TABLE 2-PHYSICAL DATA OF 4-THIAZOLIDINONE DERIVATIVES (2, 3)*										
81. no.	R	R'	R"	Mol. formula	М.р. •О	Yield %				
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 13. 14. 15. 16. 17.	OHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	H NO, Br H NO, Br H NO, Br H NO, Br H NO, Br H NO, Br H NO,	H H H H CH. CH. CH. CH. CH. CH. CH. CH.	C. + H. + N. O. 8. C. + H. + N. 0.8. C. + H. + N. 0.8.	220 215 212 222 280 288 205 227 242 280 225 280 287 275 293 293 270	53 57 60 55 50 55 55 60 55 55 60 57 45 45 45 60 57				
18.	O ₆ H ₅ All con	Br 1 p ound	OH _s COOH is gave satisfa	O _{se} H _{so} N ₄ O _e S _s Br _s ctory elemental anal	227 yses.	60				

(0 02 mol) in presence of anhydrous ZnCl₂ (0.5 g) at 160° for 30 min. The resulting solid was dissolved in sodium bicarbonate, reprecipitated with acid and crystallised from ethanol as pale yellow needles (4a; 45%), m p. 280° (Found : C, 52.12; H, 4.30; N, 8.63. $C_{as}H_{as}O_{a}S_{a}$ requires : C, 52.17; H, 4.34; N, 8.69%); ν_{max} (KBr) (O-H) (broad) stretching at 3 080 br (OH), 1 595 (N-C), 1 405, 1 330 and 1 175 (1,3,4-thiadiazole ring system), 1 730 and 1772 cm⁻¹ (C=O for thiazolidinone ring system); λ_{max} (MeOH) 212 (log ϵ 30.13), 350 (3.40) and 395 (3 27).

Similarly, other substituted 4-thiazolidinone derivatives were prepared (Table 1).

2,5 - Bis (<-methyl - 3'- chloro - 4'- (2"- hydroxy-5"methyl)-2'-azetidinone-1'-yl)-1,3,4-thiadiazole (4a) : A mixture of 1a (1.0 mol) and triethylamine (1.0 mol) in dioxan (25 ml) was stirred well by gradual dropwise addition of monochloroacetyl chloride (0.015 mol) at room temperature. The mixture was stirred for 5 h and left at room temperature for 3 days. The precipitates of triethylamine hydrochloride was filtered and washed with dioxan. The filtrate was treated with anhydrous magnesium sulphate and the solvent removed under reduced pressure. The resulting solid was crystallised from ethanol to get 5a (60%), m.p. 190° (Found : C, 54.00; H, 4.07; N, 10.43. $C_{g_4}H_{g_8}N_4O_4SCl_g$ requires : C, 54.03; H, 4.12; N, 10.50); ν_{max} (KBr) 2 905 br (OH), 1 670 (C-O), 1 760 (β -lactum ring system), 1 450, 1 320 (1,3,4-thiadiazole ring system), 1 190 and 700 cm⁻¹ (C-Cl); λ_{max} (MeOH) 310 (log ϵ 3.51) and 390 (3.70).

Similarly, other substituted 2-azetidinone derivatives were prepared (Table 3).

Antibacterial activity: The Schiff bases and their 2-azetidinone and thiazolidinone derivatives were screened for antibacterial activity by cupplate method^s using gram-positive bacterium

TABLE 3-PHYSICAL DATA OF 2-AZETIDINONE DERIVATIVES (4)*									
Sl. no.	R	R'	Mol. formula	М.р. °О	Yield %				
1. 2. 8. 4. 5. 6. *A	CH _s OH _e CH _s C _e H _s C _e H _s O _e H _s	H NO, Br H NO, Br	C.4H., N.4O.4SOI. C.4H., N.6O.8OI. C.4H., N.6O.8OI. C.4H., N.4O.8OI. C.4H., N.6O.8OI. C.4H., N.6O.8OI. C.4H., N.6O.8OI. C.4H., N.6O.8OI. Satisfactory elemental	190 185 200 205 211 218 analyses	60 55 65 62 60 55				

S. aureus and gram-negative bacteria, E. coli and S. typhoso. The testing was carried out in dioxan at a concentration of 10 mg ml⁻¹. The compounds were active at concentration of 10 mg ml⁻¹ which is however a low activity. The ditails of assay reports are not reported.

