLiA. These divisions are not
mandatory, but may be used to mark extra structure. D-Coi supports the el-
ements div0, div1, div2, etc.., but FoLiA only knows a single div element,
which can be nested at will and associated with classes. Note that paragraphs,
sentences and words have there own explicit tags, as we saw earlier, divisions
should never be used for marking these, only larger structures can be divisions.

23

The head element may be used for the header of any division. It may hold s and
w elements (not p).

Declaration

<a n n o t a t i o n s>
<d i v i s i o n −a n n o t a t i o n s e t="http://url/to/your/set"

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

Available sets

• https://raw.githubusercontent.com/proycon/folia/

master/setdefinitions/divisions.foliaset.xml – Generic
set definition for divisions, defines the classes: document,
chapter, section, subsection, abstract, introduction, conclusion,
bibliography

(Note: If no usable set exists yet, simply create and use your own)

2.5.4 Quotes

Status: final since v0.3 (older versions are equal but lack declarations), larger quotes

allowing paragraphs and division since v0.11.3 · Implementations: pynlpl, libfolia

FoLiA supports quotes, using the quote element, to indicate that the structural
elements within are what another person said or wrote:

<quote x m l : i d="example.quote.1">
<p x m l : i d="example.quote.1.p.1">
<t>I have a dream that one day t h i s nation w i l l r i s e up and

l i v e out the
true meaning of i t s creed: "We hold these truths to be self-

evident, that all

men are created equal."</ t>
</p>
<p x m l : i d="example.quote.1.p.1">
<t>I have a dream that one day on the red h i l l s of Georgia ,

the sons of

24

https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/divisions.foliaset.xml
https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/divisions.foliaset.xml

former s l a v e s and the sons of former s l a v e owners w i l l be able
to s i t down

together at the tab le of brotherhood .</ t>
</p>

</ quote>

Quotes can be embedded in multiple levels, it may be a large block containing
itself divisions, paragraph or sentences, such as in the example above, or it may
be embedded in a sentence, in which case no divisions or paragraphs may occur
in the quote anymore.

One special case is the fact that sentences in sentences are allowed if they are in
a quote, this is demonstrated in the next example:

He said: ‘‘I do not know . I think you are right. ", and left.

A quote may consist of one or more sentences, but may also consist of mere
tokens:

<s x m l : i d="example.p.1.s.1">
<w x m l : i d="example.p.1.s.1.w.1" c l a s s="WORD"><t>He</ t></w>
<w x m l : i d="example.p.1.s.1.w.2" c l a s s="WORD"><t>sa id</ t></w>
<w x m l : i d="example.p.1.s.1.w.3" c l a s s="PUNCTUATION" s p a c e="no"

>
<t>:</ t>

</w>
<w x m l : i d="example.p.1.s.1.w.4" c l a s s="PUNCTUATION" s p a c e="no"

>
<t>’’</ t>

</w>
<quote x m l : i d="example.p.1.s.1.quote.1">

<s x m l : i d="example.p.1.s.1.quote.1.s.1">
<w x m l : i d="example.p.1.s.1.w.5" c l a s s="WORD"><t>I</ t></w>
<w x m l : i d="example.p.1.s.1.w.6" c l a s s="WORD"><t>do</ t></w

>
<w x m l : i d="example.p.1.s.1.w.7" c l a s s="WORD"><t>not</ t></

w>
<w x m l : i d="example.p.1.s.1.w.8" c l a s s="WORD"><t>know</ t><

/w>
<w x m l : i d="example.p.1.s.1.w.9" c l a s s="PUNCTUATION" s p a c e

="no">
<t> .</ t>

</w>
</ s>
<s x m l : i d="example.p.1.s.1.quote.1.s.2">

25

<w x m l : i d="example.p.1.s.1.w.10" c l a s s="WORD"><t>I</ t></w
>

<w x m l : i d="example.p.1.s.1.w.11" c l a s s="WORD"><t>th ink</ t
></w>

<w x m l : i d="example.p.1.s.1.w.12" c l a s s="WORD"><t>you</ t><
/w>

<w x m l : i d="example.p.1.s.1.w.13" c l a s s="WORD"><t>are</ t><
/w>

<w x m l : i d="example.p.1.s.1.w.14" c l a s s="WORD"><t>r i g h t</ t
></w>

</ s>
</ quote>
<w x m l : i d="example.p.1.s.1.w.15" c l a s s="PUNCTUATION" s p a c e="no

">
<t>’’</ t>

</w>
<w x m l : i d="example.p.1.s.1.w.16" c l a s s="PUNCTUATION"><t> ,</ t><

/w>
<w x m l : i d="example.p.1.s.1.w.17" c l a s s="WORD"><t>and</ t></w>
<w x m l : i d="example.p.1.s.1.w.18" c l a s s="WORD"><t> l e f t</ t></w>
<w x m l : i d="example.p.1.s.1.w.19" c l a s s="PUNCTUATION" s p a c e="no

">
<t> .</ t>

</w>
</ s>

Declaration
Quotes are undeclarable elements

2.5.5 Gaps

Status: final since v0.8 (older versions are equal but lack declarations) · Implementations:

pynlpl, libfolia

Sometimes there are parts of a document you want to skip and not annotate,
but include as is. For this purpose the gap element should be used. Gaps may
have a particular class indicating the kind of gap it is. Common omissions are
for example front-matter and back-matter.

The D-Coi format pre-defines the following “reasons” [2]:

• frontmatter

26

• backmatter

• illegible

• other-language

• cancelled

• inaudible

• sampling

Due to the flexible nature of FoLiA, we never predefine any classes whatsoever
and leave this up to whatever set is declared. The above gives a good indication
of what gaps can be used for though.

The gap element may optionally take two elements:

1. desc - holding a substitute that may be shown to the user, describing what
has been omitted.

2. content - The actual raw content of the omission, as it was without
further annotations. This is an XML CDATA type element, excluding it
from any kind of parsing.

<t e x t x m l : i d="example.text">
<gap c l a s s="frontmatter" a n n o t a t o r="Maarten van Gompel">

<d e s c>This i s the cover of the book</ d e s c>
<c o n t e n t>

<! [CDATA[

SHOW WHITE AND THE SEVEN DWARFS

by th e B r o t h e r s Grimm

f i r s t e d i t i o n

C o p y r i g h t (c) b l a h b l a h
]]>

</ c o n t e n t>
</ gap>
<d i v c l a s s="chapter" n="1">

<head><t>Int roduct ion</ t></ head>

27

<d i v c l a s s="section" n="1">
<d i v c l a s s="subsection" n="1.1">

<t>In the beginning</ t>
</ d i v>

</ d i v>
. . .

</ d i v>
</ t e x t>

Gaps have to be declared:

Declaration

<a n n o t a t i o n s>
<gap−a n n o t a t i o n s e t="http://path/to/your/set"

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

Available sets

• https://raw.githubusercontent.com/proycon/folia/

master/setdefinitions/gaps.foliaset.xml – Generic set
definition for gaps, defines the classes: frontmatter, backmatter,
illegible, inaudible, code, verbatim, other-language, cancelled

(Note: If no usable set exists yet, simply create and use your own)

2.5.6 Whitespace and Linebreaks

Status: final · Implementations: pynlpl, libfolia

Sometimes you may want to explicitly specify vertical whitespace or line breaks.
This can be done using respectively whitespace and br. Both are simple struc-
tural elements that need not be declared. Note that using p to denote paragraphs
is always strongly preferred over using whitespace to mark their boundaries!

<t e x t x m l : i d="example.text">
<s x m l : i d="example.s.1">

<w x m l : i d="example.s.1.w.1">

28

https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/gaps.foliaset.xml
https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/gaps.foliaset.xml

<w x m l : i d="example.s.1.w.2">
<w x m l : i d="example.s.1.w.3">

</ s>
<w h i t e s p a c e />
<s x m l : i d="example.s.2">
</ s>

</ t e x t>

The difference between br and whitespace is that the former specifies that only
a linebreak was present, not forcing any vertical whitespace, whilst the latter
actually generates an empty space, which would comparable to two successive
br statements. Both elements can be used inside divisions, paragraphs, headers,
and sentences.

The br element has several optional attributes (since FoLiA v1.2) that can be
set:

• newpage Can be set to “yes” to indicate that the break is not just a
linebreak, but also a pagebreak (defaults to “no”)

• pagenr The number of the page after the break

• linenr The number of the line after the break

Declaration
Whitespace and linebreaks are undeclarable elements.

2.5.7 Events

Status: final since v0.7 · Implementations: pynlpl, libfolia

Event structure, though uncommon to regular written text, can be useful in
certain documents. Divisions, paragraphs, sentences, or even words can be en-
capsulated in an event element to indicate they somehow form an event entity
of a particular class. This kind of structure annotation is especially useful in
dealing with computer-mediated communication such as chat logs, tweets, and
internet fora, in which chat turns, forum posts, and tweets can be demarcated
as particular events.

Below an example of a simple chat log, word tokens omitted for brevity:

29

<e v e n t c l a s s="message" b e g i n d a t e t i m e="2011-12-15T19:01"

e n d d a t e t i m e="2011-12-15T19:05" a c t o r="Jane Doe">
<s>

<t>Hello John .</ t>
</ s>
<s>

<t>How are you doing ?</ t>
</ s>

</ e v e n t>
<e v e n t c l a s s="message" b e g i n d a t e t i m e="2011-12-15T19:06"

a c t o r="John Doe">
<s>

<t>I am f i n e Jane , thanks .</ t>
</ s>

</ e v e n t>

The (optional) features begindatetime and enddatetime can be used express
the exact moment at which an event started or ended. Note that this differs
from the generic datetime attribute, which would describe the time at which
the annotation was recorded, rather than when the event took place! Also,
begindatetime and enddatetime are so-called features (see Section 2.10.5)

For more fine-grained control over timed events, for example within sentences.
It is recommended to use the timesegment span annotation element instead!
This works in a very similar fashion but uses a stand-off annotation layer. See
Section 2.7.5.

Declaration

<a n n o t a t i o n s>
<event−a n n o t a t i o n s e t="http://path/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

2.5.8 Lists

Status: final · Implementations: pynlpl, libfolia

FoLiA, like D-Coi, allows lists to be explicitly marked as shown in the following
example:

30

<head><t>My grocery l i s t</ t></ head>
< l i s t x m l : i d="example.list.1">

<i t em x m l : i d="example.list.1.item.1" n="A"><t>Apples</ t></
i tem>

<i t em x m l : i d="example.list.1.item.2" n="B"><t>Pears</ t></ i tem
>

</ l i s t>

The item element may hold sentences (s) and words (w). The D-Coi format
has a label element, this is deprecated in favour of the n attribute in the item
itself.

Declaration
Lists are undeclarable elements.

2.5.9 Figures

Status: final · Implementations: pynlpl, libfolia

Even figures can be encoded in the FoLiA format, although the actual figure itself
can only be included as a mere reference to an external image file, but including
such a reference (src attribute) is optional.

< f i g u r e x m l : i d="example.figure.1" n="1"

s r c="/path/to/image/file">
<d e s c>A t e x t u a l d e s c r i p t i o n of the f i g u r e (Like ALT i n HTML)<

/ d e s c>
<c a p t i o n><t>The caption f o r the f i g u r e</ t></ c a p t i o n>

</ f i g u r e>

The caption element may hold sentences (s) and words (w).

Declaration
Figures are undeclarable elements.

2.5.10 Tables

Status: since FoLiA 0.9.2 · Implementations: pynlpl

31

Support for simple tables is provided in a fashion similar to HTML and TEI.
The element table introduces a table, within its scope row elements mark the
various rows, tablehead marks the header of the table and contains one or more
rows. The rows themselves consist of cell elements, which in turn may contain
other structural elements such as words, sentences or even entire paragraphs.

Consider the example below (not all elements have been assigned IDs for brevity):

<t a b l e x m l : i d="example.table.1">
<t a b l e h e a d>

<row>
< c e l l>

<w x m l : i d="example.table.1.w.1"><t>Name</ t></w>
</ c e l l>
< c e l l>

<w x m l : i d="example.table.1.w.2"><t>A f f i l i a t i o n</ t></w>
</ c e l l>

</row>
</ t a b l e h e a d>
<row>

< c e l l>
<w x m l : i d="example.table.1.w.3"><t>Maarten van Gompel</ t><

/w>
</ c e l l>
< c e l l>

<w x m l : i d="example.table.1.w.4">
<t>Radboud U n i v e r s i t y Nijmegen</ t>

</w>
</ c e l l>

</row>
<row>

< c e l l>
<w x m l : i d="example.table.1.w.5"><t>Ko van der Sloot</ t></w

>
</ c e l l>
< c e l l>

<w x m l : i d="example.table.1.w.6"><t>Ti lburg U n i v e r s i t y</ t><
/w>

</ c e l l>
</row>

</ t a b l e>

Tables, rows and cells can all be assigned classes, in which case a declaration is
mandatory:

32

Declaration

<a n n o t a t i o n s>
<t a b l e−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

2.5.11 Notes

Status: since FoLiA 0.11.0 · Implementations: pynlpl, libfolia

The structure element note allows for notes to be included in FoLiA documents.
A footnote as well as a bibliographical reference is an example of a note. The
notes form an integral part of the text. For notes that are merely descriptive
comments on the text or its annotations, rather than a part of it, use desc or
comment instead. Notes themselves can contain all the usual forms of annota-
tions.

The place of a note in the text is where it will appear. References to the note
are made using a specific tag, ref, discussed in the next section.

<s><t>blah blah blah</ t></ s>
<note x m l : i d="mynote" c l a s s="footnote">

<s x m l : i d="mynote.s.1"><t>See our website !</ t></ s>
</ note>

</ t e x t>

Notes are also suited for building a bibliography:

<note x m l : i d="bib" c l a s s="bibref">
<t>Maarten van Gompel (2014) . FoLiA: Format f o r L i n g u i s t i c

Annotation .
Documentation . Language and Speech Technology Technical Report

S e r i e s 14−01.
Radboud U n i v e r s i t y Nijmegen</ t>

</ note>

Whereas this section just presented the notes themselve, the next section will
discuss out to point to notes from within the text.

33

Declaration

<a n n o t a t i o n s>
<note−a n n o t a t i o n s e t="http://path/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

Available sets

• https://raw.githubusercontent.com/proycon/folia/

master/setdefinitions/notes.foliaset.xml – Generic set
definition for notes, defines the classes: attention, caution, danger,
error, hint, note, footnote, tip, warning, important, admonition

(Note: If no usable set exists yet, simply create and use your own)

2.5.12 Structure References

Status: since FoLiA 0.11.0, support for external references since v1.2 · Implementations:

pynlpl, libfolia

In the previous section we discussed notes, in this section we show that you can
make references to these notes using the ref element, this is a structure element,
the references are explicitly present in the text, but with an extra higher-order
annotation function:

<s>
<t>We demonstrated t h i s e a r l i e r .</ t>
< r e f i d="mynote" />

</ s>

Another example in tokenised data, and now we add the optional type attribute,
which holds the type of the FoLiA element that is referred to:

<s>
<w><t>We</ t></w>
<w><t>demonstrated</ t></w>
<w><t>t h i s</ t></w>
<w><t>e a r l i e r</ t></w>
<w><t> .</ t></w>
< r e f i d="mynote" t y p e="note" />

34

https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/notes.foliaset.xml
https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/notes.foliaset.xml

</ s>

You can optionally make explicit the symbol used for the reference. When no
textual content is provided, whatever program renders the FoLiA document may
assign its own numbering or symbol.

<s>
<t>We demonstrated t h i s e a r l i e r .</ t>
< r e f i d="mynote" t y p e="note"><t>1</ t></ r e f>

</ s>

This is often needed for bibliographical references:

<s>
<t>We demonstrated t h i s e a r l i e r .</ t>
< r e f i d="bib.1" t y p e="note"><t>(van Gompel et al , 2014)</ t></

r e f>
</ s>

As a structure element, the ref element may contain other structure elements
such as words (w) or even sentences (s) or paragraphs (p), which can in turn
contain further linguistic annotations.

Although we framed this section in the context of notes, the ref element is more
general and can be used whereever you need to explicitly refer to other structure
elements. Common targets are figures, tables, divisions (sections, chapters, etc).

Being a structure element, the note reference itself may carry an ID as well. Note
that the ID attribute without the xml namespace always indicates a reference in
FoLiA:

<s><t>We demonstrated t h i s e a r l i e r .</ t></ s>
< r e f x m l : i d="myreference" i d="mynote" />

The difference between the reference element and the higher-order alignments
(Section 2.10.9) needs to be clearly understood. Alignments lay relations be-
tween annotations of any kind and thus pertain strongly to linguistic annotation,
whereas this reference element is a structural element that is explicitly shown in
the text and draws a reference that is explicitly reflected in the text.

External references can also be made with the ref element, which effectively
makes it a valid tool for hyperlinking. This is done by setting the xlink:href

to point to the external resource and by setting the format attribute to the
format of the external resource. The format is understood to be a MIME type

35

and its value defaults to text/folia+xml. When an external reference is made,
the id attribute is optional and points to an element inside the external resource.

<s>
<w><t>We</ t></w>
<w><t>demonstrated</ t></w>
<w><t>t h i s</ t></w>
< r e f x l i n k : h r e f="http://somewhere" x l i n k : t y p e="simple"

fo rmat="text/html" i d="section2">
<w><t>here</ t></w>

</ r e f>
<w><t> .</ t></w>

</ s>

This method of hyperlinking can be contrasted to the one described in sec-
tion 2.10.15. These references offer a highly semantic way of hyperlinking,
whereas the other method is more of a text-markup or stylistic nature.

Declaration
The reference element itself is not declarable and takes no classes.

2.5.13 Parts

Status: since FoLiA 0.11.2 · Implementations: pynlpl, libfolia

The structure element part is a fairly abstract structure element that should
only be used when a more specific structure element is not available. Most
notably, the part element should never be used for representation of morphemes
or phonemes!

Part can be used to divide a larger structure element, such as a division, or a
paragraph into arbitrary subparts.

<p>
<p a r t x m l : i d="p.1.part.1">

<t>F i r s t part of the paragraph .</ t>
</ p a r t>
<p a r t x m l : i d="p.2.part.2">

<t>Last part of the paragraph .</ t>
</ p a r t>

</p>

The part element may seem alike to the division element, but divisions are used
for text blocks larger than a paragraph, typically correspondings to chapters,

36

sections or subsections and often carrying a head element. Do not use parts for
these structures.

The part element, on the other hand, is more abstract and plays a role on a
deeper level. It can be embedded within paragraphs, sentences, and most other
structure elements, even words, though we have to again emphasize it should
not be used for morphology, there are other solutions for that!

Contact the FoLiA authors if you find yourself using part and you feel a more
specific FoLiA element is missing.

Declaration

<a n n o t a t i o n s>
<part−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

2.5.14 Entries, definitions & examples

Status: FoLiA 0.12 · Implementations: pynlpl

FoLiA has a set of structure elements that can be used to represent collections
such as glossaries, dictionaries, thesauri, and wordnets.

These have in common that they consist of a set of entries, represented in
FoLiA by the entry element, and each entry is identified by one or more terms,
represented by the term element within an entry.

Terms need not be words, but a wide variety of structural elements can be used
as the term. Within the entry, these terms can subsequently be associated with
one or more definitions, using the def element, or with examples, using the ex

element.

The term, def and ex elements can all take sets and classes, and thus need to
be declared. The entry elements themselves are simple containers and need no
declaration. Entries can contain multiple terms if they are deemed dependent
or related, such as in case of morphological variants such as verb conjugations
and declensions. The elements term and def can only be used within an entry.

37

The ex element, however, can also be used standalone in different contexts.

In FoLiA, linguistic annotations are associated with the structure element within
the term itself. This is where a glossary can for instance obtain part-of-speech
or lexical semantic sense information, to name just a few examples.

Below you see an example of a glossary entry, the sense set used comes from
WordNet. The other sets are fictitious.

<e n t r y x m l : i d="entry.1">
<term x m l : i d="entry.1.term.1">
<w x m l : i d="entry.1.term.1.w.1">

<t>house</ t>
<pos c l a s s="n">

< f e a t s u b s e t="number" c l a s s="sing" />
</ pos>
<lemma c l a s s="house" />
<s e n s e c l a s s="house\%1:06:00::">

</w>
</ term>
<term x m l : i d="entry.1.term.2">
<w x m l : i d="entry.1.term.2.w.1">

<t>houses /t>
<pos c l a s s="n">

< f e a t s u b s e t="number" c l a s s="plural" />
</ pos>
<lemma c l a s s="house" />
<s e n s e c l a s s="house\%1:06:00::">

</w>
</ term>
<d e f x m l : i d="entry.1.def.1" c l a s s="sensedescription">
<p x m l : i d="entry.1.def.1.p.1">

<t>A dwel l ing , place of res idence</ t>
</p>

</ d e f>
<ex>
<s x m l : i d="entry.1.ex.1.s.1>

 <t>My house was constructed ten years ago.</t>

 </s>

 </ex>

</entry>

Other semantic senses would be represented as separate entries.

The definitions (def) are a generic element that can be used for multiple types
of definition. As always, the set is not predefined and purely fictitious in our
examples, giving the user flexibility. Definitions are for instance suited for dictio-

38

naries:

<e n t r y x m l : i d="entry.1">
<term x m l : i d="entry.1.term.1">
<w x m l : i d="entry.1.term.1.w.1">

<t>house</ t>
<pos s e t="englishpos" c l a s s="n">

< f e a t s u b s e t="number" c l a s s="sing" />
</ pos>
<lemma s e t="englishlemma" c l a s s="house" />
<s e n s e s e t="englishsense" c l a s s="house\%1:06:00::">

</w>
</ term>
<d e f x m l : i d="entry.1.def.1" c l a s s="translation -es">
<w x m l : i d="entry.1.def.1.w.1">

<t>casa</ t>
<pos s e t="spanishpos" c l a s s="n">

< f e a t s u b s e t="number" c l a s s="sing" />
</ pos>
<lemma s e t="spanishlemma" c l a s s="casa" />

</w>
</ d e f>

</ e n t r y>

Or for etymological definitions:

<d e f x m l : i d="entry.1.def.2" c l a s s="etymology">
<p x m l : i d="entry.1.def.2.p.1">
<t>Old Engl i sh hus "dwelling, shelter, house," from Proto−

Germanic ∗husan
(cognates: Old Norse , Old F r i s i a n hus , Dutch huis , German Haus)

, of unknown
o r i g i n , perhaps connected to the root of hide (v .) [OED] . In

Gothic only i n
gudhus "temple," l i t e r a l l y "god-house;" the usual word f o r "

house" i n Gothic
being razn . </ t>
</p>

</ d e f>

To draw relations between entries and the terms therein, such as for example for
a wordnet, use FoLiA’s alignments (see section 2.10.9).

The following two samples illustrate a dictionary distributed over multiple FoLiA
files, using alignments to link the two:

English part, doc-english.xml:

<e n t r y x m l : i d="en-entry.1">

39

<term x m l : i d="en-entry.1.term.1">
<w x m l : i d="en-entry.1.term.1.w.1">

<t>house</ t>
<pos s e t="englishpos" c l a s s="n">

< f e a t s u b s e t="number" c l a s s="sing" />
</ pos>
<lemma s e t="englishlemma" c l a s s="house" />
<s e n s e s e t="englishsense" c l a s s="house\%1:06:00::">

</w>
</ term>
<a l i g n m e n t c l a s s="translation -es" x l i n k : h r e f="doc-spanish.xml"

x l i n k : t y p e="simple">
<a r e f i d="es-entry.1" t y p e="entry" />

</ a l i g n m e n t>
</ e n t r y>

Spanish part, doc-spanish.xml:

<e n t r y x m l : i d="es-entry.1">
<term x m l : i d="es-entry.1.def.1" c l a s s="translation -es">
<w x m l : i d="entry.1.def.1.w.1">

<t>casa</ t>
<pos s e t="spanishpos" c l a s s="n">

< f e a t s u b s e t="number" c l a s s="sing" />
</ pos>
<lemma s e t="spanishlemma" c l a s s="casa" />

</w>
</ term>
<a l i g n m e n t c l a s s="translation -en" x l i n k : h r e f="doc-english.xml"

x l i n k : t y p e="simple">
<a r e f i d="en-entry.1" t y p e="entry" />

</ a l i g n m e n t>
</ e n t r y>

For simple multilingual documents, explicit alignments may be too much hassle,
see Section 2.10.11 for a simpler methods based on convention.

Declaration

<a n n o t a t i o n s>
<term−a n n o t a t i o n s e t="http://url/to/your/set" />
<d e f i n i t i o n −a n n o t a t i o n s e t="http://url/to/your/set" />
<example−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

40

2.6 Token Annotation

Token annotations are annotations that are placed within the structural elements,
often words/tokens (w) (hence the name), but also other structure elements, in
which case we speak of extended token annotation.

All token annotation elements may take all of the generic attributes described in
Section 2.3; this has to be kept in mind when reading this section. Moreover, all
token annotations depend on the document being tokenised, i.e. there being w

elements.

2.6.1 Part-of-Speech Annotation

Status: final · Implementations: pynlpl, libfolia

Part-of-Speech annotation allows the annotation of lexical categories using the
pos element. The following example illustrates a simple Part-of-speech annota-
tion for the word “boot”:

<w x m l : i d="example.p.1.s.1.w.2">
<t>boot</ t>
<pos c l a s s="N" />

</w>

Lexical annotation can take more complex forms than assignment of a single
part-of-speech tag. There may for example be numerous features associated
with the part-of-speech tag, such as gender, number, case, tense, mood, etc...
FoLiA introduces a special paradigm for dealing with such features. We will look
into this later, in Section 2.10.

Whenever part-of-speech annotations are used, they should be declared in the
annotations block as follows. The set you use may differ and all further at-
tributes are optional and are used to set defaults.

41

Declaration

<a n n o t a t i o n s>
<pos−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

Available sets

• http://ilk.uvt.nl/folia/sets/frog-mbpos-cgn – Defines
the CGN tagset for Dutch, as used by the software Frog 2.