References

- GEHEEN and MOECKED. Ann. Chem., 1965, 685, 176. 1.
- GEHERN BIG MOECKED. Ann. Onem., 1900, 680, 176.
 H. D. TROUTMAN and M. M. LONG, J. Am. Chem. Soc., 1948, 10, 3436; A. R. SURREY, J. Am. Chem. Soc., 1949, 71, 3354, WARNER, Ger. Pat. 1 168 912/1964 (Chem. Abstr., 1964, 61, 4361); A. CHAUDHARI, S. KUMAR, S. P. SINGH, S. S. PARMAT and V. I. STENBERG, J. Pharm. Sci, 1976, 60, 768, H. D. THOUTMAN and L. M. ZONG, 1948, Zh. Obshch. Kham, 1948, 70, 3436 (G. FENRCH. Abs. Son. Paloriano Sci Wie, 1948, 70, 3436 (G. FENRCH. Abs. Son. Paloriano Sci Wie, 2. 1948, 70, 3436 . G. FENECH, Ahs. Soc. Peloritano Sci Fis. Mat. Nat., 1965, 11, 117 (Chem. Abstr., 1966, 65, 4439); F. P. LUDRNA, J. Am. Pharma Assoc, 1954, 40, 132; G. SATINGER, US Pat. 8 072 671/1963 (Chem. Abstr., 1963, 50, 12571).
- 1905, 30, 12071).
 T. KAMIYA, Chem. Abstr., 1977, 86, 16066; G. MAFFI, Chem. Abstr, 1959, 53, 8433, A. K. BOSE, M. S. MANNAN, J. C. KAPIR and S. P. SHARMA, J. Med. Chem., 1974, 17, 541; SILUDITTA and GUIDO DI, Pric. Lat. B40. Chem. Beophys Acta, 1963, 77, 394.
 K. FRIES, Chem. Ber., 1921, 54, 717.
 P. HUDBYLER, J. Karnetche Harry Sci. 1074, 14, 200
- 5. S. P. HIREMUTH, J. Karnataka Univ. Sci., 1974, 14, 208.

Structure and Stereochemistry of Mollugogenol-G - A Triterpenoid Sapogenin from Mollugo hirta

ARUN K. BARUA*, SAROJ GHOSH and KALYAN BASU

Department of Chemistry, Bose Institute, Calcutta-700 009

and

AMARENDRA PATRA

Department of Chemistry, University College of Science, Calcutta-700 009

Manuscript received 13 April 1988, revised 12 July 1988, accepted 25 September 1988

number of triterpenoid saponins and sapogenins A have earlier been reported from this laboratory

from Mollugo hirta¹ and Mollugo spergula². The present communication reports the isolation of a new triterpenoid sapogenin called mollugogenol-G, the structure of which has been established as 3β , 16β , 22-trihydroxy- $21 \ll H$ -hop-5-ene (1a). The structure 1a for mollugogenol-G was proposed in an earlier communication on the basis of ¹⁸C nmr studies only⁸.

Mollugogenol-G, $C_{so}H_{so}O_s$ (1a), gave pinkviolet colour in the Lieberman-Burchard test. It also gave pale yellow colour with tetranitromethane indicating the presence of unsaturation. It showed end-absorption at 211 nm (log ϵ 3.4) for a trisubstituted double bond.

On treatment with Ac_aO and Py at 0°, 1a yielded a diacetate (1b). The ease of acetylation indicated that both the secondary hydroxyl groups in 1a must be equatorial in nature. The ir, mass, ¹H nmr and ¹⁸C nmr spectra⁸ of 1b were in conformity with the structure assigned. Its ¹H nmr spectrum showed a signal at 8 5.55 for the vinyl proton at C-6 which is in perfect conformity with the location of a double bond at 5,6-position⁴⁻⁶. That mollugogenol-G is a 214-H-hopane derivative like its congeners mollugogenol-A, -E etc. isolated from *M. hirta*, was proved by hydrogenolysis experiment. Mollugogenol-G (1a) on hydrogena-tion in HOAc solution in presence of Adam's catalyst gave only unreacted starting material which indicated 1a to be a 214-H-hopane derivative⁷. It should be mentioned here that the 5,6-double bond in pentacyclic triterpene is inert to hydrogenation⁸.

On oxidation with CrO_8/Py complex, 1a furnished a hydroxydiketone (1c) and a dihydroxyketone (1d) both of which gave Zimmermann colour reaction characteristic of 3-keto group in triterpenes⁹.

On treatment with ethanolic HCl, 1a yielded a product (not isolated in pure state) which showed a triple absorption maxima at 243, 251 and 261 nm which is very characteristic of hopa-15,17(21)diene¹⁰. The course of the reaction was followed by tlc. The prolonged acid treatment required for the formation of the diene is reminiscent of 21 \ll -Hhopane derivative (cf. methyl isoleucotylate¹¹). The compound 1c on refluxing with ethanolic HCl furnished a \ll -p-unsaturated – ketone (not isolated in pure state due to poor yield). Its uv spectrum showed absorption maximum at 255 nm. Similar \ll , β -unsaturatedketone was also obtained by treatment of mollugogenol-A triketone¹⁰ with ethanolic HCl and the product showed absorption maximum at 255 nm. On the basis of the above observations 1a was considered as a 21 \ll -H-hopane derivative having hydroxyl groups at C-16 and C-22 positions,

A comparative study of the ¹H nmr spectra of **1b** with the related compounds mollugogenol-A triacetate¹⁰, spergulagenol triacetate² and spergulagenin-A triacetate² was made. The signals for the 3 \prec -H and 16 \prec -H of all the above compounds were found to be very similar. The signal for the 22-OH appeared at around δ 3.5 in all the above acetates excepting spergulagenin-A triacetate as there is no 22-OH group in it. On the basis of the above data the structure 1a is assigned to mollugogenol-G.

Experimental

M.ps. are uncorrected. Mass spectra were taken on a AEI MS-30 instrument and ¹H nmr spectra on a Varian EM 390 spectrometer. Silica gel (B.D.H.; 60-120 mesh) and silica gel G (B.D.H.) were used for cc and tlc, respectively. Plant material was collected from suburbs of Calcutta during June – August, 1980 when in full leaf, and identified by the Keeper, National Botanical Garden, Howrah.

Isolation of mollugogenol-G: Concentrated ethanolic extract of the defatted air-dried crushed plant material (3 kg, whole plant excluding the roots) was treated with excess diethyl ether and the precipitated crude saponin was hydrolysed by refluxing with ethanolic HCl (5%) for 2 h. The resulting aglycone (sapogenins) was extracted with CHCl_s and the extract washed with aqueous KOH (1%). The neutral sapogenins thus obtained was subjected to cc (500 g) and eluted with solvents of increasing polarity. Benzene-ether (8:1) eluted fraction showing three spots in the was resolved by preparative tlc (thickness 0.35 mm; solvent system: $C_6H_6 - CHCl_8 - MeOH$, 32:14:4, v/v; Is vapour used for detection of the spots). The major component was repeatedly crystallised from major component was repeatedly crystallised from CHCl_s – petrol and finally from MeOH to yield mollugogenol-G (13 mg), m.p. 242° (Found: C, 78.28; H, 11.12. $C_{80}H_{80}O_{8}$ requires: C, 78.55; H, 10.9%); M^{+} 458; ν_{max} (KBr) 3 400 and 3 280 cm⁻¹; m/z 458 (55%, M^{+}), 440 (40, $M-H_{9}O$), 422 (90, $M-2H_{9}O$), 404 (15, $M-3H_{9}O$), 382 (90, $M-H_{9}O-CH_{8}COCH_{8}$), 364 (18, m/z 382–H₉O), 223 (9, a), 205 (20, c) and 187 (45, a-2H_{9}O or c-H₄O). c-H,O).