• https://raw.githubusercontent.com/proycon/folia/

master/setdefinitions/naf_pos.foliaset.xml – Minimal
set of part-of-speech tags as used and defined by NAF [7].

(Note: If no usable set exists yet, simply create and use your own)

As mentioned earlier, the declaration only sets defaults for annotator and anno-
tatortype. They can be overridden in the pos element itself (or any other token
annotation element for that matter).

2.6.2 Lemma Annotation

Status: final · Implementations: pynlpl, libfolia

In the FoLiA paradigm, lemmas are perceived as classes within the (possibly
open) set of all possible lemmas. Their annotation proceeds as follows:

<w x m l : i d="example.p.1.s.1.w.2">
<t>boot</ t>
<lemma c l a s s="boot" />

</w>

42

http://ilk.uvt.nl/folia/sets/frog-mbpos-cgn
https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/naf_pos.foliaset.xml
https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/naf_pos.foliaset.xml

Declaration

<a n n o t a t i o n s>
<lemma−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

Available sets

• http://ilk.uvt.nl/folia/sets/frog-mblem-nl – An open
set for Dutch lemmas, used by Frog 3.

(Note: If no usable set exists yet, simply create and use your own)

2.6.3 Language Identification Annotation

Status: final since v0.8.1 · Implementations: pynlpl, libfolia

Language identification is used to identify a certain element as being in a certain
language. In FoLiA, the lang element is used to identify language:

<w x m l : i d="example.p.1.s.1.w.2">
<t>boot</ t>

< l a n g c l a s s="eng" />
</w>

This is an extended token annotation element that can also be used directly on
other levels, such as a sentence, paragraph, division, or text level

Declaration

<a n n o t a t i o n s>
<l ang−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

43

http://ilk.uvt.nl/folia/sets/frog-mblem-nl

2.6.4 Lexical Semantic Sense Annotation

Status: final · Implementations: pynlpl,libfolia

In semantic sense annotation, the classes in most sets will be a kind of lexical unit
ID. In systems that make a distinction between lexical units and synonym sets
(synsets), the synset attribute is available for notation of the latter. In systems
with only synsets and no other primary form of lexical unit, the class can simply
be set to the synset.

A human readable description for the sense element, “beeldhouwwerk”, could be
placed inside a desc element, but this is optional.

<w x m l : i d="example.p.1.s.1.w.2">
<t>beeld</ t>
<s e n s e c l a s s="r_n-6220" s y n s e t="d_n-32683">

<d e s c>beeldhouwwerk</ d e s c>
</ s e n s e>

</w>

The example declaration is as follows:

Declaration

<a n n o t a t i o n s>
<sense−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

2.6.5 Domain Tags

Status: final · Implementations: pynlpl,libfolia

Domain annotation is used to associate a certain domain with a structural ele-
ment. This is an extended token annotation element, which means it can also be
used directly in any of the content elements, such as sentence (s) and paragraph
(p). It can even be used in the text element itself. Example:

<w x m l : i d="example.p.1.s.1.w.2">
<t>boot</ t>
<domain c l a s s="nautical" />

44

</w>

The declaration (the actual set is fictitious):

Declaration

<a n n o t a t i o n s>
<domain−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

2.6.6 Subjectivity Annotation

Status: final · Implementations: pynlpl,libfolia

Notice
The span annotation element sentiment (See section 2.7.9)
usually provides a better suited alternative for subjectivity an-
notation than this subjectivity element. Consider using it
instead.

Subjectivity annotation is used to associate a certain subjective quality with a
structural element. It is used for sentiment analysis and opinion analysis.

Example:

<w x m l : i d="example.p.1.s.1.w.2">
<t>hate</ t>
< s u b j e c t i v i t y c l a s s="negative" />

</w>

The declaration (the actual set is fictitious):

45

Declaration

<a n n o t a t i o n s>
< s u b j e c t i v i t y −a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

2.7 Span Annotation

Not all annotations can be realised as token annotations. Some typically span
multiple tokens. For these we introduce a stand-off annotation in separate anno-
tation layers. Within these layers, references are made to all of the word tokens
spanned using the wref element. Each annotation layer is specific to a kind
of span annotation. Each span annotation is associated with a set, for which
a declaration should be present in the metadata section of the document. The
annotation layers are generally embedded within the structure element that also
contains all the words that are referenced. Often this corresponds to the sentence
level. Any other higher level is fine too, though. Layers are always embedded
after the word tokens or other structural elements that they refer to.

Depending on the type of span annotation, it is possible that the element may be
nested. This is for example the case for syntactic annotation, where the nesting
of syntactic units allows the building of syntax trees. Span annotation elements
of a more complex nature may require or allow so-called span role elements. Span
roles encapsulate references to the words and ascribe a more defined meaning to
the span, for instance to mark the head or dependent in a dependency relation.
Span role elements themselves do not carry any classes and can only be used in
the scope of a certain span annotation element, not standalone.

2.7.1 Entities

Status: final · Implementations: pynlpl,libfolia

The entities layer offers a generic solution to encode various types of entities
or multi-word expressions, including but not limited to named entities. The set
used determines the precise semantics behind the entities.

46

Below is an example of named entity annotation of a full sentence in which one
name is tagged. It is recommended for each entity to have a unique identifier.

<s x m l : i d="example.p.1.s.1">
<t>The Dalai Lama greeted him .</ t>
<w x m l : i d="example.p.1.s.1.w.1"><t>The</ t></w>
<w x m l : i d="example.p.1.s.1.w.2"><t>Dalai</ t></w>
<w x m l : i d="example.p.1.s.1.w.3"><t>Lama</ t></w>
<w x m l : i d="example.p.1.s.1.w.4"><t>greeted</ t></w>
<w x m l : i d="example.p.1.s.1.w.5"><t>him</ t></w>
<w x m l : i d="example.p.1.s.1.w.6"><t> .</ t></w>
< e n t i t i e s>

<e n t i t y x m l : i d="example.p.1.s.1.entity.1" c l a s s="per">
<w r e f i d="example.p.1.s.1.w.2" t="Dalai" />
<w r e f i d="example.p.1.s.1.w.3" t="Lama" />

</ e n t i t y>
</ e n t i t i e s>

</ s>

Note that elements that are not part of any span annotation need never be
included in the layer. The wref element takes an optional t attribute which
contains a copy of the text of the word pointed at. This is to facilitate human
readability and prevent the need for resolving words for simple applications in
which only the textual content is of interest.

Declaration

<a n n o t a t i o n s>
<e n t i t y−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

47

Available sets

• https://raw.githubusercontent.com/proycon/folia/

master/setdefinitions/namedentities.foliaset.xml –
Generic set definition for named entities, defines the classes:
per,org,misc,pro,eve,loc and others.

• http://ilk.uvt.nl/folia/sets/frog-ner-nl – Set defini-
tion for named entities as produced by Frog4, defines the classes:
per,org,misc,pro,eve,loc

(Note: If no usable set exists yet, simply create and use your own)

2.7.2 Syntax

Status: final · Implementations: pynlpl,libfolia

A very typical form of span annotation is syntax annotation, or constituency
parses. This is represented using the syntax layer which introduces a nested
hierarchy of syntactic unit (su) elements. It is recommended for each syntactic
unit to have a unique identifier:

<s x m l : i d="example.p.1.s.1">
<t>The Dalai Lama greeted him .</ t>
<w x m l : i d="example.p.1.s.1.w.1"><t>The</ t></w>
<w x m l : i d="example.p.1.s.1.w.2"><t>Dalai</ t></w>
<w x m l : i d="example.p.1.s.1.w.3"><t>Lama</ t></w>
<w x m l : i d="example.p.1.s.1.w.4"><t>greeted</ t></w>
<w x m l : i d="example.p.1.s.1.w.5"><t>him</ t></w>
<w x m l : i d="example.p.1.s.1.w.6"><t> .</ t></w>
<s y n t a x>

<su x m l : i d="example.p.1.s.1.su.1" c l a s s="s">
<su x m l : i d="example.p.1.s.1.su.1_1" c l a s s="np">

<su x m l : i d="example.p.1.s.1.su.1_1_1" c l a s s="det">
<w r e f i d="example.p.1.s.1.w.1" t="The" />

</ su>
<su x m l : i d="example.p.1.s.1.su.1_1_2" c l a s s="pn">

<w r e f i d="example.p.1.s.1.w.2" t="Dalai" />
<w r e f i d="example.p.1.s.1.w.3" t="Lama" />

</ su>
</ su>

</ su>
<su x m l : i d="example.p.1.s.1.su.1_2" c l a s s="vp">

<su x m l : i d="example.p.1.s.1.su.1_1_1" c l a s s="v">

48

https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/namedentities.foliaset.xml
https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/namedentities.foliaset.xml
http://ilk.uvt.nl/folia/sets/frog-ner-nl

<w r e f i d="example.p.1.s.1.w.4" t="greeted" />
</ su>
<su x m l : i d="example.p.1.s.1.su.1_1_2" c l a s s="pron">

<w r e f i d="example.p.1.s.1.w.5" t="him" />
</ su>

</ su>
</ su>

</ s y n t a x>
</ s>

As is prescribed by the FoLiA paradigm the classes always depend on the set used.
You can use whatever system of syntactic annotation you desire. Moreover, any
of the su elements can have the common attributes annotator, annotatortype
and confidence.

The above example illustrates a fairly simple syntactic parse. Dependency parses
are possible too. Dependencies are listed separate from the syntax in an extra
annotation layer, see Section 2.7.3.

Declaration

<a n n o t a t i o n s>
<syntax−a n n o t a t i o n s e t="http://path/to/your/set"

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

2.7.3 Dependency Relations

Status: slightly revised in v0.8 (no “su” attribute on hd/dep) · Implementations:

pynlpl,libfolia

Dependency relations are relations between spans of tokens, in most cases equal
to syntactic units. A dependency relation takes a particular class and consists of
a single head component and a single dependent component. In the sample “He
sees”, there is syntactic dependency between the two words: “sees” is the head,
and “He” is the dependant, and the relation class is something like “subject”,
as the dependant is the subject of the head word. Each dependency relation is
explicitly noted in FoLiA.

The element dependencies introduces this annotation layer. Within it, dependency

49

elements describe all dependency pairs.

In the example below, we show a Dutch sentence parsed with the Alpino Parser
[3]. We show not only the dependency layer, but also the syntax layer to which
it is related, and show how you can establish links between the two layers. The
dependency element always contains two span roles: one head element (hd)
and one dependent element (dep). The words they cover are reiterated in the
usual fashion, using wref. For a better understanding, Figure 2.2 illustrates the
syntactic parse with the dependency relations. Both span roles hd and dep can
optionally make extra reference to a syntactic unit (or anything else for that
matter) by means of the aref element.

Figure 2.2: Alpino dependency parse for the Dutch sentence “De man be-
groette hem.”

<s x m l : i d="example.p.1.s.1">
<t>De man begroette hem .</ t>
<w x m l : i d="example.p.1.s.1.w.1"><t>De</ t></w>
<w x m l : i d="example.p.1.s.1.w.2"><t>man</ t></w>
<w x m l : i d="example.p.1.s.1.w.3"><t>begroette</ t></w>
<w x m l : i d="example.p.1.s.1.w.4"><t>hem</ t></w>
<w x m l : i d="example.p.1.s.1.w.5"><t> .</ t></w>
<s y n t a x>

<su x m l : i d="example.p.1.s.1.su.1" c l a s s="top">
<su x m l : i d="example.p.1.s.1.su.1_1" c l a s s="smain">

<su x m l : i d="example.p.1.s.1.su.1_1_1" c l a s s="np">
<su x m l : i d="example.p.1.s.1.su.1_1_1_1" c l a s s="

top">

50

<w r e f i d="example.p.1.s.1.w.1" t="De" />
</ su>
<su x m l : i d="example.p.1.s.1.su.1_1_1_2" c l a s s="

top">
<w r e f i d="example.p.1.s.1.w.2" t="man" />

</ su>
</ su>
<su x m l : i d="example.p.1.s.1.su.1_1_2" c l a s s="verb">

<w r e f i d="example.p.1.s.1.w.3" t="begroette" />
</ su>
<su x m l : i d="example.p.1.s.1.su.1_1_3" c l a s s="pron">

<w r e f i d="example.p.1.s.1.w.4" t="hem" />
</ su>

</ su>
<su x m l : i d="example.p.1.s.1.su.1_2" c l a s s="punct">

<w r e f i d="example.p.1.s.1.w.5" t="." />
</ su>

</ su>
</ s y n t a x>
<d e p e n d e n c i e s>

<dependency x m l : i d="example.p.1.s.1.dependency.1" c l a s s="su"

>
<hd>

<w r e f i d="example.p.1.s.1.w.3" t="begroette">
<a r e f i d="example.p.1.s.1.su.1_1_2" t y p e="su">

</hd>
<dep>

<w r e f i d="example.p.1.s.1.w.2" t="man" />
<a r e f i d="example.p.1.s.1.su.1_1_1" t y p e="su">

</ dep>
</ dependency>
<dependency x m l : i d="example.p.1.s.1.dependency.3" c l a s s="

obj1">
<hd>

<w r e f i d="example.p.1.s.1.w.3" t="begroette">
<a r e f i d="example.p.1.s.1.su.1_1_2" t y p e="su">

</hd>
<dep>

<w r e f i d="example.p.1.s.1.w.4" t="hem" />
<a r e f i d="example.p.1.s.1.su.1_1_3" t y p e="su">

</ dep>
</ dependency>
<dependency x m l : i d="example.p.1.s.1.dependency.2" c l a s s="det

">
<hd>

<w r e f i d="example.p.1.s.1.w.2" t="man" />
<a r e f i d="example.p.1.s.1.su.1_1_1_2" t y p e="su">

</hd>
<dep>

51

<w r e f i d="example.p.1.s.1.w.1" t="De" />
<a r e f i d="example.p.1.s.1.su.1_1_1_1" t y p e="su">

</ dep>
</ dependency>

</ d e p e n d e n c i e s>
</ s>

Note that in the first dependency relation, the dependant is just “man” rather
than “de man” . That is, we point only to the head of dependants, the full scope
follows automatically when building the dependency tree.

Declaration

<a n n o t a t i o n s>
<syntax−a n n o t a t i o n s e t="http://url/to/your/set" />
<dependency−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

Available sets

• http://ilk.uvt.nl/folia/sets/frog-depparse-nl – Set
definition for dependency annotation, as used by the sofware Frog5

and Alpino6.

(Note: If no usable set exists yet, simply create and use your own)

2.7.4 Chunking

Status: final · Implementations: pynlpl,libfolia

Unlike a full syntactic parse, chunking is a form of shallow parsing that is not
nested. FoLiA uses a separate annotation type for this. The layer is called
chunking and the span annotation element itself is called chunk.

<s x m l : i d="example.p.1.s.1">
<t>The Dalai Lama greeted him .</ t>
<w x m l : i d="example.p.1.s.1.w.1"><t>The</ t></w>
<w x m l : i d="example.p.1.s.1.w.2"><t>Dalai</ t></w>

52

http://ilk.uvt.nl/folia/sets/frog-depparse-nl

<w x m l : i d="example.p.1.s.1.w.3"><t>Lama</ t></w>
<w x m l : i d="example.p.1.s.1.w.4"><t>greeted</ t></w>
<w x m l : i d="example.p.1.s.1.w.5"><t>him</ t></w>
<w x m l : i d="example.p.1.s.1.w.6"><t> .</ t></w>
<chunk ing>

<chunk x m l : i d="example.p.1.s.1.chunk.1">
<w r e f i d="example.p.1.s.1.w.1" t="The" />
<w r e f i d="example.p.1.s.1.w.2" t="Dalai" />
<w r e f i d="example.p.1.s.1.w.3" t="Lama" />

</ chunk>
<chunk x m l : i d="example.p.1.s.1.chunk.2">

<w r e f i d="example.p.1.s.1.w.4" t="greeted" />
</ chunk>
<chunk x m l : i d="example.p.1.s.1.chunk.3">

<w r e f i d="example.p.1.s.1.w.5" t="him" />
<w r e f i d="example.p.1.s.1.w.6" t="." />

</ chunk>
</ chunk ing>

</ s>

The chunk element may also carry classes, assigning categories in a shallow
parsing tagset, in which case a declaration is mandatory:

Declaration

<a n n o t a t i o n s>
<chunking−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

Available sets

• http://ilk.uvt.nl/folia/sets/frog-chunker-nl – Set def-
inition for chunking, as used by the sofware Frog7.

(Note: If no usable set exists yet, simply create and use your own)

2.7.5 Time Segmentation

Status: final since v0.8, renamed in v0.9 · Implementations: pynlpl,libfolia

53

http://ilk.uvt.nl/folia/sets/frog-chunker-nl

FoLiA supports time segmentation using the timing layer and the timesegment

span annotation element. This element is useful for speech, but can also be
used for event annotation. We already saw events as structure annotation in
Section 2.5.7, but for more fine-grained control of timing information a span
annotation element in an offset layer is more suited. The following example
illustrates the usage for event annotation:

<s>
<w x m l : i d="example.p.1.s.1.w.1"><t>I</ t></w>
<w x m l : i d="example.p.1.s.1.w.2"><t>th ink</ t></w>
<w x m l : i d="example.p.1.s.1.w.3"><t>I</ t></w>
<w x m l : i d="example.p.1.s.1.w.4"><t>have</ t></w>
<w x m l : i d="example.p.1.s.1.w.5"><t>to</ t></w>
<w x m l : i d="example.p.1.s.1.w.6"><t>go</ t></w>
<w x m l : i d="example.p.1.s.1.w.7"><t> .</ t></w>
<t i m i n g>
<t imesegment c l a s s="utterance" b e g i n d a t e t i m e="2011-12-15T19:01

"

e n d d a t e t i m e="2011-12-15T19:03" a c t o r="myself">
<w r e f i d="example.p.1.s.1.w.1" t="I" />
<w r e f i d="example.p.1.s.1.w.2" t="think" />

</ t imesegment>
<t imesegment c l a s s="cough" b e g i n d a t e t i m e="2011-12-15T19:03"

e n d d a t e t i m e="2011-12-15T19:05" a c t o r="myself">
</ t imesegment>
<t imesegment c l a s s="utterance" b e g i n d a t e t i m e="2011-12-15T19:05

"

e n d d a t e t i m e="2011-12-15T19:06" a c t o r="myself">
<w r e f i d="example.p.1.s.1.w.3" t="I" />
<w r e f i d="example.p.1.s.1.w.4" t="have" />
<w r e f i d="example.p.1.s.1.w.5" t="to" />
<w r e f i d="example.p.1.s.1.w.6" t="go" />

</ t imesegment>
</ t i m i n g>

</ s>

Time segments may also be nested. As always, the classes in the example are
set-defined rather than predefined by FoLiA. The predefined and optional features
begindatetime and enddatetime can be used express the exact moment at
which an event started or ended. These too are set-defined so the format shown
here is just an example.

If you are only interested in an annotation of events, and a coarser level of
annotation suffices, then use the structure annotation element event instead.
See Section 2.5.7.

54

Note: Time segments were known as ”timed events” in FoLiA 0.8 and below.
They have been renamed to a more appropriate and more generic name. For
backward compatibility, libraries should implement timedevent as an alias for
timesegment, and timedevent-annotation as an alias for timesegment-annotation.

Declaration

<a n n o t a t i o n s>
<t imesegment−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

Time segmentation in a speech context

Status: final since v0.10 · Implementations: pynlpl,libfolia

If used in a speech context, all the generic speech attributes become avail-
able (See Section 2.9.1). This introduces begintime and endtime, which
are different from begindatetime and enddatetime ! The generic attributes
begintime and endtime are not defined by the set, but specify a time location
in HH:MM:SS.MMM format which may refer to the location in an associated sound
file. Sound files are associated using the src attribute, which is inherited by all
lower elements, so we put it on the sentence here:

<s s r c="ithinkihavetogo.mp3">
<w x m l : i d="example.p.1.s.1.w.1"><t>I</ t></w>
<w x m l : i d="example.p.1.s.1.w.2"><t>th ink</ t></w>
<w x m l : i d="example.p.1.s.1.w.3"><t>I</ t></w>
<w x m l : i d="example.p.1.s.1.w.4"><t>have</ t></w>
<w x m l : i d="example.p.1.s.1.w.5"><t>to</ t></w>
<w x m l : i d="example.p.1.s.1.w.6"><t>go</ t></w>
<w x m l : i d="example.p.1.s.1.w.7"><t> .</ t></w>
<t i m i n g>
<t imesegment b e g i n t i m e="00:00:00.000"

endt ime="00:00:00.250">
<w r e f i d="example.p.1.s.1.w.1" t="I" />

</ t imesegment>
<t imesegment b e g i n t i m e="00:00:00.250"

endt ime="00:00:00.500">
<w r e f i d="example.p.1.s.1.w.2" t="think" />

</ t imesegment>
<t imesegment b e g i n t i m e="00:00:00.500"

55

endt ime="00:00:00.750">
<w r e f i d="example.p.1.s.1.w.3" t="I" />

</ t imesegment>
<t imesegment b e g i n t i m e="00:00:00.750"

endt ime="00:00:01.000">
<w r e f i d="example.p.1.s.1.w.4" t="have" />

</ t imesegment>
<t imesegment b e g i n t i m e="00:00:01.000"

endt ime="00:00:01.250">
<w r e f i d="example.p.1.s.1.w.5" t="to" />

</ t imesegment>
<t imesegment b e g i n t i m e="00:00:01.250"

endt ime="00:00:01.500">
<w r e f i d="example.p.1.s.1.w.6" t="go" />

</ t imesegment>
</ t i m i n g>

</ s>

In a speech context, all structural elements may carry the generic attributes. So
the time segmentation in the previous example, though valid, is not the most
intuitive way of accomplishing this. Instead, time segmentation can better be
used when actual classes are assigned:

<s s r c="ithinkihavetogo.mp3">
<w x m l : i d="example.p.1.s.1.w.1"

b e g i n t i m e="00:00:00.000" endt ime="00:00:00.250"><t>I</ t></w>
<w x m l : i d="example.p.1.s.1.w.2"

b e g i n t i m e="00:00:00.250" endt ime="00:00:00.500"><t>th ink</ t></
w>

<w x m l : i d="example.p.1.s.1.w.3"

b e g i n t i m e="00:00:00.500" endt ime="00:00:00.750"><t>I</ t></w>
<w x m l : i d="example.p.1.s.1.w.4"

b e g i n t i m e="00:00:00.750" endt ime="00:00:01.000"><t>have</ t></w
>

<w x m l : i d="example.p.1.s.1.w.5"

b e g i n t i m e="00:00:01.000" endt ime="00:00:01.250"><t>to</ t></w>
<w x m l : i d="example.p.1.s.1.w.6"

b e g i n t i m e="00:00:01.250" endt ime="00:00:01.500"><t>go</ t></w>
<w x m l : i d="example.p.1.s.1.w.7"><t> .</ t></w>
<t i m i n g>

<t imesegment c l a s s="emphasised">
<w r e f i d="example.p.1.s.1.w.3" />
<w r e f i d="example.p.1.s.1.w.4" />
<w r e f i d="example.p.1.s.1.w.5" />
<w r e f i d="example.p.1.s.1.w.6" />

</ t imesegment>
</ t i m i n g>

</ s>

56

This usage, and the freedom FoLiA sets offer, opens up possibilities for a wide
variety of time-segmented annotations. Moreover, the wref element does not
necessarily point at words, but it may also point at phonemes. This will be
introduced in Section 2.9.3.

2.7.6 Semantic Roles

Status: since 0.9, added predicates in v1.3 · Implementations: pynlpl,libfolia

Semantic roles, or thematic roles, are implemented in FoLiA using the span-
annotation element semrole, within the annotation layer semroles, usually
embedded at sentence level.

<s x m l : i d="example.p.1.s.1">
<t>The Dalai Lama greeted him .</ t>
<w x m l : i d="example.p.1.s.1.w.1"><t>The</ t></w>
<w x m l : i d="example.p.1.s.1.w.2"><t>Dalai</ t></w>
<w x m l : i d="example.p.1.s.1.w.3"><t>Lama</ t></w>
<w x m l : i d="example.p.1.s.1.w.4"><t>greeted</ t></w>
<w x m l : i d="example.p.1.s.1.w.5"><t>him</ t></w>
<w x m l : i d="example.p.1.s.1.w.6"><t> .</ t></w>
<s e m r o l e s>
<p r e d i c a t e c l a s s="greet">

<s e m r o l e c l a s s="agent">
<w r e f i d="example.p.1.s.1.w.2" />
<w r e f i d="example.p.1.s.1.w.3" />

</ s e m r o l e>
<s e m r o l e c l a s s="patient">

<w r e f i d="example.p.1.s.1.w.5" />
</ s e m r o l e>

</ p r e d i c a t e>
</ s e m r o l e s>

</ s>

Semantic roles are usually embedded within the predicate span annotation
element (since FoLiA v1.3). This is a separate span annotation element, which
itself may also take a class. Such a class can for instance be used to describe
frame semantics, such as FrameNet8.

Semantic roles without predicates are also allowed, but less expressive as relations
between the semantic roles are not explicit.

8https://framenet.icsi.berkeley.edu/fndrupal/

57

https://framenet.icsi.berkeley.edu/fndrupal/

When semantic roles correspond with syntactic units or other span annotation
elements. Links between the two can be expressed using FoLiA’s facility for
alignments (see also Section 2.10.9), which were already seen in dependency
relations as well. The aref element may be used from within the semrole

element to link to a syntactic unit, or anything else for that matter. The following
example illustrates this:

<s x m l : i d="example.p.1.s.1">
<t>De man begroette hem .</ t>
<w x m l : i d="example.p.1.s.1.w.1"><t>De</ t></w>
<w x m l : i d="example.p.1.s.1.w.2"><t>man</ t></w>
<w x m l : i d="example.p.1.s.1.w.3"><t>begroette</ t></w>
<w x m l : i d="example.p.1.s.1.w.4"><t>hem</ t></w>
<w x m l : i d="example.p.1.s.1.w.5"><t> .</ t></w>
<s y n t a x>

<su x m l : i d="example.p.1.s.1.su.1" c l a s s="top">
<su x m l : i d="example.p.1.s.1.su.1_1" c l a s s="smain">

<su x m l : i d="example.p.1.s.1.su.1_1_1" c l a s s="np">
<su x m l : i d="example.p.1.s.1.su.1_1_1_1" c l a s s="

top">
<w r e f i d="example.p.1.s.1.w.1" t="De" />

</ su>
<su x m l : i d="example.p.1.s.1.su.1_1_1_2" c l a s s="

top">
<w r e f i d="example.p.1.s.1.w.2" t="man" />

</ su>
</ su>
<su x m l : i d="example.p.1.s.1.su.1_1_2" c l a s s="verb">

<w r e f i d="example.p.1.s.1.w.3" t="begroette" />
</ su>
<su x m l : i d="example.p.1.s.1.su.1_1_3" c l a s s="pron">

<w r e f i d="example.p.1.s.1.w.4" t="hem" />
</ su>

</ su>
<su x m l : i d="example.p.1.s.1.su.1_2" c l a s s="punct">

<w r e f i d="example.p.1.s.1.w.5" t="." />
</ su>

</ su>
</ s y n t a x>
<s e m r o l e s>
<p r e d i c a t e c l a s s="groeten">

<s e m r o l e c l a s s="agent">
<w r e f i d="example.p.1.s.1.w.1" />
<w r e f i d="example.p.1.s.1.w.2" />
<a r e f i d="example.p.1.s.1.su.1_1_1" t y p e="su">

</ s e m r o l e>
<s e m r o l e c l a s s="patient">

<w r e f i d="example.p.1.s.1.w.4" />

58

<a r e f i d="example.p.1.s.1.su.1_1_3" t y p e="su">
</ s e m r o l e>

</ p r e d i c a t e>
</ s e m r o l e s>

</ s>

The hd span role can optionally be used to mark the head of a semantic role:

<s e m r o l e c l a s s="agent">
<w r e f i d="example.p.1.s.1.w.1" t="de" />
<hd>

<w r e f i d="example.p.1.s.1.w.2" t="man" /
>

</hd>
<a r e f i d="example.p.1.s.1.su.1_1_2" t y p e="su">

</ s e m r o l e>

Declaration

<a n n o t a t i o n s>
<semro le−a n n o t a t i o n s e t="http://url/to/your/set" />
<p r e d i c a t e−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

2.7.7 Coreference Relations

Status: new in 0.9 (example improved in revision 4.1) · Implementations: pynlpl

Relations between words that refer to the same referent are expressed in FoLiA us-
ing the coreferencechain span annotation element and the coreferencelink
span role within it. The annotation layer is coreferences. The co-reference
relations are expressed by specifying the entire chain in which all links are coref-
erent. The head of a coreferent may optionally be marked with the hd element,
another span role. This annotation layer itself may be embedded on whatever
level is preferred. The following example uses paragraph level, but you can for
instance also embed it at sentence level or a global text level:

<p x m l : i d="example.p.1">
<s x m l : i d="example.p.1.s.1">

<t>The Dalai Lama greeted him .</ t>
<w x m l : i d="example.p.1.s.1.w.1"><t>The</ t></w>

59

<w x m l : i d="example.p.1.s.1.w.2"><t>Dalai</ t></w>
<w x m l : i d="example.p.1.s.1.w.3"><t>Lama</ t></w>
<w x m l : i d="example.p.1.s.1.w.4"><t>greeted</ t></w>
<w x m l : i d="example.p.1.s.1.w.5"><t>him</ t></w>
<w x m l : i d="example.p.1.s.1.w.6"><t> .</ t></w>

</ s>
<s x m l : i d="example.p.1.s.2">

<t>He was happy to see him .</ t>
<w x m l : i d="example.p.1.s.2.w.1"><t>He</ t></w>
<w x m l : i d="example.p.1.s.2.w.2"><t>was</ t></w>
<w x m l : i d="example.p.1.s.2.w.3"><t>happy</ t></w>
<w x m l : i d="example.p.1.s.2.w.4"><t>to</ t></w>
<w x m l : i d="example.p.1.s.2.w.4"><t>see</ t></w>
<w x m l : i d="example.p.1.s.2.w.5"><t>him</ t></w>
<w x m l : i d="example.p.1.s.2.w.6"><t> .</ t></w>

</ s>
<s x m l : i d="example.p.1.s.3">

<t>He smiled .</ t>
<w x m l : i d="example.p.1.s.3.w.1"><t>He</ t></w>
<w x m l : i d="example.p.1.s.3.w.2"><t>smiled</ t></w>
<w x m l : i d="example.p.1.s.3.w.3"><t> .</ t></w>

</ s>
<c o r e f e r e n c e s>

<c o r e f e r e n c e c h a i n c l a s s="dalailama">
<c o r e f e r e n c e l i n k>

<w r e f i d="example.p.1.s.1.w.1" t="The" />
<hd>

<w r e f i d="example.p.1.s.1.w.2" t="Dalai" />
<w r e f i d="example.p.1.s.1.w.3" t="Lama" />

</hd>
</ c o r e f e r e n c e l i n k>
<c o r e f e r e n c e l i n k>

<w r e f i d="example.p.1.s.2.w.1" t="he" />
</ c o r e f e r e n c e l i n k>

</ c o r e f e r e n c e c h a i n>
<c o r e f e r e n c e c h a i n c l a s s="dalailama">

<c o r e f e r e n c e l i n k>
<w r e f i d="example.p.1.s.2.w.5" t="him" />

</ c o r e f e r e n c e l i n k>
<c o r e f e r e n c e l i n k>

<w r e f i d="example.p.1.s.2.w.6" t="him" />
</ c o r e f e r e n c e l i n k>
<c o r e f e r e n c e l i n k>

<w r e f i d="example.p.1.s.3.w.1" t="He" />
</ c o r e f e r e n c e l i n k>

</ c o r e f e r e n c e c h a i n>
</ c o r e f e r e n c e s>
</p>

60

Being a span-annotation element, the coreference element may take all of the
usual attributes. Most notable is the class element designating the type of
coreference relation. Like its parent, each of the links in the chain may take the
standard attributes annotator, annotatortype, datetime, confidence. The
links or heads do not take a class, only coreferencechain does.

Coreferencelink may take three attributes, which are actually predefined Fo-
LiA subsets (See Section 2.10.5), their values depend on the set used and are
thus user-definable and never predefined:

• modality - A subset that can be used for indication that there is modality
or negation in this coreference link.

• time - A subset used to indicate a time dependency. An example of a time
dependency is seen in the sentence: “Bert De Graeve, until recently CEO,
will now take up a position as CFO”. Here “Bert De Graeve”, “CEO” and
“CFO” would all be part of the same coreference chain, and the second
coreferencelink (“CEO”) can be marked as being in the past using the
“time” attribute.

• level - A subset used that can indicate the level on which the coreference
holds. A possible value suggestion could be “sense”, indicating that only on
sense-level there is a corefence relation, as opposed to an actual reference.

Declaration

<a n n o t a t i o n s>
<c o r e f e r e n c e−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

2.7.8 Observation Annotation

Status: since v1.3 · Implementations: pynlpl

The observation element is a span annotation element that makes an obser-
vation pertaining to one or more word tokens. It is embedded in an observations

61

layer. Observations offer a an external qualification on part of a text. The quali-
fication is expressed by the class, in turn defined by a set. The precise semantics
of the observation depends on the user-defined set.

The element may for example act as a more generic replacement for the errordetection
element (section 2.10.14), or to encapsulate observations from teachers/proof-
readers on a text, in which case it is often used with the desc element (see
section 2.10.1). The following example shows different types of observations
from two fictitious sets:

<s x m l : i d="example.p.1.s.1">
<t>The Dalai Lama greated him .</ t>
<w x m l : i d="example.p.1.s.1.w.1"><t>The</ t></w>
<w x m l : i d="example.p.1.s.1.w.2"><t>Dalai</ t></w>
<w x m l : i d="example.p.1.s.1.w.3"><t>Lama</ t></w>
<w x m l : i d="example.p.1.s.1.w.4"><t>greated</ t></w>
<w x m l : i d="example.p.1.s.1.w.5"><t>him</ t></w>
<w x m l : i d="example.p.1.s.1.w.6"><t> .</ t></w>
<o b s e r v a t i o n s>
<o b s e r v a t i o n c l a s s="typo" s e t="http://somewhere/errordetection

.set.xml">
<w r e f i d="example.p.1.s.1.w.4"/>

</ o b s e r v a t i o n>
</ o b s e r v a t i o n s>
<o b s e r v a t i o n s>
<o b s e r v a t i o n c l a s s="encouragement" s e t="http://somewhere/

teacherobservations.set.xml"

a n n o t a t o r="teacher234" a n n o t a t o r t y p e="manual">
<w r e f i d="example.p.1.s.1.w.1" />
<w r e f i d="example.p.1.s.1.w.2" />
<w r e f i d="example.p.1.s.1.w.3" />
<w r e f i d="example.p.1.s.1.w.4" />
<w r e f i d="example.p.1.s.1.w.5" />
<w r e f i d="example.p.1.s.1.w.6" />
<d e s c>Almost a good sentence , only one mistake . Keep up the

good work !</ d e s c>
</ o b s e r v a t i o n>

</ o b s e r v a t i o n s>
</ s>

Further set-dependent properties can be associated with any observation using
FoLiA’s feature mechanism (see Section 2.10.5).

62

Declaration

<a n n o t a t i o n s>
<o b s e r v a t i o n−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

2.7.9 Sentiment Analysis

Status: since v1.3 · Implementations: pynlpl

Sentiment analysis marks subjective information such as sentiments or attitudes
expressed in text. The sentiment span annotation element is used to this end.
It is embedded in a sentiments layer. This element offers a more comprehensive
solution replacing the older subjectivity element.

The sentiment element takes the following span roles:

• hd – required – The head of the sentiment; expresses the actual sen-
timent, it covers word spans such as “happy”, “very satisfied”, “highly
dissappointed”.

• source – optional – The source/holder of the sentiment, assuming it is
explicitly expressed in the text.

• target – optional – The target/recipient of the sentiment, assuming it
is explicitly expressed in the text.

Consider the following example:

<s x m l : i d="s1">
<w x m l : i d="s1.w1"><t>He</ t></w>
<w x m l : i d="s1.w2"><t> i s</ t></w>
<w x m l : i d="s1.w3"><t>happy</ t></w>
<w x m l : i d="s1.w4"><t>to</ t></w>
<w x m l : i d="s1.w5"><t>see</ t></w>
<w x m l : i d="s1.w6"><t>him</ t></w>
<w x m l : i d="s1.w7"><t> .</ t></w>
<s e n t i m e n t s>
<s e n t i m e n t c l a s s="emotion.joy" p o l a r i t y="positive" s t r e n g t h="

moderate">

63

<s o u r c e>
<w r e f i d="s1.w1" t="he" />

</ s o u r c e>
<t a r g e t>

<w r e f i d="s1.w6" t="him" />
</ t a r g e t>
<hd>

<w r e f i d="s1.w3" t="happy" />
</hd>

</ s e n t i m e n t>
</ s e n t i m e n t s>

</ s>

The following feature subsets are predefined, whether they are actually used
depends on the set, their values (classes) are set-dependent as well:

• polarity – Expresses the whether the sentiment is positive, neutral or
negative.

• strength – Expresses the strength or intensity of the sentiment

Besides these predefined features, FoLiA’s feature mechanism (see Section 2.10.5)
can be used to associate other custom properties with any sentiment.

Declaration

<a n n o t a t i o n s>
<s e n t i m e n t−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

2.7.10 Statement Annotation (Attribution)

Status: since v1.3 · Implementations: pynlpl

The span annotation element statement allows to decompose statements into
the source of the statement, the content of the statement, and the way these
relate, provided these are made explicit in the text. The element is used in a
statements layer and takes the following span roles:

64

• hd – required – The head of the statement is the actual content of the
statement; this role spans the words containing the statement.

• source – optional – The source/holder of the statement, assuming it is
explicitly expressed in the text.

• relation – optional – The relation between the source of the statement
and the statement, this usually encompasses verbs like “to say”, “to think”,
or prepositional phrases such as “according to”.

Consider the following example:

<s x m l : i d="s1">
<w x m l : i d="s1.w1"><t>They</ t></w>
<w x m l : i d="s1.w2"><t>sa id</ t></w>
<w x m l : i d="s1.w3"><t>the</ t></w>
<w x m l : i d="s1.w4"><t>hote l</ t></w>
<w x m l : i d="s1.w5"><t>was</ t></w>
<w x m l : i d="s1.w6"><t>a</ t></w>
<w x m l : i d="s1.w7"><t>nightmare</ t></w>
<w x m l : i d="s1.w8"><t> .</ t></w>
<s t a t e m e n t s>
<s t a t e m e n t c l a s s="said">
<s o u r c e>
<w r e f i d="s1.w1" />

</ s o u r c e>
<hd>
<w r e f i d="s1.w3" />
<w r e f i d="s1.w4" />
<w r e f i d="s1.w5" />
<w r e f i d="s1.w6" />
<w r e f i d="s1.w7" />

</hd>
< r e l a t i o n>

<w r e f i d="s1.w2" />
</ r e l a t i o n>

</ s t a t e m e n t>
</ s t a t e m e n t s>

</ s>

Whether the statement’s class, if used at all, expresses the relationship like in
the example, or has more direct bearing on the statement itself, is of course up
to the set used. Further set-dependent properties can be associated with any
observation using FoLiA’s feature mechanism (see Section 2.10.5).

65

Declaration

<a n n o t a t i o n s>
<s tatement−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

2.8 Morphological Annotation

Status: heavily revised since v0.9 · Implementations: pynlpl,libfolia

Tokens can be further segmented into morphemes, a form of structure annota-
tion. Morphemes behave much like w elements (tokens). Moreover, morphemes
can be referred to from within in span annotation using wref, allowing spans to
be defined not only over whole words/tokens but also parts thereof. The element
for morphemes is morpheme, and can only occur within w elements. Recall that
t elements can contain references to higher-level t elements. In such cases, the
offset attribute is used to designate the offset index in the word’s associated
text element (t) (zero being right at the start of the text). Morphemes may do
this.

Furthermore, a morpheme may take a class, referring to its type. As always, the
classes are defined by the declared set, and not predefined by the FoLiA set.

Morphemes are grouped in a morphology layer, which itself takes no attributes.
An example of morphology in use:

<w x m l : i d="example.p.4.s.2.w.4">
<t> l e e s t</ t>
<lemma c l a s s="lezen" />
<morphology>

<morpheme c l a s s="stem" f u n c t i o n="lexical">
<t o f f s e t="0"> l e e s</ t>

</morpheme>
<morpheme c l a s s="suffix" f u n c t i o n="inflexional">

<t o f f s e t="4">t</ t>
</morpheme>

</ morphology>
</w>

Note that the attribute function is a predefined feature you may use (not

66

mandatory), its values are defined by the set rather than the FoLiA standard, so
they are user/set-defined.

Morphemes allow token annotation just as words do. We can for instance bind
lemma annotation to the morpheme representing the word’s stem rather than
only to the entire word:

<w x m l : i d="example.p.4.s.2.w.4">
<t> l e e s t</ t>
<lemma c l a s s="lezen" />
<morphology>

<morpheme x m l : i d="example.p.4.s.2.w.4.m.1" c l a s s="stem"

f u n c t i o n="lexical">
<lemma c l a s s="lezen" />

<t o f f s e t="0"> l e e s</ t>
</morpheme>
<morpheme x m l : i d="example.p.4.s.2.w.4.m.2" c l a s s="suffix

"

f u n c t i o n="inflexional">
<t o f f s e t="4">t</ t>

</morpheme>
</ morphology>

</w>

Similarly, consider the Spanish word or phrase “Dámelo” (give it to me), written
as one entity. If this has not been split during tokenisation, but left as a single
token, you can annotate its morphemes, as all morphemes allow token annotation
to be placed within their scope:

<w x m l : i d="example.p.1.s.1.w.1">
<t>d ámelo</ t>
<morphology>

<morpheme c l a s s="stem">
<t o f f s e t="0">d á</ t>

<lemma c l a s s="dar" />
<pos c l a s s="v" />

</morpheme>
<morpheme c l a s s="suffix">

<t o f f s e t="2">me</ t>
<lemma c l a s s="me" />
<pos c l a s s="pron" />

</morpheme>
<morpheme c l a s s="suffix">

<t o f f s e t="4">l o</ t>
<lemma c l a s s="lo" />
<pos c l a s s="pron" />

</morpheme>
</ morphology>

67

</w>

Unlike words, morphemes may also be nested, as they can be expressed on mul-
tiple levels:

<w x m l : i d="example.p.1.s.1.w.1">
<t>comfortable</ t>
<morphology>

<morpheme c l a s s="base">
<t o f f s e t="0">comfort</ t>

<morpheme c l a s s="prefix">
<t o f f s e t="0">com</ t>

</morpheme>
<morpheme c l a s s="morph">

<t o f f s e t="3">f o r t</ t>
</morpheme>

</morpheme>
<morpheme c l a s s="suffix">

<t o f f s e t="7">able</ t>
</morpheme>

</ morphology>
</w>

Note that the annotation of morphology has changed since FoLiA version 0.9.
Older versions did not yet assign a class to morphemes themselves, but rather
only used features, which were entirely left to the set to define. These documents
remain valid in FoLiA 0.9 and above, but this way is no longer the recommended
way. The following example illustrates the old style:

<w x m l : i d="example.p.4.s.2.w.4">
<t> l e e s t</ t>
<lemma c l a s s="lezen" />
<morphology>

<morpheme>
< f e a t s u b s e t="type" c l a s s="stem">
< f e a t s u b s e t="function" c l a s s="lexical">
<t o f f s e t="0"> l e e s</ t>

</morpheme>
<morpheme>

< f e a t s u b s e t="type" c l a s s="suffix">
< f e a t s u b s e t="function" c l a s s="inflexional">
<t o f f s e t="4">t</ t>

</morpheme>
</ morphology>

</w>

The next example will illustrate how morphemes can be referred to in span

68

annotation. Here we have a morpheme, and not the entire word, which forms a
named entity:

<w x m l : i d="example.p.4.s.2.w.4">
<t>CDA−v o o r z i t t e r</ t>
<morphemes>

<morpheme x m l : i d="example.p.4.s.2.w.1.m.1">
<t o f f s e t="0">CDA</ t>

</morpheme>
</morphemes>
< e n t i t i e s>

<e n t i t y x m l : i d="entity.1">
<w r e f i d="example.p.4.s.2.w.1.m.1" />

</ e n t i t y>
</ e n t i t i e s>

</w>

The older FoLiA elements subentities and subentity are deprecated in favour
of this new approach.

The same approach can be followed for other kinds of span annotation. Note
that the span annotation layer (entities in the example) may be embedded
on various levels. Most commonly on sentence level, but also on word level,
paragraph level or the global text level.

Declaration

<a n n o t a t i o n s>
<morphology−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

Available sets

• http://ilk.uvt.nl/folia/sets/frog-mbma-nl – Set defini-
tion as used by the software Frog.

(Note: If no usable set exists yet, simply create and use your own)

69

http://ilk.uvt.nl/folia/sets/frog-mbma-nl

2.9 Speech Annotation

2.9.1 Speech Structure Annotation

Status: proposed in v0.9, most parts final in v0.12 · Implementations: pynlpl,libfolia

FoLiA is not just suited for the annotation of text, but also accommodates an-
notation of transcribed speech. This generally asks for a different document
structure than text documents. The top-level element for speech-centred re-
sources is speech. Certain elements described in the section on text structure
may be used under speech as well; such as divisions (div), sentences (s) and
words (w). Notions such as paragraphs and figures make less sense in a speech
context.

All structure elements in a speech context may take the extra FoLiA attributes
for speech, as laid out in Section 2.3.1. These include attributes for referring to
associating sound clips.

Utterances

Status: Final in v0.12 · Implementations: pynlpl,libfolia

An utterance may consist of words or sentences, which in turn may contain words.
The opposite is also true, a sentence may consist of multiple utterances. The
utterance element in FoLiA is utt.

An actual example of utterances is shown later in the section on phonetic content.

Declaration

<a n n o t a t i o n s>
<u t t e r a n c e−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

70

Non-speech events

Non-speech events are simply covered by event annotation as seen in Sec-
tion 2.5.7. Consider the following small example, with speech-context attributes
associated:

<e v e n t c l a s s="cough" s r c="soundclip.mp3"

b e g i n t i m e="..." endt ime="..." />

2.9.2 Phonetic Content

Status: final in v0.12 · Implementations: pynlpl,libfolia

Written text is always contained in the text content element (t), for phonol-
ogy there is a similar counterpart: ph. The ph element holds a phonetic or
phonological transcription. It is used in a very similar fashion:

<u t t s r c="helloworld.mp3" b e g i n t i m e="..." endt ime="...">
<ph>hel ’ oU wO : l d</ph>
<w x m l : i d="example.utt.1.w.1"

b e g i n t i m e="..." endt ime="...">
<ph>hel ’ oU</ph>

</w>
<w x m l : i d="example.utt.1.w.2"

b e g i n t i m e="..." endt ime="...">
<ph>wO : l d</ph>

</w>
</ u t t>

Like the t element, the ph element supports the offset attribute, referring to
the offset in the phonetic transcription. The first index being zero. Phonetic
transcription and text content can also go together without problem:

<u t t>
<ph>hel ’ oU wO : l d</ph>
<t>h e l l o world</ t>
<w x m l : i d="example.utt.1.w.1">

<ph o f f s e t="0">hel ’ oU</ph>
<t o f f s e t="0">h e l l o</ t>

</w>
<w x m l : i d="example.utt.1.w.2">

<ph o f f s e t="8">wO : l d</ph>
<t o f f s e t="6">world</ t>

</w>
</ u t t>

71

2.9.3 Phonological Annotation

Status: final in v0.12 · Implementations: pynlpl,libfolia

The smallest unit of annotatable speech in FoLiA is the phoneme level. The
phoneme element is a form of structure annotation used for phonemes. Alike to
morphology, it is embedded within a layer phonology which can be used within
word/token elements (w) or directly within utt if no words are distinguished:

<u t t>
<w x m l : i d="word" s r c="book.wav">

<t>book</ t>
<ph>bUk</ph>
<phono logy>

<phoneme b e g i n t i m e="..." endt ime="...">
<ph>b</ph>

</phoneme>
<phoneme b e g i n t i m e="..." endt ime="...">

<ph>U</ph>
</phoneme>
<phoneme b e g i n t i m e="..." endt ime="...">

<ph>k</ph>
</phoneme>

</ phono logy>
</w>

</ u t t>

Declaration

<a n n o t a t i o n s>
<p h o n o l o g i c a l−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

2.9.4 Distortion

Status: Proposed in v0.9 · Implementations: not implemented yet

FoLiA has a token annotation element distortion which can be used in a
speech context. It indicates that a certain distortion of change in the sound

72

speech has taken place. It can be used for background sounds. The classes are
of course not predefined by the FoLiA format but depend on the class used:

<u t t>
<ph>hel ’ oU wO : l d</ph>
<d i s t o r t i o n c l a s s="windnoise" />

</ u t t>

The distortion element is also useful to mark specific accents or dialects, depend-
ing of course on the set used:

<u t t>
<t>day</ t>
<ph>dæ i</ph>
<d i s t o r t i o n c l a s s="cockney" />

</ u t t>

The mandatory declaration goes as follows (the set is fictitious):

Declaration

<a n n o t a t i o n s>
<d i s t o r t i o n −a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

2.10 Higher-order Annotation

We introduced the FoLiA paradigm in Section 2.3 and listed the four categories of
annotation: structure annotation, token annotation, span annotation and higher-
order annotation. In this section we will discuss the higher-order annotation
elements and the more advanced aspects of FoLiA. The higher-order annotation
category forms less of a unity than the other categories. All annotations in this
category have in common that they all are annotations about other annotations,
relating to other annotations, or enhancing other annotations.

In our discussion of the various types of higher-order annotation, we will encounter
the more advanced aspects of the FoLiA paradigm.

73

2.10.1 Human-readable Descriptions

Status: final since v0.6 · Implementations: pynlpl,libfolia

This is one of the simplest forms of higher-order annotation. Any annotation
element may hold a desc element containing in its body a human readable
description for the annotation. An example of this has been already shown for
the sense and gap elements. Only one description is allowed per annotation.

<w x m l : i d="example.p.1.s.1.w.1">
<t>boot</ t>
<pos c l a s s="n">

<d e s c>Noun</ d e s c>
</ pos>
<d e s c>boot</ d e s c>

</w>

2.10.2 Comments

Status: final since v1.3 · Implementations: pynlpl,libfolia

Comments is a simple higher-order annotation element that may be used with
any annotation. It holds text that comments the annotation. Multiple comments
are allowed per annotation and generic FoLiA attributes such as annotator are
of course allowed as well.

<w x m l : i d="example.p.1.s.1.w.1">
<t>boot</ t>
<pos c l a s s="n">

<d e s c>Noun</ d e s c>
</ pos>
<comment a n n o t a t o r="proycon">

This i s a comment on a word
</comment>

</w>

An alternative to these FoLiA-specific comments, which are considered actual
annotations, is standard XML comments. Standard XML comments, however,
are not considered actual annotations and most likely won’t be interpreted by
any tools.

<w x m l : i d="example.p.1.s.1.w.1">
<t>boot</ t>
<pos c l a s s="n">

74

<d e s c>Noun</ d e s c>
</ pos>

<!−− This i s a comment on a word −−>
</w>

2.10.3 Alternative Token Annotations

Status: final · Implementations: pynlpl,libfolia

The FoLiA format does not just allow for a single authoritative annotation per
token; it allows the representation of alternative annotations. Alternative token
annotations are grouped within one or more alt elements. If multiple annota-
tions are grouped together under the same alt element, then they are deemed
dependent and form a single set of alternatives.