Mollugogenol-G diacetate (1b) : Mollugogenol-G (150 mg) in pyridine (2 ml) and Ac₂O (3 ml) was

left overnight at 0°. Usual work-up gave a product which was repeatedly crystallised after charcoalisawhich was repeatedly crystallised after charcoalisa-tion from MeOH to yield 1b, m.p. 228° (Found : $M^+ 542$. $C_{s_4}H_{s_4}O_s$ requires : 542) ; ν_{max} (nujol) 3 560 (free OH), 1 733 and 1 245 cm⁻¹ (acetoxy groups) ; m/z 542 (15%, M^+), 524 (20, $M - H_gO$), 482 (25, $M - CH_sCOOH$), 424 (40, $M - CH_sCOOH -$ CH₃COCH₈), 422 (10, $M - 2CH_sCOOH$), 404 (25, $M - 2CH_sCOOH - H_gO$), 364 (30, m/z 424-CH₃COOH), 265 (7, b), 247 (7, d), 187 (78, b - H₃O - CH₃COOH or d - CH₈COOH) and 59

⁺OH

(31, CH_{8} , CH_{8}); δ (90 MHz, $CDCl_{8}$) 5.55 (1H, t, J 4Hz, 6-H), 4.89 (1H, br m, $W_{1/3}$ 24Hz, 164-H), 4.49 (1H, m, $W_{1/3}$ 16Hz, 34-H), 3.50 (1H, s, disappeared on D_sO exchange, OH), 2.02, 2.01 (3H each, s, 2×OCOCH_s), 1.20, 1.20, 1.20, 1.17, 1.12, 1.07, 1.03, 0.73 (3H each, s, 8× tert-CH_s). For ¹⁸C nmr data vide Ref. 3.

Oxidation of mollugogenol-G with CrO_s/Py complex: Ice-cold mollugogenol-G (100 mg) in pyridine (2.5 ml) was treated with a slurry of CrO_8 pyridine complex (prepared from 300 mg CrO_s and 5 ml pyridine) at 0° with stirring and left overnight. Usual work-up afforded a mass showing two spots in tlc. Cc and repeated crystallisations from MeOH furnished 1c, m.p. $232-35^{\circ}$ (Found : C, 78.98; H, 10.43. C₃₀H₄₀O₃ requires : C, 79.25; H, 10.20%); M⁺ 454; and 1d, m.p. $226-27^{\circ}$ (Found : C, 78.61; H, 10.82. C_{so}H₄₈O_s requires : C, 78.90; H, 10.59%); M⁺ 456.

Treatment of 1a with ethanolic HCl: Compound 1a (5 mg) in dry EtOH (1 ml) was treated with dry ethanolic HCl (10%, 1 ml) and refluxed on a steambath for 3 h. Crushed ice was poured into the reaction mixture and the precipitate was filtered and washed with water. The product (diene) showed triple absorption maxima at 243, 251 and 261 nm and a shoulder at 290 nm.

Treatment of the monohydroxydiketone (1c) with ethanolic HCl: The monohydroxydiketone (1c; 5 mg) in dry EtOH (1 ml) was refluxed with dry ethanolic HCl (10%; 1 ml) on a steam-bath for 3 h. Work-up as above afforded a product (α,β) -unsaturated-ketone) which showed λ_{max} (EtOH) at 255 nm.

Hydrogenation of mollugogenol-G (1a) : Adam's catalyst (15 mg) suspended in glacial acetic acid was shaken in an atmosphere of hydrogen for 1 h at room temperature and pressure. Mollugogenol-G (15 mg) in glacial acetic acid (4 ml) was added to it and the mixture shaken in an atmosphere of hydrogen for 30 h at room temperature and pressure. On working up in the usual way only unreacted mollugogenol-G was recovered.