Each alternative preferably is given a unique identifier. In the following example
we see the Dutch word “bank” in the sense of a sofa, alternatively we see two
alternative annotations with a different sense and domain. Any annotation ele-
ment within an alt block by definition needs to be marked as non-authoritative
by setting auth="no". This facilitates the job of parsers and queriers.

<w x m l : i d="example.p.1.s.1.w.1">
<t>bank</ t>
<domain c l a s s="furniture" />
<s e n s e c l a s s="r_n-5918" s y n s e t="d_n-21410"

a n n o t a t o r="John Doe" a n n o t a t o r t y p e="manual"

c o n f i d e n c e="1.0">zitmeubel</ s e n s e>
<a l t x m l : i d="example.p.1.s.1.w.1.alt.1">

<domain auth="no" c l a s s="finance" />
<s e n s e auth="no" c l a s s="r_n-5919" s y n s e t="d_n-27025"

a n n o t a t o r="Jane Doe" a n n o t a t o r t y p e="manual"

c o n f i d e n c e="0.6">geldver lenende i n s t e l l i n g</ s e n s e>
</ a l t>
<a l t x m l : i d="example.p.1.s.1.w.1.alt.2">

<domain auth="no" c l a s s="geology" />
<s e n s e auth="no" c l a s s="r_n-5920" s y n s e t="d_n-38257"

a n n o t a t o r="Jim Doe" a n n o t a t o r t y p e="manual"

c o n f i d e n c e="0.1">zandbank</ s e n s e>
</ a l t>

</w>

Sometimes, an alternative is concerned only with a portion of the annotations.
By default, annotations not mentioned are applicable to the alternative as well,

75

unless the alternative is set as being exclusive. Consider the following expanded
example in which we added a part-of-speech tag and a lemma.

<w x m l : i d="example.p.1.s.1.w.1">
<t>bank</ t>
<domain c l a s s="furniture" />
<s e n s e c l a s s="r_n-5918" s y n s e t="d_n-21410"

a n n o t a t o r="John Doe" a n n o t a t o r t y p e="manual"

c o n f i d e n c e="1.0">f u r n i t u r e</ s e n s e>
<pos c l a s s="n" />
<lemma c l a s s="bank" />
<a l t x m l : i d="example.p.1.s.1.w.1.alt.1">

<domain auth="no" c l a s s="finance" />
<s e n s e auth="no" c l a s s="r_n-5919" s y n s e t="d_n-27025"

a n n o t a t o r="Jane Doe" a n n o t a t o r t y p e="manual"

c o n f i d e n c e="0.6"> f i n a n c i a l i n s t i t u t i o n</ s e n s e>
</ a l t>
<a l t x m l : i d="example.p.1.s.1.w.1.alt.2">

<domain auth="no" c l a s s="geology" />
<s e n s e auth="no" c l a s s="r_n-5920" s y n s e t="d_n-38257"

a n n o t a t o r="Jim Doe" a n n o t a t o r t y p e="manual"

c o n f i d e n c e="0.1">r i v e r bank</ s e n s e>
</ a l t>
<a l t x m l : i d="example.p.1.s.1.w.1.alt.2" e x c l u s i v e="yes">

<t>bank</ t>
<domain auth="no" c l a s s="navigation" />
<s e n s e auth="no" c l a s s="r_n-1234">to turn</ s e n s e>

<pos c l a s s="v" />
<lemma c l a s s="bank" />

</ a l t>
</w>

The first two alternatives are inclusive, which is the default. This means that the
pos tag “n” and the lemma “bank” apply to them as well. The last alternative is
set as exclusive, using the exclusive attribute. It has been given a different pos
tag and the lemma and even the text content have been repeated even though
they are equal to the higher-level annotation, otherwise there would be no lemma
nor text associated with the exclusive alternative.

Alternatives can be used as a great way of postponing actual annotation, due to
their non-authoritative nature. When used in this way, they can be regarded as
“options”. They can be used even when there are no authoritative annotations of
the type. Consider the following example in which domain and sense annotations
are presented as alternatives and there is no authoritative annotation of these
types whatsoever:

<w x m l : i d="example.p.1.s.1.w.1">

76

<t>bank</ t>
<a l t x m l : i d="example.p.1.s.1.w.1.alt.1">

<domain auth="no" c l a s s="finance" />
<s e n s e auth="no" c l a s s="r_n-5919" s y n s e t="d_n-27025"

a n n o t a t o r="Jane Doe" a n n o t a t o r t y p e="manual"

c o n f i d e n c e="0.6">geldver lenende i n s t e l l i n g</ s e n s e>
</ a l t>
<a l t x m l : i d="example.p.1.s.1.w.1.alt.2">

<domain auth="no" c l a s s="geology" />
<s e n s e auth="no" c l a s s="r_n-5920" s y n s e t="d_n-38257"

a n n o t a t o r="Jim Doe" a n n o t a t o r t y p e="manual"

c o n f i d e n c e="0.1">zandbank</ s e n s e>
</ a l t>

</w>

2.10.4 Alternative Span Annotations

With token annotations one can specify an unbounded number of alternative
annotations. This functionality is available for span annotations as well, but due
to the different nature of span annotations this happens in a slightly different
way.

Where we used alt for token annotations, we now use altlayers for span
annotations. Under this element several alternative layers can be presented.
Analogous to alt, any layers grouped together are assumed to be somehow
dependent. Multiple altlayers can be added to introduce independent alter-
natives. Each alternative may be associated with a unique identifier. The layers
within altlayers need to be marked as non-autoritative using auth="no".

Below is an example of a sentence that is chunked in two ways:

<s x m l : i d="example.p.1.s.1">
<t>The Dalai Lama greeted him .</ t>
<w x m l : i d="example.p.1.s.1.w.1"><t>The</ t></w>
<w x m l : i d="example.p.1.s.1.w.2"><t>Dalai</ t></w>
<w x m l : i d="example.p.1.s.1.w.3"><t>Lama</ t></w>
<w x m l : i d="example.p.1.s.1.w.4"><t>greeted</ t></w>
<w x m l : i d="example.p.1.s.1.w.5"><t>him</ t></w>
<w x m l : i d="example.p.1.s.1.w.6"><t> .</ t></w>
<chunk ing>

<chunk x m l : i d="example.p.1.s.1.chunk.1">
<w r e f i d="example.p.1.s.1.w.1" t="The" />
<w r e f i d="example.p.1.s.1.w.2" t="Dalai" />
<w r e f i d="example.p.1.s.1.w.3" t="Lama" />

77

</ chunk>
<chunk x m l : i d="example.p.1.s.1.chunk.2">

<w r e f i d="example.p.1.s.1.w.4" t="greeted" />
</ chunk>
<chunk x m l : i d="example.p.1.s.1.chunk.3">

<w r e f i d="example.p.1.s.1.w.5" t="him" />
<w r e f i d="example.p.1.s.1.w.6" t="." />

</ chunk>
</ chunk ing>
<a l t l a y e r s x m l : i d="example.p.1.s.1.alt.1">

<chunk ing a n n o t a t o r="John Doe"

a n n o t a t o r t y p e="manual" c o n f i d e n c e="0.0001" auth="no">
<chunk x m l : i d="example.p.1.s.1.alt.1.chunk.1">

<w r e f i d="example.p.1.s.1.w.1" t="The" />
<w r e f i d="example.p.1.s.1.w.2" t="Dalai" />

</ chunk>
<chunk x m l : i d="example.p.1.s.1.alt.1.chunk.2">

<w r e f i d="example.p.1.s.1.w.2" t="Lama" />
<w r e f i d="example.p.1.s.1.w.4" t="greeted" />

</ chunk>
<chunk x m l : i d="example.p.1.s.1.alt.1.chunk.3">

<w r e f i d="example.p.1.s.1.w.5" t="him" />
<w r e f i d="example.p.1.s.1.w.6" t="." />

</ chunk>
</ chunk ing>

</ a l t l a y e r s>
</ s>

The support for alternatives and the fact that multiple layers (including those of
different types) cannot be nested in a single inline structure, should make clear
why FoLiA uses a stand-off notation alongside an inline notation.

2.10.5 Feature Annotation

Status: revised in v0.8 · Implementations: pynlpl,libfolia

In addition to a main class, an arbitrary number of features can be added to any
annotation element. Each feature pertains to a specific subset. Subsets and the
classes within them can be invented at will as they are part of the set definition,
which is left entirely to the user. However, certain annotation elements also have
some predefined subsets you may use.

The element feat is used to add features to any kind of annotation. In the
following example we make use of a subset we invented which ties a lemma to a

78

page number in some dictionary where the lemma can be found.

<lemma c l a s s="house">
< f e a t s u b s e t="dictionary_page" c l a s s="45" />

</lemma>

A more thorough example for part-of-speech tags with features will be explained
in Section 2.10.6.

Some elements have predefined subsets because some features are very commonly
used. However, it still depends on the set on whether these can be used, and
which values these take. Whenever subsets are predefined in the FoLiA standard
they can be assigned using XML attributes. Consider the following example of
lexical semantic sense annotation, in which subset “synset” is a predefined subset:

<s e n s e c l a s s="X" s y n s e t="Y" />

This is semantically equivalent to:

<s e n s e c l a s s="X">
< f e a t s u b s e t="synset" c l a s s="Y" />

</ s e n s e>

The following example of event annotation with the feature with predefined sub-
set “actor” is similar:

<e v e n t c l a s s="tweet" a c t o r="John Doe">
. . .

</ e v e n t>

This is semantically equivalent to:

<e v e n t c l a s s="tweet">
< f e a t s u b s e t="actor" c l a s s="John Doe" />
. . .

</ e v e n t>

Features can also be used to assign multiple classes within the same subset,
which is impossible with main classes. In the following example the event is
associated with a list of two actors. In this case the XML attribute shortcut no
longer suffices, and the feat element must be used explicitly.

<e v e n t c l a s s="conversation">
< f e a t s u b s e t="actor" c l a s s="John Doe" />
< f e a t s u b s e t="actor" c l a s s="Jane Doe" />
<p> . . .</p>

</ e v e n t>

79

To recap: the feat element can always be used freely to associate any addi-
tional classes of any designed subset with any annotation element. For certain
elements, there are predefined subsets, in which case you can assign them us-
ing the XML attribute shortcut. This, however, only applies to the predefined
subsets.

2.10.6 Part-of-Speech Tags with Features

Status: final · Implementations: pynlpl,libfolia

Part-of-speech tags are a good example of the scenario outlined above. Part-of-
speech tags may consist of multiple features, which in turn may be associated
with specific subsets. Two scenarios can be envisioned, one in which the class
of the pos element combines all features, and one in which it is the foundation
upon which is expanded. Which one is used is entirely up to the defined set.

Option one:

<w x m l : i d="example.p.1.s.1.w.2">
<t>boot</ t>
<pos head="N" c l a s s="N(soort,ev,basis,zijd,stan)">

<d e s c>Noun , s i n g u l a r , neuter</ d e s c>
< f e a t s u b s e t="ntype" c l a s s="soort" />
< f e a t s u b s e t="number" c l a s s="ev" />
< f e a t s u b s e t="degree" c l a s s="basis" />
< f e a t s u b s e t="gender" c l a s s="zijd" />
< f e a t s u b s e t="case" c l a s s="stan" />

</ pos>
</w>

In FoLiA, this attribute head is a predefined subset “head” of whatever set you
defined. This would thus be equal to:

< f e a t s u b s e t="head" c l a s s="N" />

Option two:

<w x m l : i d="example.p.1.s.1.w.2">
<t>boot</ t>
<pos c l a s s="N">

<d e s c>Noun , s i n g u l a r , neuter</ d e s c>
< f e a t s u b s e t="ntype" c l a s s="soort" />
< f e a t s u b s e t="number" c l a s s="ev" />
< f e a t s u b s e t="degree" c l a s s="basis" />

80

< f e a t s u b s e t="gender" c l a s s="zijd" />
< f e a t s u b s e t="case" c l a s s="stan" />

</ pos>
</w>

2.10.7 Metrics

Status: final since v0.9 · Implementations: pynlpl,libfolia

The metric element allows annotation of some kind of measurement. The type of
measurement is defined by the class, which in turn is defined by the set as always.
The metric element has a value attribute that stores the actual measurement,
the value is often numeric but this needs not be the case. It is a higher-level
annotation element that may be used with any kind of annotation.

Example:

<w x m l : i d="example.p.1.s.1.w.2">
<t>boot</ t>
<m e t r i c c l a s s="charlength" v a l u e="4" />
<m e t r i c c l a s s="frequency" v a l u e="0.00232" />

</w>

Example:

<su c l a s s="np"

<w r e f i d="..." />
<w r e f i d="..." />
<m e t r i c c l a s s="length" v a l u e="2" />

</w>

Declaration

<a n n o t a t i o n s>
<m e t r i c−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

81

2.10.8 Corrections

Status: final since v0.4 · Implementations: pynlpl,libfolia

Corrections, including but not limited to spelling corrections, can be annotated
using the correction element. The following example shows a spelling correc-
tion of the misspelled word “treee” to its corrected form “tree”.

<w x m l : i d="example.p.1.s.1.w.1">
<c o r r e c t i o n x m l : i d="TEST -000000001.p.1.s.1.w.1.c.1"

c l a s s="spelling">
<new>

<t>t ree</ t>
</new>
<o r i g i n a l auth="no">

<t>treee</ t>
</ o r i g i n a l>

</ c o r r e c t i o n>
</w>

The class indicates the kind of correction, according to the set used. The new

element holds the actual content of the correction. The original element holds
the content prior to correction. Note that all corrections must carry a unique
identifier. In this example, what we are correcting is the actual textual content,
the text element (t). To facilitate the job of parsers and queriers, the original
element has to be marked as being non-authoritative, using auth="no". This
states that this element and anything below it is not authoritative, meaning
that any text or annotations within do not affect the text or annotations of the
structure element (the word in this case) of which it is a part.

Corrections can be nested and we want to retain a full back-log. The following
example illustrates the word “treee” that has been first mis-corrected to “three”
and subsequently corrected again to “tree”:

<w x m l : i d="example.p.1.s.1.w.1">
<c o r r e c t i o n x m l : i d="TEST -000000001.p.1.s.1.w.1.c.2"

c l a s s="spelling"

a n n o t a t o r="Jane Doe" a n n o t a t o r t y p e="manual"

c o n f i d e n c e="1.0">
<new>

<t>t ree</ t>
</new>
<o r i g i n a l auth="no">

<c o r r e c t i o n x m l : i d="TEST -000000001.p.1.s.1.w.1.c.1"

c l a s s="spelling"

a n n o t a t o r="John Doe" a n n o t a t o r t y p e="manual"

82

c o n f i d e n c e="0.6">
<new>

<t>three</ t>
</new>
<o r i g i n a l auth="no">

<t>treee</ t>
</ o r i g i n a l>

</ c o r r e c t i o n>
</ o r i g i n a l>

</ c o r r e c t i o n>
</w>

In the examples above what we corrected was the actual textual content (t).
However, it is also possible to correct other annotations: The next example cor-
rects a part-of-speech tag; in such cases, there is no t element in the correction,
but simply another token annotation element, or group thereof.

<w x m l : i d="example.p.1.s.1.w.1">
<t>t ree</ t>
<c o r r e c t i o n x m l : i d="TEST -000000001.p.1.s.1.w.1.c.1">

<new>
<pos c l a s s="n" />

</new>
<o r i g i n a l auth="no">

<pos c l a s s="v" />
</ o r i g i n a l>

</ c o r r e c t i o n>

</w>

Corrections need to be be declared:

Declaration

<a n n o t a t i o n s>
<c o r r e c t i o n−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

Error detection

Status: Revised in v0.8.2, no error attribute · Implementations: pynlpl,libfolia

83

Notice
The span annotation element observation (See section 2.7.10)
usually provides a better suited alternative for error detection
than this errordetection element. Consider using it instead.

The correction of an error implies the detection of an error. In some cases, de-
tection comes without correction, for instance when the generation of correction
suggestions is postponed to a later processing stage. The errordetection el-
ement is a very simple element that serves this purpose. It signals the existence
of errors and is a normal token annotation element:

<w x m l : i d="example.p.1.s.1.w.1">
<t>treee</ t>
<e r r o r d e t e c t i o n c l a s s="spelling" a n n o t a t o r="errorlistX" />

</w>

We can also imagine it specifically marking something as not being an error, in
which case a class could be used that denotes the absence of an error. Note that
this class is in no way predefined, but always up to the user and set.

<w x m l : i d="example.p.1.s.1.w.1">
<t>t ree</ t>
<e r r o r d e t e c t i o n c l a s s="noerror" />

</w>

This kind of error detection is very simple and does not provide actual correction
nor suggestions for correction. In some cases, it is desirable to record suggestions
for correction, but without making the actual correction.

Error detection has to be declared seperately from corrections, as they can be
used independently. However, nothing stops you from pointing them both to the
same set.

Declaration

<a n n o t a t i o n s>
<e r r o r d e t e c t i o n −a n n o t a t i o n s e t="http://url/to/your/set" /

>
</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

84

Suggestions for correction

The correction tag can also be used in such situations in which you want to
list suggestions for correction, but not yet commit to any single one. You may
for example want to postpone this actual selection to another module or human
annotator. The output of a speller check is typically a suggestion for correc-
tion. Recall that the actual correction is always included in the “new” tag,
non-committing suggestions are included in the “suggestion” tag. All sugges-
tions may take an ID and may specify an annotator, if no annotator is specified
it will be inherited from the correction element itself. Suggestions never take
sets or classes by themselves, the class and set pertain to the correction as a
whole, and apply to all suggestions within. This implies that you will need mul-
tiple correction elements if you want to make suggestions of very distinct types.
The following example shows two suggestions for correction:

<w x m l : i d="example.p.1.s.1.w.1">
<t>treee</ t>
<c o r r e c t i o n x m l : i d="example.p.1.s.1.w.1.c.1"

c l a s s="spelling" a n n o t a t o r="errorlistX">
<s u g g e s t i o n c o n f i d e n c e="0.8" auth="no">

<t>t ree</ t>
</ s u g g e s t i o n>
<s u g g e s t i o n c o n f i d e n c e="0.2" auth="no">

<t>three</ t>
</ s u g g e s t i o n>

</ c o r r e c t i o n>
</w>

In the situation above we have a possible correction with two suggestions, none
of which has been selected yet. The actual text remains unmodified so there are
no new or original tags. Note that anything in the scope of a suggestion is
by definition non-authoritative and suggestions have to be marked as such using
auth="no" to facilitate the job of parsers.

When an actual correction is made, the correction element changes. It may
still retain the list of suggestions. In the following example, a human annotator
named John Doe took one of the suggestions and made the actual correction:

<w x m l : i d="example.p.1.s.1.w.1">
<c o r r e c t i o n x m l : i d="example.p.1.s.1.w.1.c.1"

c l a s s="spelling" a n n o t a t o r="John Doe"

a n n o t a t o r t y p e="human">
<new>

<t>t ree</ t>
</new>

85

<s u g g e s t i o n a n n o t a t o r="errorlistX" auth="no"

a n n o t a t o r t y p e="auto" c o n f i d e n c e="0.8">
<t>t ree</ t>

</ s u g g e s t i o n>
<s u g g e s t i o n a n n o t a t o r="errorlistX" auth="no"

a n n o t a t o r t y p e="auto" c o n f i d e n c e="0.2">
<t>three</ t>

</ s u g g e s t i o n>
<o r i g i n a l auth="no">

<t>treee</ t>
</ o r i g i n a l>

</ c o r r e c t i o n>
</w>

Something similar may happen when a correction is made on the basis of one
or more kinds of error detection, the correction element directly embeds the
errordetection element:

<w x m l : i d="example.p.1.s.1.w.1">
<c o r r e c t i o n c l a s s="spelling" a n n o t a t o r="John Doe">

<new>
<t>t ree</ t>

</new>
<o r i g i n a l auth="no">

<t>treee</ t>
</ o r i g i n a l>
<e r r o r d e t e c t i o n c l a s s="spelling"

a n n o t a t o r="errorlist" a n n o t a t o r t y p e="auto" />
</ c o r r e c t i o n>

</w>

In the above example, “treee” was detected by an automated error list as being
an error, and was corrected to “tree” by human annotator John Doe.

Merges, Splits and Swaps

Sometimes, one wants to merge multiple tokens into one single new token, or the
other way around; split one token into multiple new ones. The FoLiA format does
not allow you to simply create new tokens and reassign identifiers. Identifiers are
by definition permanent and should never change, as this would break backward
compatibility. So such a change is therefore by definition a correction, and one
uses the correction tag to merge and split tokens.

We will first demonstrate a merge of two tokens (“on line”) into one (“online”).

86

The original tokens are always retained within the original element. First a
peek at the XML prior to merging:

<s x m l : i d="example.p.1.s.1">
<w x m l : i d="example.p.1.s.1.w.1">

<t>on</ t>
</w>
<w x m l : i d="example.p.1.s.1.w.2">

<t> l i n e</ t>
</w>

</ s>

And after merging:

<s x m l : i d="example.p.1.s.1">
<c o r r e c t i o n x m l : i d="example.p.1.s.1.c.1" c l a s s="merge">

<new>
<w x m l : i d="example.p.1.s.1.w.1-2">

<t>o n l i n e</ t>
</w>

</new>
<o r i g i n a l auth="no">

<w x m l : i d="example.p.1.s.1.w.1">
<t>on</ t>

</w>
<w x m l : i d="example.p.1.s.1.w.2">

<t> l i n e</ t>
</w>

</ o r i g i n a l>
</ c o r r e c t i o n>

</ s>

Note that the correction element here is a member of the sentence (s), rather
than the word token (w) as in all previous examples. The class, as always, is just
a fictitious example and users can assign their own according to their own sets.

Now we will look at a split, the reverse of the above situation. Prior to splitting,
assume we have:

<s x m l : i d="example.p.1.s.1">
<w x m l : i d="example.p.1.s.1.w.1">

<t>o n l i n e</ t>
</w>

</ s>

After splitting:

87

<s x m l : i d="example.p.1.s.1">
<c o r r e c t i o n x m l : i d="example.p.1.s.1.c.1" c l a s s="split">

<new>
<w x m l : i d="example.p.1.s.1.w.1_1">

<t>on</ t>
</w>
<w x m l : i d="example.p.1.s.1.w.1_2">

<t> l i n e</ t>
</w>

</new>
<o r i g i n a l auth="no">

<w x m l : i d="example.p.1.s.1.w.1">
<t>o n l i n e</ t>

</w>
</ o r i g i n a l>

</ c o r r e c t i o n>
</ s>

The same principle as used for merges and splits can also be used for performing
“swap” corrections:

<s x m l : i d="example.p.1.s.1">
<c o r r e c t i o n x m l : i d="example.p.1.s.1.c.1" c l a s s="swap">

<new>
<w x m l : i d="example.p.1.s.1.w.2_1">

<t>on</ t>
</w>
<w x m l : i d="example.p.1.s.1.w.1_2">

<t> l i n e</ t>
</w>

</new>
<o r i g i n a l auth="no">

<w x m l : i d="example.p.1.s.1.w.1">
<t> l i n e</ t>

</w>
<w x m l : i d="example.p.1.s.1.w.2">

<t>on</ t>
</w>

</ o r i g i n a l>
</ c o r r e c t i o n>

</ s>

Note that in such a swap situation, the identifiers of the swapped tokens to-
kens are new. They are essentially copies of the originals. Likewise, any token
annotations you want to preserve explicitly need to be copies.

88

Insertions and Deletions

Insertions are words that are omitted in the original and have to be inserted in
correction, while deletions are words that are erroneously inserted in the original
and have to be removed in correction. FoLiA deals with these in a similar way
to merges, splits and swaps. For deletions, the new element is simply empty. In
the following example the word “the” was duplicated and removed in correction:

<s x m l : i d="example.p.1.s.1">
<w x m l : i d="example.p.1.s.1.w.1">

<t>the</ t>
</w>
<c o r r e c t i o n x m l : i d="example.p.1.s.1.c.1" c l a s s="duplicate">

<new/>
<o r i g i n a l auth="no">

<w x m l : i d="example.p.1.s.1.w.2">
<t>the</ t>

</w>
</ o r i g i n a l>

</ c o r r e c t i o n>
<w x m l : i d="example.p.1.s.1.w.3">

<t>man</ t>
</w>

</ s>

For insertions, the original element is empty:

<s x m l : i d="example.p.1.s.1">
<w x m l : i d="example.p.1.s.1.w.1">

<t>the</ t>
</w>
<c o r r e c t i o n x m l : i d="example.p.1.s.1.c.1" c l a s s="duplicate">

<new>
<w x m l : i d="example.p.1.s.1.w.1_1">

<t>old</ t>
</w>

</new>
<o r i g i n a l auth="no"/>

</ c o r r e c t i o n>
<w x m l : i d="example.p.1.s.1.w.2">

<t>man</ t>
</w>

</ s>

Although we limited our discussion to merges, splits, insertions and deletions
applied to words/tokens, they may be applied to any other structural element
just as well.

89

Suggestions for correction: structural changes

The earlier described suggestions for correction can be extended to merges, splits,
insertions and deletions as well. This is done by embedding the newly suggested
structure in suggestion elements. The current version of the structure is moved
to within the scope of a current element.

We illustrate the splitting of online to on line as a suggestion for correction:

<s x m l : i d="example.p.1.s.1">
<c o r r e c t i o n x m l : i d="example.p.1.s.1.c.1" c l a s s="split">

<c u r r e n t>
<w x m l : i d="example.p.1.s.1.w.1">

<t>o n l i n e</ t>
</w>

</ c u r r e n t>
<s u g g e s t i o n auth="no">

<w x m l : i d="example.p.1.s.1.w.1_1">
<t>on</ t>

</w>
<w x m l : i d="example.p.1.s.1.w.1_2">

<t> l i n e</ t>
</w>

</ s u g g e s t i o n>
</ c o r r e c t i o n>

</ s>

Special cases are insertions and deletions. In case of suggested insertions, the
current element is empty (but always present!), in case of deletions, the sugges-
tion element is empty (but always present!).

For non-structural suggestions for correction, we simply have multiple correction
elements if there are suggestions for correction of different classes. When struc-
tural changes are proposed, however, this is not possible, as there can be only
one current element. The remedy here is to nest corrections, a current element
may hold a correction with its own current element, and so on.

We can use suggestions for correction on any structural level; so we can for
instance embed entire sentences or paragraphs within a suggestion. However, this
quickly becomes very verbose and redundant as all the lower levels are copied
for each suggestion. Common structural changes, as we have seen, are splits
and merges. The suggestion element has a special additional facility to signal
splits and merges, using the split and merge attribute, the value of which

90

points to the ID (or IDs, space delimited) of the elements to split or merge with.
When applied to sentences, splits and merges often coincide with an insertion of
punctuation (for a sentence split), or deletion of redundant punctuation (for a
sentence merge). The following two examples illustrate both these cases:

<p x m l : i d="correctionexample.p.2">
<s x m l : i d="correctionexample.p.2.s.1">

<w x m l : i d="correctionexample.p.2.s.1.w.1"><t>I</ t></w>
<w x m l : i d="correctionexample.p.2.s.1.w.2"><t>th ink</ t>

</w>
<c o r r e c t i o n x m l : i d="correctionexample.p.2.correction.1

" c l a s s="redundantpunctuation">
<s u g g e s t i o n auth="no" merge="correctionexample.p

.2.s.2" />
<c u r r e n t>

<w x m l : i d="correctionexample.p.2.s.1.w.3"><t> .
</ t></w>

</ c u r r e n t>
</ c o r r e c t i o n>

</ s>
<s x m l : i d="correctionexample.p.2.s.2">

<w x m l : i d="correctionexample.p.2.s.2.w.1"><t>and</ t></
w>

<w x m l : i d="correctionexample.p.2.s.2.w.2"><t>there f ore
</ t></w>

<w x m l : i d="correctionexample.p.2.s.2.w.3"><t>I</ t></w>
<w x m l : i d="correctionexample.p.2.s.2.w.4"><t>am</ t></w

>
<w x m l : i d="correctionexample.p.2.s.2.w.5"><t> .</ t></w>

</ s>
</p>

<p x m l : i d="correctionexample.p.2">
<s x m l : i d="correctionexample.p.2.s.1">

<w x m l : i d="correctionexample.p.2.s.1.w.1"><t>I</ t></w>
<w x m l : i d="correctionexample.p.2.s.1.w.2"><t>go</ t></w

>
<w x m l : i d="correctionexample.p.2.s.1.w.3"><t>home</ t><

/w>
<c o r r e c t i o n x m l : i d="correctionexample.p.2.correction.1

" c l a s s="missingpunctuation">
<s u g g e s t i o n auth="no" s p l i t ="correctionexample.p

.2.s.1">
<w x m l : i d="correctionexample.p.2.s.1.w.3a"><t>

.</ t></w>
</ s u g g e s t i o n>
<c u r r e n t />

</ c o r r e c t i o n>
<w x m l : i d="correctionexample.p.2.s.1.w.4">

91

<t>you</ t>
<c o r r e c t i o n x m l : i d="correctionexample.p.2.correction

.2" c l a s s="capitalizationerror">
<s u g g e s t i o n auth="no">

<t>You</ t>
</ s u g g e s t i o n>

</ c o r r e c t i o n>
</w>
<w x m l : i d="correctionexample.p.2.s.1.w.5"><t>welcome</

t></w>
<w x m l : i d="correctionexample.p.2.s.1.w.6"><t>me</ t></w

>
<w x m l : i d="correctionexample.p.2.s.1.w.7"><t> .</ t></w>

</ s>
</p>

In the second example, we also add an additional non-structural suggestion for
correction, suggesting to capitalize the first word of what is suggested to become
a new sentence.

Corrections on span annotation

Status: added in v0.11.1 · Implementations: pynlpl,libfolia

All the previous sections focussed on corrections on token annotation, text con-
tent, or structure elements such as words. The correction element, however, is
one of the most ubiquitous elements in FoLiA and can also be used for correcting
span annotation elements, such as named entities. Recall that span annotation
elements are embedded in an annotation layer. The correction element may be
used within such annotation layers, as well as within span elements themselves.
Corrections on span annotation elements can be corrections on either the class
or on the tokens over which the annotation spans, the following two examples
illustrate each of these cases:

<s x m l : i d="example.p.1.s.1">
<t>The Dalai Lama greeted him .</ t>
<w x m l : i d="example.p.1.s.1.w.1"><t>The</ t></w>
<w x m l : i d="example.p.1.s.1.w.2"><t>Dalai</ t></w>
<w x m l : i d="example.p.1.s.1.w.3"><t>Lama</ t></w>
<w x m l : i d="example.p.1.s.1.w.4"><t>greeted</ t></w>
<w x m l : i d="example.p.1.s.1.w.5"><t>him</ t></w>
<w x m l : i d="example.p.1.s.1.w.6"><t> .</ t></w>
< e n t i t i e s>

<c o r r e c t i o n c l a s s="wrongclass">

92

<new>
<e n t i t y x m l : i d="example.p.1.s.1.entity.1.corrected"

c l a s s="person">
<w r e f i d="example.p.1.s.1.w.2" t="Dalai" />
<w r e f i d="example.p.1.s.1.w.3" t="Lama" />

</ e n t i t y>
</new>
<o r i g i n a l auth="no">

<e n t i t y x m l : i d="example.p.1.s.1.entity.1" c l a s s="

organisation">
<w r e f i d="example.p.1.s.1.w.2" t="Dalai" />
<w r e f i d="example.p.1.s.1.w.3" t="Lama" />

</ e n t i t y>
</ o r i g i n a l>

</ c o r r e c t i o n>
</ e n t i t i e s>

</ s>

<s x m l : i d="example.p.1.s.1">
<t>The Dalai Lama greeted him .</ t>
<w x m l : i d="example.p.1.s.1.w.1"><t>The</ t></w>
<w x m l : i d="example.p.1.s.1.w.2"><t>Dalai</ t></w>
<w x m l : i d="example.p.1.s.1.w.3"><t>Lama</ t></w>
<w x m l : i d="example.p.1.s.1.w.4"><t>greeted</ t></w>
<w x m l : i d="example.p.1.s.1.w.5"><t>him</ t></w>
<w x m l : i d="example.p.1.s.1.w.6"><t> .</ t></w>
< e n t i t i e s>

<c o r r e c t i o n c l a s s="wrongclass">
<new>

<e n t i t y x m l : i d="example.p.1.s.1.entity.1.corrected"

c l a s s="person">
<w r e f i d="example.p.1.s.1.w.2" t="Dalai" />
<w r e f i d="example.p.1.s.1.w.3" t="Lama" />

</ e n t i t y>
</new>
<o r i g i n a l auth="no">

<e n t i t y x m l : i d="example.p.1.s.1.entity.1" c l a s s="person"

>
<w r e f i d="example.p.1.s.1.w.1" t="The" />
<w r e f i d="example.p.1.s.1.w.2" t="Dalai" />
<w r e f i d="example.p.1.s.1.w.3" t="Lama" />

</ e n t i t y>
</ o r i g i n a l>

</ c o r r e c t i o n>
</ e n t i t i e s>

</ s>

When correcting span annotation elements that are nested (such as syntax), the

93

child elements are an inherent part of the correction, and will often need to be
duplicated if the correction is on an element higher up in the tree.

2.10.9 Alignments

Status: revised in v0.8 · Implementations: pynlpl,libfolia

FoLiA provides a facility to align parts of your document with other parts of your
document, or even with parts of other FoLiA documents or external resources.
These are called alignments and are implemented using the alignment element.
Within this context, the aref element is used to refer to the aligned FoLiA
elements.

Consider the two following aligned sentences from excerpts of two distinct FoLiA
documents in different languages:

<s x m l : i d="example-english.p.1.s.1">
<t>The Dalai Lama greeted him .</ t>
<a l i g n m e n t c l a s s="french-translation" x l i n k : h r e f="doc-french.

xml"

x l i n k : t y p e="simple">
<a r e f i d="doc-french.p.1.s.1" t="Le Dalai Lama le saluait."

t y p e="s" />
</ a l i g n m e n t>

</ s>

<s x m l : i d="example-french.p.1.s.1">
<t>Le Dalai Lama l e s a l u a i t .</ t>
<a l i g n m e n t c l a s s="english-translation" x l i n k : h r e f="doc-english

.xml"

x l i n k : t y p e="simple">
<a r e f i d="doc-english.p.1.s.1" t="The Dalai Lama greeted

him."

t y p e="s" />
</ a l i g n m e n t>
<a l i g n m e n t c l a s s="dutch-translation" x l i n k : h r e f="doc-dutch.xml

"

x l i n k : t y p e="simple">
<a r e f i d="doc-dutch.p.1.s.1" t="De Dalai Lama begroette

hem."

t y p e="s" />
</ a l i g n m e n t>

</ s>

It is the job of the alignment element to point to the relevant resource, whereas

94

the aref element points to a specific point inside the referenced resource. The
xlink:href attribute is used to link to the target document, if any. If the
alignment is within the same document then it should simply be omitted. The
type attribute on aref specifies the type of element the alignment points too,
i.e. its value is equal to the tagname it points to. The t attribute to the aref

element is merely optional and this overhead is added simply to facilitate the
job of limited FoLiA parsers and provides a quick reference to the target text for
both parsers and human users.

Although the above example has a single alignment reference (aref), it is not
forbidden to specify multiple references within the alignment block.

By default, alignments are between FoLiA documents. It is, however, also possi-
ble to point to resources in different formats. This has to be made explicit using
the format attribute on the alignment element. The value of the format at-
tribute is a MIME type and defaults to text/folia+xml (naming follows RFC
3032). In the following example align a section (div) with the original HTML
document from which the FoLiA document is arrived, and where the section is
expressed with an HTML anchor (a) tag.

<d i v c l a s s="section">
<head>Section 2</ head>
<t>lorum ipsum etc .</ t>
<a l i g n m e n t c l a s s="original" x l i n k : h r e f="http://somewhere/

original.html"

x l i n k : t y p e="simple" fo rmat="text/html">
<a r e f i d="section2" t y p e="a" />

</ a l i g n m e n t>
</ d i v>

For more complex alignments, such as word alignments that include many-to-
one, one-to-many or many-to-many alignments, the element complexalignment
is created, which behaves similarly to a span annotation element. This element
groups alignment elements together, effectively creating a many-to-many align-
ment. The following example illustrates an example similar to the one above. All
this takes place within the complexalignments annotation layer.

<s x m l : i d="example-english.p.1.s.1">
<t>The Dalai Lama greeted him .</ t>
<w x m l : i d="example-english.p.1.s.1.w.1"><t>The</ t></w>
<w x m l : i d="example-english.p.1.s.1.w.2"><t>Dalai</ t></w>
<w x m l : i d="example-english.p.1.s.1.w.3"><t>Lama</ t></w>
<w x m l : i d="example-english.p.1.s.1.w.4"><t>greeted</ t></w>
<w x m l : i d="example-english.p.1.s.1.w.5"><t>him</ t></w>
<w x m l : i d="example-english.p.1.s.1.w.6"><t> .</ t></w>

95

<c o m p l e x a l i g n m e n t s>
<c o m p l e x a l i g n m e n t>

<a l i g n m e n t>
<a r e f i d="example-english.p.1.s.1.w.2" t="Dalai" t y p e="w

">
<a r e f i d="example-english.p.1.s.1.w.3" t="Lama" t y p e="w"

>
</ a l i g n m e n t>
<a l i g n m e n t c l a s s="french-translation" x l i n k : h r e f="doc-

french.xml"

x l i n k : t y p e="simple">
<a r e f i d="example-french.p.1.s.1.w.2" t="Dalai" t y p e="w"

>
<a r e f i d="example-french.p.1.s.1.w.3" t="Lama" t y p e="w">

</ a l i g n m e n t>
</ c o m p l e x a l i g n m e n t>

</ c o m p l e x a l i g n m e n t s>
</ s>

Here aref is used instead of wref, as despite similarities alignments are tech-
nically not exactly span annotation elements. You can in fact align anything
that can carry an ID, within the same document and across multiple documents.
Moreover, the notion of alignments is not limited to just words, and it can be
used for more than specifying translations.

The first alignment element has no xlink reference, and therefore simply refers
to the current document. The second alignment element links to the foreign
document. This notation is powerful as it allows you to specify a large number
of alignments in a concise matter. Consider the next example in which we
added German and Italian, effectively specifying what can be perceived as 16
relationships over four different documents:

<s x m l : i d="example-english.p.1.s.1">
<t>The Dalai Lama greeted him .</ t>
<w x m l : i d="example-english.p.1.s.1.w.1"><t>The</ t></w>
<w x m l : i d="example-english.p.1.s.1.w.2"><t>Dalai</ t></w>
<w x m l : i d="example-english.p.1.s.1.w.3"><t>Lama</ t></w>
<w x m l : i d="example-english.p.1.s.1.w.4"><t>greeted</ t></w>
<w x m l : i d="example-english.p.1.s.1.w.5"><t>him</ t></w>
<w x m l : i d="example-english.p.1.s.1.w.6"><t> .</ t></w>
<c o m p l e x a l i g n m e n t s>

<c o m p l e x a l i g n m e n t>
<a l i g n m e n t c l a s s="english-translation">

<a r e f i d="example-english.p.1.s.1.w.2" t="Dalai" t y p e="w

">
<a r e f i d="example-english.p.1.s.1.w.3" t="Lama" t y p e="w"

>

96

</ a l i g n m e n t>
<a l i g n m e n t c l a s s="french-translation"

x l i n k : h r e f="doc-french.xml"

x l i n k : t y p e="simple">
<a r e f i d="example-french.p.1.s.1.w.2" t="Dalai" t y p e="w"

>
<a r e f i d="example-french.p.1.s.1.w.3" t="Lama" t y p e="w">

</ a l i g n m e n t>
<a l i g n m e n t c l a s s="german-translation"

x l i n k : h r e f="doc-german.xml"

x l i n k : t y p e="simple">
<a r e f i d="example-german.p.1.s.1.w.2" t="Dalai" t y p e="w"

>
<a r e f i d="example-german.p.1.s.1.w.3" t="Lama" t y p e="w">

</ a l i g n m e n t>
<a l i g n m e n t c l a s s="italian-translation"

x l i n k : h r e f="doc-italian.xml"

x l i n k : t y p e="simple">
<a r e f i d="example-italian.p.1.s.1.w.2" t="Dalai" t y p e="w

">
<a r e f i d="example-italian.p.1.s.1.w.3" t="Lama" t y p e="w"

>
</ a l i g n m e n t>

</ c o m p l e x a l i g n m e n t>
</ c o m p l e x a l i g n m e n t s>

</ s>

Now you can even envision a FoLiA document that does not hold actual content,
but acts merely as a document containing all alignments between for example
different translations of the document. Allowing for all relations to be contained
in a single document rather than having to be made explicit in each language
version.

The complexalignment element itself may also take a set, which is independent
from the alignment set. They thus also have two separate declarations.

It should also be noted that all span annotation elements can directly take aref

elements, without alignment elements, to facilitate alignments of span anno-
tation elements with other span annotation elements. An example of this was
already seen in Section 2.7.3.

97

2.10.10 Aligned Corrections

Status: PROPOSAL in FoLiA v0.9 · Implementations: no

The element alignedcorrection, within the annotation layer alignedcorrections,
is a specific kind of alignment that allows you to specify dependency relations
between two or more corrections, or their suggestions. Consider the erroneous
Dutch sentence “Toen ik naar binnen gingen”, which has a concordancy error
and could be either “Toen ik naar binnen ging” or “Toen wij naar binnen gingen”:

<s>
<w x m l : i d="example.s.1.w.1"><t>Toen</ t></w>
<c o r r e c t i o n x m l : i d="correction.1a"

c l a s s="persoonsvorm_onderwerp_mismatch">
<o r i g i n a l>

<w x m l : i d="example.s.1.w.2"><t> i k</ t></w>
</ o r i g i n a l>
<s u g g e s t i o n x m l : i d="correction.1a.suggestion.A">

<w x m l : i d="example.s.1.w.2a"><t> i k</ t></w>
</ s u g g e s t i o n>
<s u g g e s t i o n x m l : i d="correction.1a.suggestion.B">

<w x m l : i d="example.s.1.w.2a"><t>w i j</ t></w>
</ s u g g e s t i o n>

</ c o r r e c t i o n>
<w x m l : i d="example.s.1.w.3"><t>naar</ t></w>
<w x m l : i d="example.s.1.w.4"><t>binnen</ t></w>
<c o r r e c t i o n x m l : i d="correction.1b"

c l a s s="persoonsvorm_onderwerp_mismatch" >
<o r i g i n a l>

<w x m l : i d="example.s.1.w.5"><t>gingen</ t></w>
</ o r i g i n a l>
<s u g g e s t i o n x m l : i d="correction.1b.suggestion.A">

<w x m l : i d="example.s.1.w.2a"><t>ging</ t></w>
</ s u g g e s t i o n>
<s u g g e s t i o n x m l : i d="correction.1b.suggestion.B">

<w x m l : i d="example.s.1.w.2a"><t>gingen</ t></w>
</ s u g g e s t i o n>

</ c o r r e c t i o n>
<a l i g n e d c o r r e c t i o n s>

<a l i g n e d c o r r e c t i o n
c l a s s="persoonsvorm_onderwerp_mismatch">

<a r e f i d="correction.1a" t y p e="correction" />
<a r e f i d="correction.1b" t y p e="correction" />
<a l i g n e d s u g g e s t i o n>

<a r e f i d="correction.1a.suggestion.A" t y p e="suggestion

" />
<a r e f i d="correction.1b.suggestion.A" t y p e="suggestion

" />

98

</ a l i g n e d s u g g e s t i o n>
<a l i g n e d s u g g e s t i o n>

<a r e f i d="correction.1a.suggestion.B" t y p e="suggestion

" />
<a r e f i d="correction.1b.suggestion.B" t y p e="suggestion

" />
</ a l i g n e d s u g g e s t i o n>

</ a l i g n e d c o r r e c t i o n>
</ a l i g n e d c o r r e c t i o n s>

</ s>

The metacorrection has alignment references the correction elements that form
a part of it. It can optionally also include alignedsuggestion elements which
in turn contain alignment references the parts that form the suggestions.

2.10.11 Translations

In Section 2.10.9 shows that alignments are an excellent tool for specifying trans-
lations. Section 2.5.14 shows how to use this in combination with the entry

element to form dictionaries.

For situations in which alignments seem overkill, a simple multi-document mech-
anism is available. This mechanism is based purely on convention: It assumes
that structural elements that are translations simply share the same ID. This
approach is quite feasible when used on higher-level structural elements, such as
divisions, paragraphs, events or entries.

2.10.12 Text Content

Status: final since v0.6 · Implementations: pynlpl,libfolia

In Section 2.5.1 we have seen the text content element t. This element can
be associated with structural elements such as w, s, and p. The offset at-
tribute may be used to explicitly link the text between child and parent. This is
demonstrated on three levels in the following example:

<p x m l : i d="example.p.1">
<t>Hello . This i s a sentence . Bye !</ t>
<s x m l : i d="example.p.1.s.1">

<t o f f s e t="7">This i s a sentence .</ t>
<w x m l : i d="example.p.1.s.1.w.1"><t o f f s e t="0">This</ t></w>

99

<w x m l : i d="example.p.1.s.1.w.2"><t o f f s e t="5"> i s</ t></w>
<w x m l : i d="example.p.1.s.1.w.3"><t o f f s e t="8">a</ t></w>
<w x m l : i d="example.p.1.s.1.w.4" s p a c e="no">
<t o f f s e t="10">sentence</ t>

</w>
<w x m l : i d="example.p.1.s.1.w.5"><t o f f s e t="18"> .</ t></w>

</ s>
</p>

Moreover, we have seen the space attribute, which is a simple alternative that
can be used to reconstruct the untokenised text if it is not explicitly provided in
a parent’s t element. Allowed values for space are:

• “yes” or “ ” (a space) – This is the default and says that the token is
followed by a single space.

• “no” or “” (empty) – This states that the token is not followed by a space.

• any other character or string – This states that the token is followed by
another character or string that acts as a token separator.

When explicit text content on sentence/paragraph level is provided, offsets can
be used to refer back to it from deeper text-content elements. This does imply
that there are some challenges to solve. First of all, by default, the offset refers
to the direct parent of whatever text-supporting element the text content (t)
is a member of. If a level is missing we have to explicitly specify this reference
using the ref attribute. Note that there is no text content for the sentence in
the following example, and we refer directly to the paragraph’s text:

<p x m l : i d="example.p.1">
<t>Hello . This i s a sentence . Bye !</ t>
<s x m l : i d="example.p.1.s.1">

<w x m l : i d="example.p.1.s.1.w.1">
<t r e f="example.p.1" o f f s e t="7">This</ t>

</w>
<w x m l : i d="example.p.1.s.1.w.2">
<t r e f="example.p.1" o f f s e t="12"> i s</ t>

</w>
<w x m l : i d="example.p.1.s.1.w.3">
<t r e f="example.p.1" o f f s e t="15">a</ t>

</w>
<w x m l : i d="example.p.1.s.1.w.4" s p a c e="no">
<t r e f="example.p.1" o f f s e t="17">sentence</ t>

</w>

100

<w x m l : i d="example.p.1.s.1.w.5">
<t r e f="example.p.1" o f f s e t="25"> .</ t>

</w>
</ s>

</p>

Note that text content is always expected to be untokenised, except in w tags as it
by definition is the tokenisation layer. Text-content elements may never be empty
nor contain only whitespace or non-printable characters, in such circumstances
you simply omit the text-content element alltogether.

It is possible to associate multiple text-content elements with the same element,
and thus associating multiple texts with the same element. You may wonder what
could possibly be the point of such extra complexity. But there is a clear use-
case when dealing with for example corrections, or wanting to associate the text
version just prior or after a processing step such as Optical Character Recognition
or another kind of normalisation.

Corrections are challenging because they can be applied to text content and thus
change the text. Corrections are often applied on the token level (within w tags),
but you may want them propagated to the text content of sentences or para-
graphs whilst at the same time wanting to retain the text how it originally was.
This can be accomplished by introducing text content of a different class. Text
content that has no associated class obtains the “current” class by default, it is
expected to always be up-to-date. There is a notable exception: text content
that appears within the scope of original elements within a correction el-
ement automatically adopts the “original” class.9 This thus implies that in this
rare case, FoLiA actually pre-defines classes (i.e: “original” and “current”)! In
addition to these two pre-defined classes, any other custom classes may be added
as you see fit. If you add custom classes, you need a declaration, otherwise it
may be omitted:

Declaration

<a n n o t a t i o n s>
<t e x t−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

9For more deeply nested original elements, you will have to assign your own classes if
you do not want them to take the “original” class.

101

Below is an example illustrating the usage of multiple classes. To show the
flexibility, offsets are added, but these are of course always optional. Note that
when an offset is specified, it always refers to a text-content element of the same
class!

<p x m l : i d="example.p.1">
<t>Hello . This i s a sentence . Bye !</ t>
<t c l a s s="original">Hello . This i z a sentence . Bye !</ t>
<s x m l : i d="example.p.1.s.1">

<t o f f s e t="7">This i s a sentence .</ t>
<t c l a s s="original" o f f s e t="7">This i s a sentence .</ t>
<w x m l : i d="example.p.1.s.1.w.1">

<t o f f s e t="0">This</ t>
</w>
<w x m l : i d="example.p.1.s.1.w.2">

<c o r r e c t i o n>
<new>

<t o f f s e t="5"> i s</ t>
</new>
<o r i g i n a l auth="no">

<t o f f s e t="5"> i z</ t>
<!−− Note tha t t h i s e l ement has c l a s s ’original’ by

d e f i n i t i o n ! −−>
</ o r i g i n a l>
</ c o r r e c t i o n>

</w>
<w x m l : i d="example.p.1.s.1.w.3">

<t o f f s e t="8">a</ t>
</w>
<w x m l : i d="example.p.1.s.1.w.4" s p a c e="no">

<t o f f s e t="10">sentence</ t>
</w>
<w x m l : i d="example.p.1.s.1.w.5">

<t o f f s e t="48"> .</ t>
</w>

</ s>
</p>

In the above example, the correction is explicit, in the next example, it is implicit.
Furthermore, to illustrate how you could use other custom classes, the next
example introduces a custom “ocroutput” class that shows the (fictitious) output
of an OCR system prior to some implicit correction stage.

<p x m l : i d="example.p.1">
<t>Hello . This i s a sentence . Bye !</ t>
<t c l a s s="original">Hello . This i z a sentence . Bye !</ t>
<t c l a s s="ocroutput">Hell0 Th1s i z a sentence , Bye1</ t>
<s x m l : i d="example.p.1.s.1">

102

<t o f f s e t="7">This i s a sentence .</ t>
<t c l a s s="original" o f f s e t="7">This i s a sentence .</ t>
<t c l a s s="ocroutput" o f f s e t="6">Th1s i z a sentence ,</ t>
<w x m l : i d="example.p.1.s.1.w.1">
<t o f f s e t="0">This</ t>
<t c l a s s="ocroutput" o f f s e t="0">Th1s</ t>

</w>
<w x m l : i d="example.p.1.s.1.w.2">

<t o f f s e t="5"> i s</ t>
<t o f f s e t="5" c l a s s="original"> i z</ t>
<t o f f s e t="5" c l a s s="ocroutput"> i z</ t>

</w>
<w x m l : i d="example.p.1.s.1.w.3">
<t o f f s e t="8">a</ t>

</w>
<w x m l : i d="example.p.1.s.1.w.4" s p a c e="no">
<t o f f s e t="10">sentence</ t>

</w>
<w x m l : i d="example.p.1.s.1.w.5">
<t o f f s e t="48"> .</ t>
<t o f f s e t="48" c l a s s="original"> .</ t>
<t o f f s e t="48" c l a s s="ocroutput"> ,</ t>

</w>
</ s>

</p>

Last, an important note regarding offsets: all offset values are measured in uni-
code code-points, the first character having index zero. Take special care with
combining diacritical marks versus codepoints that directly integrate the diacrit-
ical mark.