Acknowledgement

The authors are grateful to the R.S.I.C., Bose Institute for the mass spectra. One of the authors (S.G.) is indebted to the authorities of the Bose Institute for facilities.

References

- 1. A. K. BARUA, S. N. CHAKRAVARTI, A. BASAK, A. GHOSH and P. CHAKRABARTI, Phytochemistry, 1976, 15, 831 and references cited therein.
- A. K. BARUA, P. K. DATTA, S. RAY and R. V. VENKATESWARAN, Phylochemistry, 1986, 25, 2577 and references cited therein.
- A. PATRA, A. K. MITRA, T. K CHATTERJEE and A. K. BARUA, Org. Magn. Reson., 1981, 17, 148.
- 4. H. AGETA, K. IWATA and S. NATORI, Tetrahedron Lett., 1964, 3413.
- M. KOCOR, J. S. PYREK, C. K. ATAI, K. L. BEDI and B. R. SHARMA, J. Org. Chem., 1978, 38, 3685.
 S. K. SAHA, Ph.D. Thesis, University of Calcutta, 1980.
 R. E. CORBET and R. A. J. SMITH, J. Chem. Soc., 1968,
- 1622.
- T. J. KING and J. P. YARDLEY, J. Chem. Soc., 1961, 4308.
- 9. D. H. B. BARTON and P. DE MAYO, J. Chem. Soc., 1954, 887.
- P. CHAKRABARTI Tetrahedron, 1969, 25, 8301.
 I. YOSIOKA, M. YAMAKI, T. NAKANISHI and I. KITAGAWA, Tetrahedron Lett., 1966, 2227.

Chemical Examination of Cassia pumila Lam.

K. S. MUKHERJEE, C. K. CHAKRABORTY,

T. P. CHATTERJEE and P. BHATTACHARYA

Department of Chemistry, Visva-Bharati University, Santiniketan-781 235

Manuscript received 2 May 1988, revised 8 September 1988, accepted 23 September 1988

N connection of our works on Cassia¹ species, the chemical investigation of Cassia pumila Lam.

(Leguminosae) on which no phytochemical works seems to have been reported so far, has been undertaken. C. pumila^{*} is a plant growing abundantly throughout India and is commonly used as purgative.

The air-dried powdered whole plant of C. pumila was extracted successively with petrolium ether $(b.p. 60-80^{\circ})$ and chloroform. The concentrated petroleum ether extract was chromatographed over silica gel. Elution of the column with petroleum ether (b.p. $60-80^{\circ}$) – benzene (1:1) mixture furnished a white crystalline solid, m.p. $88-90^{\circ}$, ν_{max} (KBr) 3 440 cm⁻¹ (OH); 8 0.65 (3H, t, CH₈), 1.40 (64H, s, $32 \times CH_g$) and 3.50 (2H, CH_gOH); m/z 494 (M⁺), 476 and 463. It was identified as tetratriacontanol by the usual comparison (m.m.p., co-tlc and co-ir) with an authentic sample.

The concentrated chloroform extract of the defatted whole plant was subjected to chromatographic separation over silica gel with solvents of increasing polarity. The benzene elute afforded a solid crystallised from light petrol (b.p. $60-80^{\circ}$), $C_{14}H_{14}O_8$ (M^+ 230), m.p. 123-25°; λ_{max} (EtOH) 220, 272 and 330 nm; ν_{max} (KBr) 1 715 (coumarin Letter) 1 (25 1 455 (coumarin lactone), 1 625, 1 485 (aromatic unsaturation) and 1 140 cm⁻¹ (C-O-C). The spectral data suggest that the compound is a coumarin derivative. The ¹H nmr spectrum (90 MHz, CDCl₈) is also consistent with the above view and displayed signals at δ 7.45