2.10.13 Substrings

Status: final since v0.9.1 · Implementations: pynlpl,libfolia

A str element is available in FoLiA to allow annotations on untokenised sub-
strings. The str element refers to a substring of the text-content (t) element
on the same level and allows the assigning of identifiers to substrings. Consider
the following example:

<p x m l : i d="example.p.1">
<t>Hello . This i s a sentence . Bye !</ t>
< s t r x m l : i d="example.p.1.str.1">

<t o f f s e t="0">Hello</ t>
</ s t r>

103

</p>

In substrings, using an offset attribute on the text-content element enables sub-
strings to be properly positioned with respect to their parent text.

The class current is assigned when no explicit class is mentioned. In case of
multiple t elements the class tells to which t element the substring refers: Both
are covered by the text-annotation declaration. Both the substring element,
as well as the text content element should always carry the same class.

<p x m l : i d="example.p.1">
<t>Hello . This i s a sentence . Bye !</ t>
<t c l a s s="original">Hello . This i z a sentence . Bye !</ t>
<t c l a s s="ocroutput">Hell0 Th1s i z a sentence , Bye1</ t>

< s t r x m l : i d="example.p.1.s.1">
<t c l a s s="ocroutput" o f f s e t="0">Hell0</ t>

</ s t r>

< s t r x m l : i d="example.p.1.s.2">
<t c l a s s="normalised" o f f s e t="0">Hello .</ t>

</ s t r>

< s t r x m l : i d="example.p.1.s.3">
<t o f f s e t="0">Hello .</ t>

</ s t r>
</p>

Relations between the various substrings can be explicitly represented using align-
ments:

<p x m l : i d="example.p.1">
<t>Hello . This i s a sentence . Bye !</ t>
<t c l a s s="original">Hello . This i z a sentence . Bye !</ t>
<t c l a s s="ocroutput">Hell0 Th1s i z a sentence , Bye1</ t>

< s t r x m l : i d="example.p.1.s.1">
<t c l a s s="ocroutput" o f f s e t="0">Hell0</ t>
<a l i g n m e n t>

<a r e f i d="example.p.1.s.2" t y p e="str" />
</ a l i g n m e n t>

</ s t r>

< s t r x m l : i d="example.p.1.s.2">
<t o f f s e t="0">Hello .</ t>
<a l i g n m e n t>

<a r e f i d="example.p.1.s.1" t y p e="str" />
</ a l i g n m e n t>

104

</ s t r>
</p>

Or one string can refer back to two or more different text content elements:

<p x m l : i d="example.p.1">
<t>Hello . This i s a sentence . Bye !</ t>
<t c l a s s="normalised">Hello . This i z a sentence . Bye !</ t>
<t c l a s s="ocroutput">Hell0 Th1s i z a sentence , Bye1</ t>

< s t r x m l : i d="example.p.1.s.1">
<t c l a s s="ocroutput" o f f s e t="0">Hell0</ t>
<t c l a s s="normalised" o f f s e t="0">Hello</ t>

<t o f f s e t="0">Hello .</ t>
</ s t r>

</p>

Substring elements are a form of higher-order annotation, they are similar to
structure annotation but carry several different properties. Unlike structure ele-
ments, substring order does not matter and substrings may overlap. The differ-
ence between w and str has to be clearly understood, the former refers to actual
tokens and supports further token annotation, the latter to untokenised or differ-
ently tokenised substrings.The str element is especially powerful when combined
with alignments, as this allows the user to relate multiple alternative tokenisa-
tions. This is also the limit as to what you can do with differing tokenisations in
FoLiA, as FoLiA only supports one authoritative tokenisation.

The str element does not allow all (extended) token annotations. However,
certain extended token annotations are allowed; such as language identification,
domain identification, metrics and corrections.

The str element has a counterpart in the group of text markup elements: t-str.
See Section 2.10.14. Whilst not as powerful as the str element, it is more
intuitive to use. The following example illustrates both t-str and str, with
proper references making their relation explicit:

<p x m l : i d="example.p.1">
<t><t−s t r i d="example.p.1.str.1">Hello</ t−s t r> . This

i s a sentence . Bye !</ t>
< s t r x m l : i d="example.p.1.str.1">

<t o f f s e t="0">Hello</ t>
</ s t r>

</p>

105

The declaration:

Declaration

<a n n o t a t i o n s>
<s t r i n g−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

2.10.14 Text Markup

Status: new in FoLiA v0.10 · Implementations: pynlpl

The text content element t allows within its scope elements of a certain group;
these are Text Markup elements. The value of any of these elements is always
textual content. Likewise, the elements have in common that in some way they
modify or otherwise apply markup to textual content. Text markup elements
mark certain spans within the text. Elements of this category may be nested.

Text markup elements may carry an optional identifier. However, it may happen
that textual content is repeated on multiple levels, which implies the textual
markup elements are also repeated. However, only one of them may carry the
customary xml:id attribute; duplicates may carry the id reference attribute (in
the FoLiA namespace instead of the XML namespace!) which is interpreted as
a reference. Such an element should be identical to the one it refers to, and
explicitly include the value (if applicable) to facilitate the job of XML parsers.
Certain elements may also use this id reference attribute to refer to structural
elements that cover the very same data. A markup element may thus take either
xml:id or id (a reference to another element); they may never occur together.

Text markup elements may take sets and classes as most other elements, and
any of the remaining common FoLiA attributes may be freely associated with
any of the text-markup elements.

As text markup operates in the scope of the text content element, it is ideally
suited for untokenised text. You should, however, limit your usage of text markup
elements and only use them when other existing annotation elements do not
suffice, or for extra verbosity in addition to existing elements.

106

Each text-markup element, save for one exception, starts with t- and demands
a declaration. The following subsections will discuss the various text markup
elements available.

Style

The text markup element t-style marks a specific portion of textual concent
to be rendered in a specific style. Styles in turn are simply classes in your set,
closely following the FoLiA paradigm. FoLiA does not predefine any actual styles.

<s>
<t>to <t−s t y l e c l a s s="bold">be</ t−s t y l e> or not to be</ t>

</ s>

Text-markup elements may always be nested, as the following example shows:

<s>
<t>to <t−s t y l e c l a s s="italic"><t−s t y l e c l a s s="bold">be
</ t−s t y l e></ t−s t y l e> or not to be</ t>

</ s>

Declaration

<a n n o t a t i o n s>
<s t y l e−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

Available sets

• https://raw.githubusercontent.com/proycon/folia/

master/setdefinitions/style.foliaset.xml – Generic set
definition for styling, defines the classes: strong, emphasis, literal,
highlighted, deleted, inserted, math

(Note: If no usable set exists yet, simply create and use your own)

107

https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/style.foliaset.xml
https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/style.foliaset.xml

Gaps

The text markup element t-gap indicates a gap in the textual content. Either
text is not available or there is a deliberate blank for, for example, fill-in exercises.
It is recommended to provide a textual value when possible, but this is not
required. The following examples show both possibilities:

<s>
<t>to <t−gap x m l : i d="gap.1" c l a s s="fillin">be</ t−gap> or not

to be</ t>
</ s>

<s>
<t>to <t−gap x m l : i d="gap.1" c l a s s="unknown" /> or not to be</ t

>
</ s>

The t-gap element is related to the structural element gap, but offers a more
fine-grained variant. If you find that you want to mark your whole text content
as being a t-gap, then this is a sure sign you should use the structural element
gap instead. The t-gap element may take an ID reference attribute that refers
to a gap element, as shown in the following example:

<s>
<t>to <t−gap i d="gap.1" c l a s s="fillin">be</ t−gap> or not to be

</ t>
<w><t>to</ t></w>
<gap x m l : i d="gap.1"><c o n t e n t>be</ c o n t e n t></ gap>
<w><t>or</ t></w>
<w><t>not</ t></w>
<w><t>to</ t></w>
<w><t>be</ t></w>

</ s>

Being related, the t-gap uses the same declaration as the gap element.

Declaration

<a n n o t a t i o n s>
<gap−a n n o t a t i o n s e t="http://url/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

108

Available sets

• https://raw.githubusercontent.com/proycon/folia/

master/setdefinitions/gaps.foliaset.xml – Generic set
definition for gaps, defines the classes: frontmatter, backmatter,
illegible, inaudible, code, verbatim, other-language, cancelled

(Note: If no usable set exists yet, simply create and use your own)

Substrings

The t-str element relates to the higher-order annotation element str intro-
duced in Section 2.10.13 and shares the same declaration. The id reference
attribute of t-str may therefore refer to the id of a str element. The element
is used to mark arbitrary substrings:

<s>
<t>to <t−s t r x m l : i d="str.1">be</ t−s t r> or not to be</ t>

</ s>

Note that t-str, unlike the str element, does not support overlap due to the
nature of text markup elements.

The following example illustrates both t-str and str, with proper references:

<p x m l : i d="example.p.1">
<t><t−s t r i d="example.p.1.str.1">Hello</ t−s t r> . This

i s a sentence . Bye !</ t>
< s t r x m l : i d="example.p.1.str.1">
<t o f f s e t="0">Hello</ t>

</ s t r>
</p>

The declaration:

<a n n o t a t i o n s>
<s t r i n g−a n n o t a t i o n s e t="http://path/to/your/set" />

</ a n n o t a t i o n s>

109

https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/gaps.foliaset.xml
https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/gaps.foliaset.xml

Error Detection

The text-markup counterpart to the token annotation element errordetection
is t-error. This element may be used to signal errors in text content. Note
that the use of observation (see Section 2.7.10) is preferred when possible.

<s>
<t>to <t−e r r o r x m l : i d="error.1" c l a s s="spelling">bee</ t−e r r o r>
or not to be</ t>

</ s>

<a n n o t a t i o n s>
<e r r o r d e t e c t i o n −a n n o t a t i o n s e t="http://path/to/your/set" />

</ a n n o t a t i o n s>

Correction

Corrections may be expressed using the correction element discussed in Sec-
tion 2.10.8. A text markup counterpart is available in the form of the t-correction
element, which marks specific text as being a correction. The definition is shared
with the correction element and id references may be made to correction ele-
ments, which offer far more expressive power. The example below shows both:

<s>
<t>to <t−c o r r e c t i o n c l a s s="confusible" i d="correction.1"

o r i g i n a l="bee">be</ t−c o r r e c t i o n> or not to be</ t>
<w><t>to</ t></w>
<c o r r e c t i o n c l a s s="confusible" x m l : i d="correction.1">

<new>
<w><t>be</ t></w>

</new>
<o r i g i n a l>

<w><t>bee</ t></w>
</ o r i g i n a l>

</ c o r r e c t i o n>
<w><t>or</ t></w>
<w><t>not</ t></w>
<w><t>to</ t></w>
<w><t>be</ t></w>

</ s>

The t-correction element allows an additional attribute original, which may
be used to record the version prior to correction.

The declaration:

110

Declaration

<a n n o t a t i o n s>
<c o r r e c t i o n−a n n o t a t i o n s e t="http://path/to/your/set" />

</ a n n o t a t i o n s>

(Note: The given sets above are just examples and do not exist, you should either
create and use a set of your own, or pick a suitable existing set, if available)

Available sets

• https://raw.githubusercontent.com/proycon/folia/

master/setdefinitions/spellingcorrection.foliaset.

xml – Generic set definition for correction of orthography.

(Note: If no usable set exists yet, simply create and use your own)

Linebreaks

The element
 may be used both as a structural element as well as a text
markup element. It is not declared.

2.10.15 Hyperlinks

Status: new in FoLiA v0.11.3 · Implementations: pynlpl

Hyperlinks are ubiquitous in documents from the web and are therefore supported
in FoLiA as well. A hyperlink can be defined as a pointer from a span of text to
an external resource. In FoLiA, this method is therefore implemented as a simple
property of text itself. Text content elements (t) as well as any Text Markup
elements that may be contained there in, may act as a hyperlink. The link itself
is implemented through XLink semantics:

<s>
<w><t>The</ t></w>
<w><t>FoLiA</ t></w>
<w><t>website</ t></w>
<w><t> i s</ t></w>
<w><t x l i n k : t y p e="simple" x l i n k : h r e f="http://proycon.github.io/

folia">here</ t></w>

111

https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/spellingcorrection.foliaset.xml
https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/spellingcorrection.foliaset.xml
https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/spellingcorrection.foliaset.xml

<w><t> .</ t></w>
</ s>

Or on a substring in untokenised text:

<s>
<t>The FoLiA website i s <t−s t r x l i n k : t y p e="simple"

x l i n k : h r e f="http://proycon.github.io/folia">here</ t−s t r> .</ t>
</ s>

Before using this, make sure to investigate section 2.5.12 as well. There we
describe a more semantic way of hyperlinking, which uses references (ref ele-
ments) that are actual structure elements. The hyperlinking method described
in this section is of a more text-mark-up or stylistic nature. Actual references are
usually preferred, when applicable.

Another notion of linking is implemented using FoLiA’s alignments (section 2.10.9).
Alignments are actual higher-order annotations that can link anything but it needs
not be reflected in the actual text, whereas the hyperlinks described here and the
references in section ?? do always show in the text.

2.10.16 Foreign Annotation

Status: since v1.2 · Implementations: pynlpl,libfolia

It may happen that you want to include annotation in a different XML scheme
inside FoLiA, for example if FoLiA has no support yet for a particular advanced
type of annotation or if another scheme has already been in use. It is most
suitable for attaching further metadata to arbitrary elements.

The higher-order annotation element foreign-data can be used to accomplish
this. It acts as a container in which annotation in a different XML namespace,
rather than the FoLiA namespace, may occur. The element is allowed almost
anywhere: inside structure annotation, inside token/span annotation, inside other
higher annotation elements, but not inside text content (t), phonetic content
(ph) or text-markup (t-*).

In the following example we attach some foreign metadata in Dublin Core to a
structure element (a division).

<d i v>
<f o r e i g n−data x m l n s : d c="http://purl.org/dc/elements/1.1/">

112

<d c : c r e a t o r>proycon</ d c : c r e a t o r>
<d c : l a n g u a g e>en</ d c : l a n g u a g e>

</ f o r e i g n−data>
<head><t>Chapter One</ t></ head>

</ d i v>

Foreign annotation does not need to be declared and should only be used when no
proper FoLiA solution exists. Generic FoLiA tools and libraries will usually not
process the contents of foreign-data, as it can contain anything by definition.
Special-purpose tools need to be written for your specific use case if you use
foreign-data.

2.11 Metadata

Status: since v0.4 · Implementations: pynlpl,libfolia Status: foreign-data since v1.2 ·
Implementations: pynlpl,libfolia

FoLiA has support for document-wide metadata, most notably the extensive
and mandatory declaration section for all used annotations which you have seen
throughout this documentation. To complement this, there is FoLiA’s native
metadata system, in which simple metadata fields can be defined and used at
will through the meta element. The following example shows this:

<metadata t y p e="native">
<a n n o t a t i o n s>
. .
</ a n n o t a t i o n s>
<meta i d="title">T i t l e of my document</meta>
<meta i d="language">eng</meta>

</ metadata>

The native metadata format just offers a simple key-value store. You can define
fields with custom IDs. FoLiA itself does not predefine any, strictly speaking.
However, the following fields are often used and interpreted by several FoLiA-
capable tools and libraries, and recommended to be used if possible:

• title – The title of the FoLiA document

• language – A language code identifying the language the document is in.
Using either ISO-639-3 or ISO-639-1 is recommended.

113

• date – The date of publication, using YYYY-MM-DD format is recommended.

• publisher – The publishing institution or individual

• license – The type of license of the document (for example: GNU Free
Documentation License)

• direction – Text direction, should be set to rtl (right-to-left) for lan-
guages such as Arabic, Hebrew, Farsi and Urdu.

The native metadata format is deliberately limited, as various other formats
already tackle the metadata issue. FoLiA is able to operate with any other
metadata format, such as for example CMDI [5], or Dublin Core. The type

attribute specifies what metadata format is used. We see it was set to native

for FoLiA’s native metadata format, for foreign formats it can be set to any other
string.

Foreign metadata can be stored in two ways:

1. Externally in a different file

2. Inside the FoLiA document itself

When the metadata is stored externally in a different file, a reference is made
from the src attribute. As shown in the following example:

<metadata t y p e="cmdi" s r c="/path/or/url/to/metadata.cmdi">
<a n n o t a t i o n s>
. .
</ a n n o t a t i o n s>

</ metadata>

If you want to store the metadata in the FoLiA document itself, then the meta-
data must be places inside a foreign-data element. All elements under foreign-
data must be in another XML namespace, that is, not the default FoLiA names-
pace.

<metadata t y p e="dc">
<a n n o t a t i o n s>
. .
</ a n n o t a t i o n s>
<f o r e i g n−data x m l n s : d c="http://purl.org/dc/elements/1.1/">

<d c : i d e n t i f i e r>mydoc</ d c : i d e n t i f i e r>

114

<d c : f o r m a t>text /xml</ d c : f o r m a t>
<d c : t y p e>Example</ d c : t y p e>
<d c : c o n t r i b u t o r>proycon</ d c : c o n t r i b u t o r>
<d c : c r e a t o r>proycon</ d c : c r e a t o r>
<d c : l a n g u a g e>en</ d c : l a n g u a g e>
<d c : p u b l i s h e r>Radboud U n i v e r s i t y</ d c : p u b l i s h e r>
<d c : r i g h t s>p u b l i c Domain</ d c : r i g h t s>

</ f o r e i g n−data>
</ metadata>

2.12 External documents and full stand-off

annotation

Status: v0.11 · Implementations: only partially implemented in pynlpl.format.folia and

libfolia

Although FoLiA is explicitly constructed around a document-centric paradigm
that stores everything in a single file, it does offer mechanisms to employ a setup
that includes subdocuments or splits annotations accross multiple files. These
are two distinct but comparable mechanisms, each with their own uses:

1. Subdocuments - At any point in the FoLiA structure, a reference can
be made to a subdocument, this subdocument may optionally be flagged
for inclusion, which makes available all subdocument data as if they were
contained in the main file. Subdocuments not flagged as such are simple
references.

2. Stand-off documents - Specific annotation types may be split into ex-
ternal documents. These external documents must duplicate a minimal
part of the structure of the main document and may never introduce new
structure.

Working with a single file, as opposed to the mechanisms offered in this section, is
usually recommended. Nevertheless, FoLiA wants to offer the necessary flexibility
for those who need it. Such advanced users must always be aware of the caveats
inherent in working with multiple files:

• Make sure to distribute all applicable files if annotations are split. Always
distribute the main file. only

115

• Make sure all external files describe the same version of the document

• Annotation declarations must be consistent between main file and external
files, and may never clash.

• Not all FoLiA implementations will support this: simple FoLiA libraries and
XPath or XSL based processors may not know how to deal with external
documents.

FoLiA forces a certain level of duplicity/redundancy to make violating these
constraints harder.

The first mechanism, subdocuments, is implemented using the external ele-
ment. This element refers to another FoLiA document and may mark it for
inclusion using the include="yes" attribute. The src attribute may refer to
either a local file or a web-based URL. Consider the following excerpt of a parent
document:

<t e x t>
<d i v>

<head><t>chapter 1</ t></ head>
</ d i v>

<e x t e r n a l s r c="chapter2.xml" i n c l u d e="yes" />
</ t e x t>

The subdocument itself is just like any other normal FoLiA document, including
all the mandatory declarations! Moreover, declarations must not conflict with
any declarations in the parent document, or inclusion will be impossible. The
subdocument may have an optional attribute external="yes", which states
that it is never to be loaded independently, but only when included in another
document. It is possible for multiple parent documents to include the same
subdocument.

<FoLiA i d="chapter2" e x t e r n a l="yes">
<metadata>

<a n n o t a t i o n s>
</ a n n o t a t i o n s>

</ metadata>
<t e x t>

<d i v>
<head><t>chapter 2</ t></ head>

</ d i v>
</ t e x t>

</ FoLiA>

116

When inclusion is enabled through include="yes", FoLiA libraries will make the
contents of the text element available at the exact point where the external

reference is made.This implies that the elements contained under text must be
valid in the context in which they are placed. If include="no" or unset, the
external element acts as a mere reference.

Note that a structure element is required in subdocuments, the following main
and subdocument are invalid! Invalid main document excerpt:

<w x m l : i d="example.w.1">
<t>house</ t>
<e x t e r n a l s r c="chapter2.xml" i n c l u d e="yes" />

</w>

Invalid subdocument:

<FoLiA i d="chapter2">
<metadata>

<a n n o t a t i o n s>
<pos−a n n o t a t i o n s e t=".." />

</ a n n o t a t i o n s>
</ metadata>
<t e x t>

<pos c l a s s="N" />
</ t e x t>

</ FoLiA>

Similarly, using the external element for including annotation layers is invalid
too. This is the case because such cases fall in the second category, Stand-off
documents instead of Subdocuments, which follow a slightly different syntax:

Stand-off documents are not included by means of the external element, but are
associated directly in the declaration section of the main document through an
external attribute. Stand-off documents must replicate at least a minimal part
of the structure of the main document and must always have external="yes"

set. A stand-off document may not introduce new structure elements as was the
case with subdocuments. Main document excerpt:

<FoLiA i d="main">
<metadata>

<a n n o t a t i o n s>
<pos−a n n o t a t i o n s e t="http://../adhoc-pos.xml" e x t e r n a l="

pos.xml" />
</ a n n o t a t i o n s>

</ metadata>
<t e x t>

<p i d="example.p.1">

117

<s i d="example.p.1.s.1">
<t>The big house</ t>
<w x m l : i d="example.p.1.w.1">

<t>The</ t>
</w>
<w x m l : i d="example.p.1.w.2">

<t>big</ t>
</w>
<w x m l : i d="example.p.1.w.3">

<t>house</ t>
</w>

</ s>
</p>

</ t e x t>
</ FoLiA>

The stand-off document would then for example look like this, replicating only a
minimal part, the deepest relevant layer, of the structure:

<FoLiA i d="main" e x t e r n a l="yes">
<metadata>

<a n n o t a t i o n s>
<pos−a n n o t a t i o n s e t="http://../adhoc-pos.xml" />

</ a n n o t a t i o n s>
</ metadata>
<t e x t>

<w x m l : i d="example.p.1.w.1">
<pos c l a s s="det">

</w>
<w x m l : i d="example.p.1.w.2">

<pos c l a s s="adj">
</w>
<w x m l : i d="example.p.1.w.3">

<pos c l a s s="n">
</w>

</ t e x t>
</ FoLiA>

Any other type of annotation present in this document will be ignored. Only the
type for which it is expliclitly referred to from the parent document is loaded.
This does open up the interesting option of using the same stand-off document
for multiple annotation types. Consider the main document declaration were as
follows:

<metadata>
<a n n o t a t i o n s>

<pos−a n n o t a t i o n s e t="http://../adhoc-pos.xml" e x t e r n a l="

poslemma.xml" />

118

<lemma−a n n o t a t i o n s e t="http://../adhoc-lemma.xml"

e x t e r n a l="poslemma.xml" />
</ a n n o t a t i o n s>

</ metadata>
</ FoLiA>

The stand-off document could then include both:

<FoLiA i d="main" e x t e r n a l="yes">
<metadata>

<a n n o t a t i o n s>
<pos−a n n o t a t i o n s e t="http://../adhoc-pos.xml" />
<lemma−a n n o t a t i o n s e t="http://../adhoc-lemma.xml" />

</ a n n o t a t i o n s>
</ metadata>
<t e x t>

<w x m l : i d="example.p.1.w.1">
<pos c l a s s="det">
<lemma c l a s s="the" />

</w>
<w x m l : i d="example.p.1.w.2">

<pos c l a s s="adj">
<lemma c l a s s="big" />

</w>
<w x m l : i d="example.p.1.w.3">

<pos c l a s s="n">
<lemma c l a s s="house" />

</w>
</ t e x t>

</ FoLiA>

Of course, stand-off documents work for span annotation as well. In this case
it is always required to specify a full annotation layer. The items referred to
with wref (or aref for that matter) need not exist in the stand-off document
as long as they exist in the parent. This is a general principle that applies to all
documents marked with external="yes". In the library implementation they
share an ID index with their parent.

Consider the following excerpt of the same main document as in the previous
examples:

<metadata>
<a n n o t a t i o n s>

<syntax−a n n o t a t i o n s e t="http://../adhoc-syntax.xml"

e x t e r n a l="syntax.xml" />
</ a n n o t a t i o n s>

</ metadata>
</ FoLiA>

119

And here the stand-off document:

<FoLiA i d="main" e x t e r n a l="yes">
<metadata>

<a n n o t a t i o n s>
<syntax−a n n o t a t i o n s e t="http://../adhoc-syntax.xml"

e x t e r n a l="syntax.xml" />
</ a n n o t a t i o n s>

</ metadata>
<t e x t>

<s x m l : i d="example.p.1.s.1">
<s y n t a x>
<su c l a s s="np">

<su c l a s s="det">
<w r e f i d="example.p.1.w.1" />

</ su>
<su c l a s s="np">

<su c l a s s="adj">
<w r e f i d="example.p.1.w.2" />

</ su>
<su c l a s s="n">

<w r e f i d="example.p.1.w.3" />
</ su>

</ su>
</ su>

</ s y n t a x>
</ s>

</ t e x t>
</ FoLiA>

Note that in the above example, we did minimal duplication of the structure by
copying the sentence element. This allows us to still adhere to the convention
of locality FoLiA follows, the notion of embedding layers in-line in the deepest
elements possible according to the scope. This is, however, not a requirement
and the document would still be valid and describe the same situation if the s

element were omitted alltogether.

There is no declaration necessary for the use of the external element or at-
tribute. However, stand-off documents and subdocuments with external="yes"

may not themselves make use of neither the external element in their structure,
nor attribute on declarations. That privelege is reserved for the main document.
The sole exception are subdocuments not marked with external="yes", as they
can act as fully independent. Needless to say, circular references are forbidden in
such cases.

120

Chapter 3

Set Definition Format

Status: Final since v0.10.1 · Implementations: pynlpl

3.1 Introduction

The FoLiA format consists not just out of the Document Format discussed in
the previous chapter, but also of a Set Definition Format. The document format
is agnostic about all sets and the classes therein; it is the Set Definition Format
that defines precisely what classes are allowed in a certain set, including any
subsets.

Recall from Section 2.4 that all sets used need to be declared in the document
header and that they point to URLs holding a FoLiA set definition. If no set
definition files are associated, then a full in-depth validation cannot take place.

3.2 Types and Classes

The set definition format is fairly straightforward, each set definition file repre-
sents one set, including all of its subsets.

Here is a simple example:

<s e t x m l : i d="simplepos" t y p e="closed"

121

l a b e l="Simple Part-of-Speech">
<c l a s s x m l : i d="N" l a b e l="Noun" />
<c l a s s x m l : i d="V" l a b e l="Verb" />
<c l a s s x m l : i d="A" l a b e l="Adjective" />

</ s e t>

The ID of the class determines a value the class attribute may take in the FoLiA
document, for elements of this set. The label attribute, both on the set itself
as well as the classes, carries a human readable description for presentational
purposes, this is optional but highly recommended.

There are three possible types for sets and subsets:

1. open: classes may be anything and are not defined

2. closed: classes are defined strictly

3. mixed: classes may be anything, but some are predefined

A set definition file for an open type set definition may be as concise as:

<s e t x m l : i d="lemmas-nl" t y p e="open" />

3.3 Concept Link

You may want to associate classes, or even sets themselves, with some kind
of external ontology or category registry. This link can be made using the
conceptlink attribute which may be placed on classes, sets and subset ele-
ments.

<s e t x m l : i d="simplepos" t y p e="closed"

c o n c e p t l i n k="http://some/host/simplepos">
<c l a s s x m l : i d="N" l a b e l="Noun"

c o n c e p t l i n k="http://some/host/noun" />
<c l a s s x m l : i d="V" l a b e l="Verb"

c o n c e p t l i n k="http://some/host/verb" />
<c l a s s x m l : i d="A" l a b e l="Adjective"

c o n c e p t l i n k="http://some/host/adj" />
</ s e t>

122

FoLiA does not dictate any format requirements for conceptual links, it can be
anything, such as an RDF resource, or any other kind. If you want something
more specific, or you want to link to multiple semantic resources, simply use your
own “conceptlink” attribute in a different custom XML namespace.

3.4 Class Hierarchy

In FoLiA Set Definitions, classes can be nested to create more complex hierarchies
or taxonomy trees, in which both nodes and leaves act as valid classes. Consider
the following set definition for named entities, in which the location class has
been extended into more fine-grained subclasses.

<s e t x m l : i d="namedentities" t y p e="closed">
<c l a s s x m l : i d="per" l a b e l="Person" />
<c l a s s x m l : i d="org" l a b e l="Organisation" />
<c l a s s x m l : i d="loc" l a b e l="Location">

<c l a s s x m l : i d="loc.country" l a b e l="Country" />
<c l a s s x m l : i d="loc.street" l a b e l="Street" />
<c l a s s x m l : i d="loc.building" l a b e l="Building">

<c l a s s x m l : i d="loc.building.hospital" l a b e l="Hospital" />
<c l a s s x m l : i d="loc.building.church" l a b e l="Church" />
<c l a s s x m l : i d="loc.building.station" l a b e l="Station" />

</ c l a s s>
</ c l a s s>

</ s e t>

It is recommended, but not mandatory, to set the class ID of any nested classes
to represent a full path, as a full path makes substring queries possible. FoLiA,
however, does not dictate this and neither does it prescribe a delimiter for such
paths, so the period in the above example is merely a convention. Each ID,
however, does have to be unique in the entire set.

3.5 Subsets

Section 2.10.5 introduced subsets. These can be defined in a similar fashion to
sets and also carry a type attribute:

<s e t x m l : i d="simplepos" t y p e="closed">
<c l a s s x m l : i d="N" l a b e l="Noun" />
<c l a s s x m l : i d="V" l a b e l="Verb" />

123

<c l a s s x m l : i d="A" l a b e l="Adjective" />
<s u b s e t x m l : i d="gender" c l a s s="closed">

<c l a s s x m l : i d="m" l a b e l="Masculine" />
<c l a s s x m l : i d="f" l a b e l="Feminine" />
<c l a s s x m l : i d="n" l a b e l="Neuter" />

</ s u b s e t>
</ s e t>

It is possible for subsets to be used multiple times if the subset is declared with
the attribute multi set to true (defaults to false). This allows multiple classes
to be associated with a subset. Subsets can be made mandatory by setting the
attribute required to true.

3.6 Constraints

Not all classes in subsets can be combined with others. Often the need arises to
put constraints on which classes can go together. The previous example already
illustrates this. For many languages, the “gender” subset does not make sense
with verbs. We can put a constraint on the usage of this subset, limiting its
usage to nouns and adjectives:

<s e t x m l : i d="simplepos" t y p e="closed">
<c l a s s x m l : i d="N" l a b e l="Noun" />
<c l a s s x m l : i d="V" l a b e l="Verb" />
<c l a s s x m l : i d="A" l a b e l="Adjective" />
<s u b s e t x m l : i d="gender" c l a s s="closed">

<c o n s t r a i n t>
< r e s t r i c t c l a s s="N" />
< r e s t r i c t c l a s s="A" />

</ c o n s t r a i n t>
<c l a s s x m l : i d="m" l a b e l="Masculine" />
<c l a s s x m l : i d="f" l a b e l="Feminine" />
<c l a s s x m l : i d="n" l a b e l="Neuter" />

</ s u b s e t>
</ s e t>

For the sake of brevity, constraints can be named and referred to when they are
needed multiple times.

<s e t x m l : i d="simplepos" t y p e="closed">
<c l a s s x m l : i d="N" l a b e l="Noun" />
<c l a s s x m l : i d="V" l a b e l="Verb" />
<c l a s s x m l : i d="A" l a b e l="Adjective" />
<s u b s e t x m l : i d="gender" c l a s s="closed">

124

<c o n s t r a i n t name="constraint.1">
< r e s t r i c t c l a s s="N" />
< r e s t r i c t c l a s s="A" />

</ c o n s t r a i n t>
<c l a s s x m l : i d="m" l a b e l="Masculine" />
<c l a s s x m l : i d="f" l a b e l="Feminine" />
<c l a s s x m l : i d="n" l a b e l="Neuter" />

</ s u b s e t>
<s u b s e t x m l : i d="case" c l a s s="closed">

<c o n s t r a i n t r e f="constraint.1" />
<c l a s s x m l : i d="nom" l a b e l="Nominative" />
<c l a s s x m l : i d="gen" l a b e l="Genitive" />
<c l a s s x m l : i d="dat" l a b e l="Dative" />
<c l a s s x m l : i d="acc" l a b e l="Accusative" />

</ s u b s e t>
</ s e t>

Constraints can be used within subsets, but also within classes:

<s e t x m l : i d="simplepos" t y p e="closed">
<c l a s s x m l : i d="N" l a b e l="Noun" />
<c l a s s x m l : i d="V" l a b e l="Verb" />
<c l a s s x m l : i d="A" l a b e l="Adjective" />
<s u b s e t x m l : i d="gender" c l a s s="closed">

<c l a s s x m l : i d="m" l a b e l="Masculine">
<c o n s t r a i n t name="constraint.1">

< r e s t r i c t c l a s s="N" />
< r e s t r i c t c l a s s="A" />

</ c o n s t r a i n t>
</ c l a s s>

</ s u b s e t>
</ s e t>

Using the restrict element, you force a certain class from the main set or any
subset, thus enumerating all the allowed classes. For example, the following con-
straint demands masculine or feminine nouns in either nominative or accusative
case. All of the restrictions must be satisfied for the constraint to match, re-
strictions on the same subset (or the main set if no subset is specified) are
automatically considered as disjunctions.

< r e s t r i c t c l a s s="N" />
< r e s t r i c t s u b s e t="gender" c l a s s="f" />
< r e s t r i c t s u b s e t="gender" c l a s s="m" />
< r e s t r i c t s u b s e t="case" c l a s s="nom" />
< r e s t r i c t s u b s e t="case" c l a s s="acc" />

</ c o n s t r a i n t>

125

Disjunctions, over different subsets, can be made explicitly using the disjunction
element. The following would be constrained to feminine nouns or plural nouns,
rather than feminine plural nouns if the disjunction element were not present:

<c o n s t r a i n t>
< r e s t r i c t c l a s s="N" />

<d i s j u n c t i o n>
< r e s t r i c t s u b s e t="gender" c l a s s="f" />
< r e s t r i c t s u b s e t="number" c l a s s="plural" />

</ d i s j u n c t i o n>
</ c o n s t r a i n t>

You can also opt to specify the “forbidden” classes using except. Only if not a
single one of the exceptions applies, the constraint is met.

<e x c e p t c l a s s="V" />
<e x c e p t c l a s s="A" />
<e x c e p t s u b s e t="gender" c l a s s="n" />
<e x c e p t s u b s e t="case" c l a s s="gen" />
<e x c e p t s u b s e t="case" c l a s s="dat" />

</ c o n s t r a i n t>

Restrict and except elements can also be mixed, in which case the constraint
matches if all of the restrictions do, and if none of the exceptions do. Moreover,
disjunctions can be nested, to form complex constraints.

The required attribute can be used on subsets to indicate whether they are
mandatory or optional, but a more powerful mechanism is available using con-
straints and the require element (or its complement: forbid). The following
example adds a constraint on nouns and requires it to have the gender and
number subsets specified, whereas for verbs, tense and number are required.

<c l a s s="N">
<c o n s t r a i n t>

< r e q u i r e s u b s e t="gender" />
< r e q u i r e s u b s e t="number" />

</ c o n s t r a i n t>
</ c l a s s>
<c l a s s="V">

<c o n s t r a i n t>
< r e q u i r e s u b s e t="tense" />
< r e q u i r e s u b s e t="number" />

</ c o n s t r a i n t>
</ c l a s s>

126

Chapter 4

Querying

4.1 XPath

Considering the fact that FoLiA is an XML-based format, XPath and its deriva-
tives are available as tools for searching in a FoLiA document.

A very common XPath predicate found in many XPath expressions for FoLiA
is not(ancestor-or-self::*/@auth). This exploits the notion of authorita-
tiveness. Certain elements in FoLiA are non-authoritative, which means that
they have no direct bearing on the actual state of the element they describe.
The most notable elements that are non-authoritative are alternatives, sug-
gestions for correction, and the original part of a correction. The predicate
not(ancestor-or-self::*/@auth) guarantees that no elements can be se-
lected that occur within the scope of any non-authoritative element. This pre-
vents selecting for example alternative annotations or annotations that were su-
perseded by a correction step. This is in most cases what the user wants and
why you will find this predicate appended to almost every XPath expression for
FoLiA.

Some common XPath queries are listed below, note that for the sake of brevity
and readability the namespace prefix is omitted. In actual situations you will
have to specify the FoLiA namespace with each element, as XPath unfortunately
has no notion of a default namespace.

• XPath query for all paragraphs:

127

//p[not(ancestor-or-self::*/@auth)]

• XPath query for all sentences:
//s[not(ancestor-or-self::*/@auth) and not(ancestor::quote)]

Explanation: When selecting sentences, you often do not want sub-sentences
that are part of a quote, since they may overlap with the larger sentence
they form a part of. The not(ancestor::quote) predicate guarantees
this cannot happen.

• XPath query for all words:
//w[not(ancestor-or-self::*/@auth)]

• XPath query for the text of all words/tokens:
//w//t[not(ancestor-or-self::*/@auth) and

not(ancestor-or-self::*/morpheme) and not(ancestor-or-self::*/str)

and not(@class)]//text()

Explanation: The not(@class) predicate is important here and makes
sure to select only the “ current” text content element in case there are mul-
tiple text content elements in different classes. (See also Section 2.10.12).
The not(ancestor-or-self::*/morpheme makes sure morphemes are
excluded, not(ancestor-or-self::*/str makes sure strings are ex-
cluded.

• XPath query for all words with lemma X:
//w[.//lemma[@class="X" and not(ancestor-or-self::*/@auth)

and not(ancestor-or-self::*/morpheme)]] Note: This query as-
sumes there is only one declaration for lemma annotation, and the set has
been verified. It furthermore excludes morphemes.

• XPath query for all words with PoS-tag A in set S:
//w[.//pos[@set="S" and @class="A" and

not(ancestor-or-self::*/@auth)]]. Note: This query assumes
the set attribute was set explicitly, i.e. there are multiple possible sets
in the document for this annotation type. This query does not exclude
morphemes.

• XPath query for the text of all words with PoS-tag A in set S:
//w[.//pos[@set="S" and @class="A" and

not(ancestor-or-self::*/@auth)]]//t[not(ancestor-or-self::*/@auth)

and not(@class)]//text() Note: The predicate for non-authoritativeness
here needs to be applied both to the pos element and the text content el-
ement t, otherwise you may accidentally select the text of words which
have the desired pos tag only as an alternative.

128

• XPath query to select all alternative PoS tags for all words: //w/alt/pos

When selecting text elements (t), you generally want to add not(@class)

to the constraint, to select only the text content elements that have not been
assigned an alternative class. Recall that multiple text content may be present,
bearing another class. Omitting this constraint will prevent you from properly
retrieving the current text of a document, as it will also retrieve all this differently
typed text content.

Before you release XPath queries on FoLiA documents, make sure to first parse
the declarations present in the metadata (the annotations block). Verify that
the annotation type with the desired set you are looking for is actually present,
otherwise you need not bother running a query at all. Note that the XPath
expression differs based on whether there is only one set defined for the sought
annotation type, or if there are multiple. In the former case, you cannot use the
@set attribute to select, and in the latter case, you must.

4.2 FoLiA Query Language

Whereas XPath is a very generic query language, the FoLiA Query Language
(FQL) is a very specific language, designed purely for FoLiA. It allows advanced
querying and document editing.

FQL statements are separated by newlines and encoded in UTF-8. The expres-
sions are case sensitive, all keywords are in upper case, all element names and
attributes in lower case.

FQL is also strict about parentheses, they are generally either required or forbid-
den for an expression. Parentheses usually indicate a sub-expression, and it is
also used in boolean logic.

As a general rule, it is more efficient to do a single big query than multiple
standalone queries.

Note that for readability, queries may have been split on multiple lines in the
presentation here, whereas in reality they should be on one.

129

4.2.1 Global variables

• SET variable=value - Sets global variables that apply to all statements
that follow. String values need to be in double quotes. Available variables
are:

• annotator - The name of the annotator

• annotatortype - The type of the annotator, can be *auto* or *manual*

Usually your queries on a particular annotation type are limited to one specific
set. To prevent having to enter the set explicitly in your queries, you can set
defaults. The annotation type corresponds to a FoLiA element::

DEFAULTSET e n t i t y https : / / raw . githubusercontent . com/ proycon /
f o l i a /master/ s e t d e f i n i t i o n s / namedentitycorrect ion . f o l i a s e t .
xml

If the FoLiA document only has one set of that type anyway, then this is not
even necessary and the default will be automatically set.

4.2.2 Declarations

All annotation types in FoLiA need to be declared. FQL does this for you auto-
matically. If you make an edit of a previously undeclared set, it will be declared for
you. These default declarations will never assign default annotators or annotator
types.

Explicit declarations are possible using the DECLARE keyword followed by the
annotation type you want to declare, this represented the tag of the respective
FoLiA annotation element::

DECLARE e n t i t y OF "https://github.com/proycon/folia/blob/master/

setdefinitions/namedentities.foliaset.xml"

WITH annotator = "me" annotatortype = "manual"

Note that the statement must be on one single line, it is split here only for ease
of presentation.

The WITH clause is optional, the set following the OF keyword is mandatory.

Declarations may be chained, i.e. multiple DECLARE statements may be issued
on one line, as well as prepended to action statements (see next section).

130

4.2.3 Actions

The core part of an FQL statement consists of an action verb, the following are
available

• SELECT <focus expression> [<target expression>] - Selects an an-
notation

• DELETE <focus expression> [<target expression>] - Deletes an an-
notation

• EDIT <focus expression> [<assignment expression>] [<target expression>]

- Edits an existing annotation

• ADD <focus expression> <assignment expression> <target expression>

- Adds an annotation (to the target expression)

• APPEND <focus expression> <assignment expression> <target expression>

- Inserts an annotation after the target expression

• PREPEND <focus expression> <assignment expression> <target expression>

- Inserts an annotation before the target expression

Following the action verb is the focus expression, this starts with an annotation
type, which is equal to the FoLiA XML element tag. The set is specified using
OF <set> and/or the ID with ID <id>. An example:

pos OF "http://some.domain/some.folia.set.xml"

If an annotation type is already declared and there is only one in document, or
if the DEFAULTSET statement was used earlier, then the OF statement can
be omitted and will be implied and detected automatically. If it is ambiguous,
an error will be raised (rather than applying the query regardless of set).

To further filter a the focus, the expression may consist of a WHERE clause
that filters on one or more FoLiA attributes:

• class

• annotator

• annotatortype

131

• n

• confidence

• src

• speaker

• begintime

• endtime

The following attributes are also available on when the elements contains text
and/or phonetic/phonological content:

• text

• phon

The WHERE statement requires an operator (=,! =,>,<,<=,>=,CONTAINS,MATCHES),
the AND, OR and NOT operators are available (along with parentheses) for
grouping and boolean logic. The operators must never be glued to the attribute
name or the value, but have spaces left and right.

We can now show some examples of full queries with some operators:

• SELECT pos OF "http://some.domain/some.folia.set.xml"

• SELECT pos WHERE class = "n" AND annotator = "johndoe"

• DELETE pos WHERE class = "n" AND annotator != "johndoe"

• DELETE pos WHERE class = "n" AND annotator CONTAINS "john"

• DELETE pos WHERE class = "n" AND annotator MATCHES "^john$"

The ADD and EDIT change actual attributes, this is done in the assignment
expression that starts with the WITH keyword. It applies to all the common
FoLiA attributes like the WHERE keyword, but has no operator or boolean logic,
as it is a pure assignment function.

SELECT and DELETE only support WHERE, EDIT supports both WHERE and
WITH, if both are use they than WHERE is always before WITH. the ADD action

132

supports only WITH. If an EDIT is done on an annotation that can not be found,
and there is no WHERE clause, then it will fall back to ADD.

Here is an EDIT query that changes all nouns in the document to verbs:

EDIT pos WHERE c l a s s = "n" WITH c l a s s "v" AND annotator = "

johndoe"

The query is fairly crude as it still lacks a target expression: A target expression
determines what elements the focus is applied to, rather than to the document as
a whole, it starts with the keyword FOR and is followed by either an annotation
type (i.e. a FoLiA XML element tag) or the ID of an element. The target
expression also determines what elements will be returned. More on this in a
later section.

The following FQL query shows how to get the part of speech tag for a word:

SELECT pos FOR ID mydocument . word . 3

Or for all words:

SELECT pos FOR w

The ADD action almost always requires a target expression:

ADD pos WITH c l a s s "n" FOR ID mydocument . word . 3

Multiple targets may be specified, comma delimited:

ADD pos WITH c l a s s "n" FOR ID mydocument . word . 3 , ID myword .
document . word . 2 5

The target expression can again contain a WHERE filter:

SELECT pos FOR w WHERE c l a s s != "PUNCT"

Target expressions, starting with the FOR keyword, can be nested:

SELECT pos FOR w WHERE c l a s s != "PUNCT" FOR event WHERE c l a s s =
"tweet"

You may also use the SELECT keyword without focus expression, but only with
a target expression. This is particularly useful when you want to return multiple
distinct elements, for instance by ID:

SELECT FOR ID mydocument . word . 3 , ID myword . document . word . 2 5

133

The SELECT keyword can also be used with the special ALL selector that
selects all elemens in the scope, the following two statement are identical and
will return all elements in the document:

SELECT ALL
SELECT FOR ALL

It can be used at deeper levels too, the following will return everything under all
words:

SELECT ALL FOR w

Target expressions are vital for span annotation, the keyword SPAN indicates
that the target is a span (to do multiple spans at once, repeat the SPAN keyword
again), the operator & is used for consecutive spans, whereas , is used for disjoint
spans:

ADD e n t i t y WITH c l a s s "person" FOR SPAN ID mydocument . word . 3 &
ID myword . document . word . 2 5

This works with filters too, the & operator enforced a single consecutive span:

ADD e n t i t y WITH c l a s s "person" FOR SPAN w WHERE text = "John" &
w WHERE text = "Doe"

Remember we can do multiple at once:

ADD e n t i t y WITH c l a s s "person" FOR SPAN w WHERE text = "John" &
w WHERE text = "Doe"

SPAN w WHERE text = "Jane" & w WHERE text = "Doe"

The HAS keyword enables you to descend down in the document tree to siblings.
Consider the following example that changes the part of speech tag to ”verb”, for
all occurrences of words that have lemma ”fly”. The parentheses are mandatory
for a HAS statement:

EDIT pos OF "someposset" WITH c l a s s = "v" FOR w WHERE (lemma OF
"somelemmaset" HAS c l a s s "fly")

Target expressions can be former with either FOR or with IN, the difference is
that IN is much stricter, the element has to be a direct child of the element
in the IN statement, whereas FOR may skip intermediate elements. In analogy
with XPath, FOR corresponds to // and IN corresponds to /. FOR and IN
may be nested and mixed at will. The following query would most likely not yield
any results because there are likely to be paragraphs and/or sentences between
the wod and event structures:

134

SELECT pos FOR w WHERE c l a s s != "PUNCT" IN event WHERE c l a s s = "

tweet"

Multiple actions can be combined, all share the same target expressions:

ADD pos WITH c l a s s "n" ADD lemma WITH c l a s s "house" FOR w WHERE
text = "house" OR text = "houses"

It is also possible to nest actions, use parentheses for this, the nesting occurs
after any WHERE and WITH statements:

ADD w ID mydoc . sentence . 1 . word . 1 (ADD t WITH text "house" ADD
pos WITH c l a s s "n") FOR ID mydoc . sentence . 1

Though explicitly specified here, IDs will be automatically generated when nec-
essary and not specified.

The ADD action has two cousins: APPEND and PREPEND. Instead of adding
something in the scope of the target expression, they either append or prepend
an element, so the inserted element will be a sibling:

APPEND w (ADD t WITH text "house") FOR w WHERE text = "the"

This above query appends/inserts the word ”house” after every definite article.

4.2.4 Text

Our previous examples mostly focussed on part of speech annotation. In this
section we look at text content, which in FoLiA is an annotation element too
(t).

Here we change the text of a word:

EDIT t WITH text = "house" FOR ID mydoc . word . 4 5

Here we edit or add (recall that EDIT falls back to ADD when not found and
there is no further selector) a lemma and check on text content:

EDIT lemma WITH c l a s s "house" FOR w WHERE text = "house" OR text
= "houses"

You can use WHERE text on all elements, it will cover both explicit text content
as well as implicit text content, i.e. inferred from child elements. If you want to
be really explicit you can do:

135

EDIT lemma WITH c l a s s "house" FOR w WHERE (t HAS text = "house")

Advanced:

Such syntax is required when covering texts with custom classes, such as OCRed
or otherwise pre-normalised text. Consider the following OCR correction:

ADD t WITH text = "spell" FOR w WHERE (t HAS text = "5pe11" AND
c l a s s = "OCR")

4.2.5 Query Response

We have shown how to do queries but not yet said anything on how the response
is returned. This is regulated using the RETURN keyword:

• RETURN focus (default)

• RETURN parent - Returns the parent of the focus

• RETURN target or RETURN inner-target

• RETURN outer-target

• RETURN ancestor-target

The default focus mode just returns the focus. Sometimes, however, you may
want more context and may want to return the target expression instead. In the
following example returning only the pos-tag would not be so interesting, you
are most likely interested in the word to which it applies:

SELECT pos WHERE c l a s s = "n" FOR w RETURN target

When there are nested FOR/IN loops, you can specify whether you want to return
the inner one (highest granularity, default) or the outer one (widest scope). You
can also decide to return the first common structural ancestor of the (outer)
targets, which may be specially useful in combination with the SPAN keyword.

The return type can be set using the FORMAT statement:

• FORMAT xml - Returns FoLiA XML, the response is contained in a simple
<results><result/></results> structure.

136

• FORMAT single-xml - Like above, but returns pure unwrapped FoLiA
XML and therefore only works if the response only contains one element.
An error will be raised otherwise.

• FORMAT json - Returns JSON list

• FORMAT single-json - Like above, but returns a single element rather
than a list. An error will be raised if the response contains multiple.

• FORMAT python - Returns a Python object, can only be used when
directly querying the FQL library without the document server

• FORMAT flat - Returns a parsed format optimised for FLAT. This is
a JSON reply containing an HTML skeleton of structure elements (key
html), parsed annotations (key annotations). If the query returns a full
FoLiA document, then the JSON object will include parsed set definitions,
(key setdefinitions), and declarations.

The RETURN statement may be used standalone or appended to a query, in
which case it applies to all subsequent queries. The same applies to the FOR-
MAT statement, though an error will be raised if distinct formats are requested
in the same HTTP request.

When context is returned in target mode, this can get quite big, you may con-
strain the type of elements returned by using the REQUEST keyword, it takes
the names of FoLiA XML elements. It can be used standalone so it applies to
all subsequent queries:

REQUEST w, t , pos , lemma

..or after a query:

SELECT pos FOR w WHERE c l a s s !="PUNCT" FOR event WHERE c l a s s="

tweet" REQUEST w, pos , lemma

Two special uses of request are REQUEST ALL (default) and REQUEST NOTHING,
the latter may be useful in combination with ADD, EDIT and DELETE, by
default it will return the updated state of the document.

Note that if you set REQUEST wrong you may quickly end up with empty results.

137

4.2.6 Span Annotation

Selecting span annotations is identical to token annotation. You may be aware
that in FoLiA span annotation elements are technically stored in a separate stand-
off layers, but you can forget this fact when composing FQL queries and can
access them right from the elements they apply to.

The following query selects all named entities (of an actual rather than a fictitious
set for a change) of people that have the name John:

SELECT e n t i t y OF "https://github.com/proycon/folia/blob/master/

setdefinitions/namedentities.foliaset.xml"

WHERE c l a s s = "person" FOR w WHERE text = "John"

Or consider the selection of noun-phrase syntactic units (su) that contain the
word house:

SELECT su WHERE c l a s s = "np" FOR w WHERE text CONTAINS "house"

Note that if the SPAN keyword were used here, the selection would be exclusively
constrained to single words ”John”:

SELECT e n t i t y WHERE c l a s s = "person" FOR SPAN w WHERE text = "

John"

We can use that construct to select all people named John Doe for instance:

SELECT e n t i t y WHERE c l a s s = "person" FOR SPAN w WHERE text = "

John" & w WHERE text = "Doe"

Span annotations like syntactic units are typically nested trees, a tree query such
as ”//pp/np/adj” can be represented as follows. Recall that the IN statement
starts a target expression like FOR, but is stricter on the hierarchy, which is what
we would want here:

SELECT su WHERE c l a s s = "adj" IN su WHERE c l a s s = "np" IN su
WHERE c l a s s = "pp"

In such instances we may be most interested in obtaining the full PP:

SELECT su WHERE c l a s s = "adj" IN su WHERE c l a s s = "np" IN su
WHERE c l a s s = "pp" RETURN outer−target

The EDIT action is not limited to editing attributes, sometimes you want to alter
the element of a span. A separate RESPAN keyword (without FOR/IN/WITH)

138

accomplishes this. It takes the keyword RESPAN which behaves the same as
a FOR SPAN target expression and represents the new scope of the span, the
normal target expression represents the old scope:

EDIT e n t i t y WHERE c l a s s= "person" RESPAN ID word . 1 & ID word . 2
FOR SPAN ID word . 1 & ID word . 2 & ID word . 3

WITH statements can be used still too, they always preceed RESPAN:

EDIT e n t i t y WHERE c l a s s= "person" WITH c l a s s="location" RESPAN
ID word . 1 & ID word . 2 FOR SPAN ID word . 1 & ID word . 2 & ID
word . 3

4.2.7 Corrections and Alternatives

Both FoLiA and FQL have explicit support for corrections and alternatives on
annotations. A correction is not a blunt substitute of an annotation of any type,
but the original is preserved as well. Similarly, an alternative annotation is one
that exists alongside the actual annotation of the same type and set, and is not
authoritative.

The following example is a correction but not in the FoLiA sense, it bluntly
changes part-of-speech annotation of all occurrences of the word “fly” from “n”
to “v”, for example to correct erroneous tagger output:

EDIT pos WITH c l a s s "v" WHERE c l a s s = "n" FOR w WHERE text = "

fly"

Now we do the same but as an explicit correction:

EDIT pos WITH c l a s s "v" WHERE c l a s s = "n" (AS CORRECTION OF "

some/correctionset" WITH c l a s s "wrongpos")
FOR w WHERE text = "fly"

Another example in a spelling correction context, we correct the misspelling
concous to conscious* :

EDIT t WITH text "conscious" (AS CORRECTION OF "some/

correctionset" WITH c l a s s "spellingerror")
FOR w WHERE text = "concous"

The AS CORRECTION keyword (always in a separate block within parenthe-
ses) is used to initiate a correction. The correction is itself part of a set with a
class that indicates the type of correction.

139

Alternatives are simpler, but follow the same principle:

EDIT pos WITH c l a s s "v" WHERE c l a s s = "n" (AS ALTERNATIVE) FOR w
WHERE text = "fly"

Confidence scores are often associationed with alternatives:

EDIT pos WITH c l a s s "v" WHERE c l a s s = "n" (AS ALTERNATIVE WITH
conf idence 0 . 6)

FOR w WHERE text = "fly"

The AS clause is also used to select alternatives rather than the authoritative
form, this will get all alternative pos tags for words with the text ”fly”:

SELECT pos (AS ALTERNATIVE) FOR w WHERE text = "fly"

If you want the authoritative tag as well, you can chain the actions. The same
target expression (FOR..) always applies to all chained actions, but the AS clause
applies only to the action in the scope of which it appears:

SELECT pos SELECT pos (AS ALTERNATIVE) FOR w WHERE text = "fly"

Filters on the alternative themselves may be applied as expected using the
WHERE clause:

SELECT pos (AS ALTERNATIVE WHERE conf idence > 0 . 6) FOR w WHERE
text = "fly"

Note that filtering on the attributes of the annotation itself is outside of the
scope of the AS clause:

SELECT pos WHERE c l a s s = "n" (AS ALTERNATIVE WHERE conf idence >
0 . 6) FOR w WHERE text = "fly"

Corrections by definition are authoritative, so no special syntax is needed to
obtain them. Assuming the part of speech tag is corrected, this will correctly
obtain it, no AS clause is necessary:

SELECT pos FOR w WHERE text = "fly"

Adding AS CORRECTION will only enforce to return those that were actually
corrected:

SELECT pos (AS CORRECTION) FOR w WHERE text = "fly"

However, if you want to obtain the original prior to correction, you can do so
using AS CORRECTION ORIGINAL:

140

SELECT pos (AS CORRECTION ORIGINAL) FOR w WHERE text = "fly"

FoLiA does not just distinguish corrections, but also supports suggestions for
correction. Envision a spelling checker suggesting output for misspelled words,
but leaving it up to the user which of the suggestions to accept. Suggestions
are not authoritative and can be obtained in a similar fashion by using the SUG-
GESTION keyword:

SELECT pos (AS CORRECTION SUGGESTION) FOR w WHERE text = "fly"

Note that AS CORRECTION may take the OF keyword to specify the correc-
tion set, they may also take a WHERE clause to filter:

SELECT t (AS CORRECTION OF "some/correctionset" WHERE c l a s s = "

confusible") FOR w

The SUGGESTION keyword can take a WHERE filter too:

SELECT t (AS CORRECTION OF "some/correctionset" WHERE c l a s s = "

confusible" SUGGESTION WHERE conf idence > 0 . 5) FOR w

To add a suggestion for correction rather than an actual authoritative correction,
you can do:

EDIT pos (AS CORRECTION OF "some/correctionset" WITH c l a s s "

poscorrection" SUGGESTION c l a s s "n") FOR w ID some . word . 1

The absence of a WITH statement in the action clause indicates that this is purely
a suggestion. The actual suggestion follows the SUGGESTION keyword.

Any attributes associated with the suggestion can be set with a WITH statement
after the suggestion:

EDIT pos (AS CORRECTION OF "some/correctionset" WITH c l a s s "

poscorrection" SUGGESTION c l a s s "n" WITH conf idence 0 . 8) FOR
w ID some . word . 1

Even if a WITH statement is present for the action, making it an actual correc-
tion, you can still add suggestions:

EDIT pos WITH c l a s s "v" (AS CORRECTION OF "some/correctionset"

WITH c l a s s "poscorrection" SUGGESTION c l a s s "n" WITH
conf idence 0 . 8) FOR w ID some . word . 1

The SUGGESTION keyword can be chaineed to add multiple suggestions at
once:

141

EDIT pos (AS CORRECTION OF "some/correctionset" WITH c l a s s "

poscorrection"

SUGGESTION c l a s s "n" WITH conf idence 0 . 8
SUGGESTION c l a s s "v" wITH conf idence 0 . 2) FOR w ID some . word . 1

Another example in a spelling correction context:

EDIT t (AS CORRECTION OF "some/correctionset" WITH c l a s s "

spellingerror"

SUGGESTION text "conscious" WITH conf idence 0 . 8 SUGGESTION text
"couscous" WITH conf idence 0 . 2)

FOR w WHERE text = "concous"

A similar construction is available for alternatives as well. First we establish that
the following two statements are identical:

EDIT pos WHERE c l a s s = "n" WITH c l a s s "v" (AS ALTERNATIVE WITH
conf idence 0 . 6) FOR w WHERE text = "fly"

EDIT pos WHERE c l a s s = "n" (AS ALTERNATIVE c l a s s "v" WITH
conf idence 0 . 6) FOR w WHERE text = "fly"

Specifying multiple alternatives is then done by simply adding enother ALTER-
NATIVE clause:

EDIT pos (AS ALTERNATIVE c l a s s "v" WITH conf idence 0 . 6
ALTERNATIVE c l a s s "n" WITH conf idence 0 . 4) FOR w WHERE text
= "fly"

When a correction is made on an element, all annotations below it (recursively)
are left intact, i.e. they are copied from the original element to the new correct
element. The same applies to suggestions. Moreover, all references to the
original element, from for instance span annotation elements, will be made into
references to the new corrected elements.

This is not always what you want, if you want the correction not to have any
annotations inherited from the original, simply use AS BARE CORRECTION
instead of AS CORRECTION.

You can also use AS CORRECTION with ADD and DELETE.

The most complex kind of corrections are splits and merges. A split separates a
structure element such as a word into multiple, a merge unifies multiple structure
elements into one.

In FQL, this is achieved through substitution, using the action SUBSTITUTE:

142

SUBSTITUTE w WITH text "together" FOR SPAN w WHERE text="to" \
& w WHERE text="gether"

Subactions are common with SUBSTITUTE, the following is equivalent to the
above:

SUBSTITUTE w (ADD t WITH text "together") FOR SPAN w WHERE \
text="to" & w WHERE text="gether"

To perform a split into multiple substitutes, simply chain the SUBSTITUTE
clause:

SUBSTITUTE w WITH text "each" SUBSTITUTE w WITH \
TEXT "other" FOR w WHERE text="eachother"

Like ADD, both SUBSTITUTE may take assignments (WITH), but no filters
(WHERE).

You may have noticed that the merge and split examples were not corrections in
the FoLiA-sense; the originals are removed and not preserved. Let’s make it into
proper corrections:

SUBSTITUTE w WITH text "together"

(AS CORRECTION OF "some/correctionset" WITH c l a s s "spliterror")
FOR SPAN w WHERE text="to" & w WHERE text="gether"

And a split:

SUBSTITUTE w WITH text "each" SUBSTITUTE w WITH text "other"

(AS CORRECTION OF "some/correctionset WITH class " runonerror")
FOR w WHERE text="eachother"

To make this into a suggestion for correction instead, use the SUGGESTION
folloed by SUBSTITUTE, inside the AS clause, where the chain of substitute
statements has to be enclosed in parentheses:

SUBSTITUTE (AS CORRECTION OF "some/correctionset" WITH c l a s s "

runonerror" SUGGESTION (SUBTITUTE w WITH text "each"

SUBSTITUTE w WITH text "other"))
FOR w WHERE text="eachother"

4.2.8 Dealing with context

We have seen that with the FOR keyword we can move to bigger elements in the
FoLiA document, and with the HAS keyword we can move to siblings. There

143

are several context keywords that give us all the tools we need to peek at the
context. Like HAS expressions, these need always be enclosed in parentheses.

For instance, consider a part-of-speech tagging scenario. If we have a word
where the left neighbour is a determiner, and the right neighbour a noun, we
can be pretty sure the word under our consideration (our target expression) is an
adjective. Let’s add the pos tag:

EDIT pos WITH c l a s s = "adj" FOR w WHERE (PREVIOUS w WHERE (pos
HAS c l a s s == "det")) AND (NEXT w WHERE (pos HAS c l a s s == "n")
)

You may append a number directly to the PREVIOUS/NEXT modifier if you’re
interested in further context, or you may use LEFTCONTEXT/RIGHTCONTEXT/CONTEXT
if you don’t care at what position something occurs:

EDIT pos WITH c l a s s = "adj" FOR w WHERE (PREVIOUS2 w WHERE (pos
HAS c l a s s == "det")) AND (PREVIOUS w WHERE (pos HAS c l a s s ==
"adj")) AND (RIGHTCONTEXT w WHERE (pos HAS c l a s s == "n"))

Instead of the NEXT and PREVIOUS keywords, a target expression can be
used with the SPAN keyword and the & operator:

SELECT FOR SPAN w WHERE text = "the" & w WHERE (pos HAS c l a s s ==
"adj") & w WHERE text = "house"

Within a SPAN keyword, an expansion expression can be used to select any
number, or a certain number, of elements. You can do this by appending curly
braces after the element name (but not attached to it) and specifying the mini-
mum and maximum number of elements. The following expression selects from
zero up to three adjectives between the words “the” and “house”:

SELECT FOR SPAN w WHERE text = "the" & w {0 ,3} WHERE (pos HAS
c l a s s == "adj") & w WHERE text = "house"

If you specify only a single number in the curly braces, it will require that exact
number of elements. To match at least one word up to an unlimited number,
use an expansion expression such as {1,}.

If you are now perhaps tempted to use the FoLiA document server and FQL for
searching through large corpora in real-time, then be advised that this is not a
good idea. It will be prohibitively slow on large datasets as this requires smart
indexing, which this document server does not provide. You can therefore not
do this real-time, but perhaps only as a first step to build an actual search index.

144

Other modifiers are PARENT and and ANCESTOR. PARENT will at most go
one element up, whereas ANCESTOR will go on to the largest element:

SELECT lemma FOR w WHERE (PARENT s WHERE text CONTAINS "wine")

Instead of PARENT, the use of a nested FOR is preferred and more efficient:

SELECT lemma FOR w FOR s WHERE text CONTAINS "wine"

Let’s revisit syntax trees for a bit now we know how to obtain context. Imagine
we want an NP to the left of a PP:

SELECT su WHERE c l a s s = "np" AND (NEXT su WHERE c l a s s = "pp")

... and where the whole thing is part of a VP:

SELECT su WHERE c l a s s = "np" AND (NEXT su WHERE c l a s s = "pp") IN
su WHERE c l a s s = "vp"

... and return that whole tree rather than just the NP we were looking for:

SELECT su WHERE c l a s s = "np" AND (NEXT su WHERE c l a s s = "pp") IN
su WHERE c l a s s = "vp" RETURN target

4.2.9 Shortcuts

Classes are prevalent all throughout FoLiA, it is very common to want to select
on classes. To select words with pos tag “n” for example you can do:

SELECT w WHERE (pos HAS c l a s s = "n")

Because this is so common, there is a shortcut. Specify the annotation type
directly preceeded by a colon, and a HAS statement that matches on class will
automatically be constructed:

SELECT w WHERE : pos = "n"

The two statements are completely equivalent.

Another third alternative to obtain the same result set is to use a target expres-
sion:

SELECT pos WHERE c l a s s = "n" FOR w RETURN target

145

This illustrates that there are often multiple ways of obtaining the same result
set. Due to lazy evaluation in the FQL library, there is not much difference
performance-wise.

Another kind of shortcut exists for setting text on structural elements. The
explicit procedure to add a word goes as follows:

ADD w (ADD t WITH text "hello") IN ID some . sentence

The shortcut is:

ADD w WITH text "hello" IN ID some . sentence

146

Appendix A

Validation

Validation proceeds at two levels: shallow validation and deep validation. Shallow
validation considers only the structure of the FoLiA document, without validating
the sets and classes used. Deep validation checks the sets and classes for their
validity using the set definition files.

Shallow validation is performed using a RelaxNG schema, the latest version of
which can always be obtained from the following URL:
https://github.com/proycon/folia/blob/master/schemas/folia.rng

You can validate your document using standard XML tools such as xmllint or
jing, the latter is known to produce friendlier error output in case of validation
errors.

$ xmllint -relaxng folia.rng document.xml

$ jing folia.rng document.xml

Alternatively, you can use the simpler foliavalidator tool available in the
FoLiA tools (see Appendix D).

Development Notes
Deep validation is still being worked on and will most likely use
Schematron.

147

A.1 Extending FoLiA

In case you cannot find a suitable way to encode your particular annotation in
the latest version of the FoLiA specification, we urge you to write to proycon@

anaproy.nl so that we can discuss whether FoLiA needs to be expanded to
accommodate your particular annotation.

If you already have another XML scheme to encode a particular annotation, in
another XML namespace, then you can use FoLiA’s foreign annotation facility,
see section 2.10.16. We recommend to use this only when absolutely necessary.

Never add your own custom tags without explicitly using a different XML names-
pace rather than the default FoLiA namespace! FoLiA libraries are designed to ig-
nore and discard other namespaces outside the scope described in section 2.10.16.

148

proycon@anaproy.nl
proycon@anaproy.nl

Appendix B

Implementations

Currently, the following FoLiA implementations exist. Both follow a highly object-
oriented model in which FoLiA XML elements correspond with classes.

1. pynlpl.formats.folia - A FoLiA library in Python. Part of the Python
Natural Language Processing Library. See
https://pypi.python.org/pypi/PyNLPl/ for sources and documenta-
tion.

2. libfolia - A FoLiA library in C ++. Obtain from
https://proycon.github.io/folia

Both libraries are shipped as part of our LaMachine software distribution1.

Information regarding implementation of certain elements for these two libraries
is present in the status boxes throughout this documentation. The following
table shows the level of FoLiA support in these libraries:

1ttps://proycon.github.io/LaMachine

149

ttps://proycon.github.io/LaMachine

PyNLPl libfolia
Programming Language python C++

From official specification2 yes yes
Annotation Types

Text content yes yes
Phonetic/phonological content (v0.12) yes yes

Structure annotation yes yes
Token annotation yes yes
Span annotation yes yes

Morphology yes yes
Phonology (v0.12) yes yes

Alternatives yes yes
Corrections yes yes

Text Markup yes yes
Hyperlinks on markup (v0.11.3) yes yes

Alignments yes yes
Strings yes yes

Search & Query
FoLiA Query Language (FQL) yes no

Document.findwords() method yes yes
Validation

Shallow validation yes yes
RelaxNG schema generation yes no

Set definition support yes no
Deep validation not yet no

Quality Control
Unit/integration tests yes yes

Legacy
IMDI interpretation partial3 no

D-Coi read compatibility partial4 no

2These libraries draw a large part of their implementation from the common external
FoLiA specification to keep them in sync better

3Only for in-document IMDI
4Only basic elements, no List, Figure, etc..

150

Appendix C

FoLiA Tools

C.1 Introduction

A number of command-line tools are readily available for working with FoLiA, to
various ends. The following tools are currently available:

• foliavalidator – Tests if documents are valid FoLiA XML. Always
use this to test your documents if you produce your own FoLiA
documents!

• foliaquery – Advanced query tool that searches FoLiA documents for a
specified pattern, or modifies a document according to the query. Supports
FQL (FoLiA Query Language) and CQL (Corpus Query Language).

• folia2txt – Convert FoLiA XML to plain text (pure text, without any
annotations)

• folia2annotatedtxt – Like above, but produces output simple token
annotations inline, by appending them directly to the word using a specific
delimiter.

• folia2columns – This conversion tool reads a FoLiA XML document and
produces a simple columned output format (including CSV) in which each
token appears on one line. Note that only simple token annotations are
supported and a lot of FoLiA data can not be intuitively expressed in a
simple columned format!

151

• folia2html – Converts a FoLiA document to a semi-interactive HTML
document, with limited support for certain token annotations.

• folia2dcoi – Convert FoLiA XML to D-Coi XML (only for annotations
supported by D-Coi)

• dcoi2folia – Convert D-Coi XML to FoLiA XML

• rst2folia – Convert ReStructuredText, a lightweight non-intrusive text
markup language, to FoLiA, using docutils1.

• foliatree – Outputs the hierarchy of a FoLiA document.

• foliacat – Concatenates two or more FoLiA documents.

• foliamerge – Merges the annotations of two or more FoLiA documents
into one.

All of these tools are written in Python, and thus require a Python (2.7, 3 or
higher) installation to run. More tools are added as time progresses.

C.2 Installation

The FoLiA tools are published to the Python Package Index and can be installed
effortlessly using pip, from the command-line, type:

$ pip install folia-tools

Add sudo to install it globally on your system, if you install locally, we strongly
recommend you use virtualenv to make a self-contained Python environment.

If pip is not yet available, install it as follows:

On Debian/Ubuntu-based systems:

$ sudo apt-get install python-pip

1http://docutils.sourceforge.net/

152

On RedHat-based systems:

$ yum install python-pip

On Arch Linux systems:

$ pacman -Syu python-pip

On Mac OS X and Windows we recommend you install Anaconda2 or another
Python distribution.

The FoLiA tools are also included as part of our LaMachine software distribu-
tion3.

The source code is hosted on github (https://github.com/proycon/folia),
once downloaded and extracted, it can also be installed using python setup.py

install.

C.3 Usage

To obtain help regarding the usage of any of the available FoLiA tools, please
pass the −h option on the command line to the tool you intend to use. This
will provide a summary on available options and usage examples. Most of the
tools can run on both a single FoLiA document, as well as a whole directory of
documents, allowing also for recursion. The tools generally take one or more file
names or directory names as parameters.

2See http://continuum.io/
3ttps://proycon.github.io/LaMachine

153

https://github.com/proycon/folia
ttps://proycon.github.io/LaMachine

Bibliography

[1] Eneko Agirre, Xabier Artola, Arantza Diaz de Ilarraza, German Rigau, Aitor
Soroa, and Wauter Bosma. Kyoto Annotation Format. 2009.

[2] Wilko Apperloo. XML basisformaat D-Coi: Voorstel XML formaat pre-
sentational markup. Technical report, Polderland Language and Speech
Technology, 2006.

[3] Gosse Bouma, Gertjan van Noord, and Rob Malouf. Alpino: Wide-coverage
Computational Analysis of Dutch. In Walter Daelemans, Khalil Sima’an,
Jorn Veenstra, and Jakub Zavrel, editors, CLIN, volume 37 of Language
and Computers - Studies in Practical Linguistics, pages 45–59. Rodopi,
2000.

[4] Tim Bray, Jean Paoli, and Michael Sperberg-McQueen. Extensible Markup
Language (XML) 1.0. Technical report, W3C, 2 1998.

[5] Daan Broeder, Oliver Schonefeld, Thorsten Trippel, Dieter Van Uytvanck,
and Andreas Witt. A pragmatic approach to XML interoperability – the
Component Metadata Infrastructure (CMDI). In Balisage: The Markup
Conference 2011, volume 7, 2011.

[6] Lou Burnard and Syd Bauman, editors. TEI P5: Guidelines for Electronic
Text Encoding and Interchange. Text Encoding Initiative Consortium, 2007.

[7] Antske Fokkens, Aitor Soroa, Zuhaitz Beloki, German Rigan, Willem Robert
van Hage, and Piek Vossen. NAF: The NLP annotation format. Technical
report, 2014.

[8] Ulrich Heid, Helmut Schmid, Kerstin Eckart, and Erhard Hinrichs. A Cor-
pus Representation Format for Linguistic Web Services: The D-SPIN Text
Corpus Format and its Relationship with ISO Standards. In Nicoletta Cal-
zolari, Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Ste-
lios Piperidis, Mike Rosner, and Daniel Tapias, editors, Proceedings of the

154

Seventh International Conference on Language Resources and Evaluation
(LREC’10), Valletta, Malta, May 2010. European Language Resources As-
sociation (ELRA).

[9] Nelleke Oostdijk, Martin Reynaert, Paola Monachesi, Gert-Jan Van Noord,
Roeland Ordelman, Ineke Schuurman, and Vincent Vandeghinste. From D-
Coi to SoNaR: A reference corpus for Dutch. In Proceedings of the Sixth
International Language Resources and Evaluation (LREC’08), Marrakech,
Morocco, 2008.

[10] Frank van Eynde. Part of speech tagging en lemmatisering van het Corpus
Gesproken Nederlands. Technical report, Centrum voor Computerlingüıstiek,
K.U. Leuven, February 2004.

[11] Amir Zeldes, Florian Zipser, and Arne Neumann. PAULA XML Documen-
tation. Rapport de recherche, Institut für Deutsche Sprache und Linguistik
- IDSL , INRIA Saclay - Ile de France, Universität Potsdam, 2013.

155

	Introduction
	History
	Status Information

	Document Format
	Global Structure
	Identifiers
	Paradigm & Terminology
	Speech

	Annotation Declaration
	Structure Annotation
	Basic Structural Elements
	Paragraphs, Sentences and Words
	Divisions
	Quotes
	Gaps
	Whitespace and Linebreaks
	Events
	Lists
	Figures
	Tables
	Notes
	Structure References
	Parts
	Entries, definitions & examples

	Token Annotation
	Part-of-Speech Annotation
	Lemma Annotation
	Language Identification Annotation
	Lexical Semantic Sense Annotation
	Domain Tags
	Subjectivity Annotation

	Span Annotation
	Entities
	Syntax
	Dependency Relations
	Chunking
	Time Segmentation
	Semantic Roles
	Coreference Relations
	Observation Annotation
	Sentiment Analysis
	Statement Annotation (Attribution)

	Morphological Annotation
	Speech Annotation
	Speech Structure Annotation
	Phonetic Content
	Phonological Annotation
	Distortion

	Higher-order Annotation
	Human-readable Descriptions
	Comments
	Alternative Token Annotations
	Alternative Span Annotations
	Feature Annotation
	Part-of-Speech Tags with Features
	Metrics
	Corrections
	Alignments
	Aligned Corrections
	Translations
	Text Content
	Substrings
	Text Markup
	Hyperlinks
	Foreign Annotation

	Metadata
	External documents and full stand-off annotation

	Set Definition Format
	Introduction
	Types and Classes
	Concept Link
	Class Hierarchy
	Subsets
	Constraints

	Querying
	XPath
	FoLiA Query Language
	Global variables
	Declarations
	Actions
	Text
	Query Response
	Span Annotation
	Corrections and Alternatives
	Dealing with context
	Shortcuts

	Validation
	Extending FoLiA

	Implementations
	FoLiA Tools
	Introduction
	Installation
	Usage

