
University of Groningen

Making reading in a second
language more enjoyable

Supervisor
Dr. Mircea Lungu

Jorrit Oosterhof
S2528312

Second Supervisor
George Digkas

Faculty of Mathematics and Natural Sciences

August 3, 2016



Contents

1 Introduction 5
1.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related work 9
2.1 Kindle Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Lingua.ly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 ALOE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 WaitChatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 The Zeeguu Platform . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Chrome extension . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Zeeguu Quantifier . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.3 Zeeguu Translate . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.4 Zeeguu Reader for Android . . . . . . . . . . . . . . . . . . 12

3 System Design 13
3.1 Zeeguu API iOS Framework . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 The Communication Layer . . . . . . . . . . . . . . . . . . 14
3.1.2 The Domain Model . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 The User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Feeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.4 Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Web View integration . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 First Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Second Iteration . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 Interaction between website and app . . . . . . . . . . . . . 30

4 User Study 33
4.1 Usage results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Results 41
5.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Conclusions and Future Work 45

2



CONTENTS 3

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Appendix A Requirements 49
A.1 Persona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.2 Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.3 Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Appendix B Pre-Study Questionnaire 53

Appendix C Post-Study Questionnaire 57

Appendix D Post-Study Questionnaire Answers 59

Appendix E Web View Interaction 63
E.1 Example German paragraph . . . . . . . . . . . . . . . . . . . . . . 63

Appendix F Get context algorithm 65

Appendix G JavaScript action 69

Appendix H List of Figures 77

Appendix I List of Tables 79

Appendix J List of Listings 81

Appendix K Bibliography 83



4 CONTENTS



Chapter 1

Introduction

When learning a second language, one usually follows a learning program, which
includes studying lists of words, reading standard texts and doing exercises. Learning
a second language is much more enjoyable if one enjoys reading materials in the
new language. Articles that are not too long, written about topics the student likes
could be a good way to keep the reader motivated in reading more and thus learning
the language.

However, if the student does not know what a word means he has to look it up
in a dictionary, and this means losing time, time that could have been better spent
reading some more second language materials. One of the hypotheses of this work
is that it might be more productive if one could just tap a word and its translation
would appear within the text. This would save the learner from having to search for
the word in an external dictionary or manually having to type it into a service like
Google Translate. Keeping track of all the translations a user needs opens many
opportunities for developing automated solutions that improve language learning.

In this thesis we introduce the idea of an application which offers a platform
where users can improve a language of their preference by reading articles they like
in this language. The application allows users to read articles from their favorite
news and blogs websites in the language they want to learn as opposed to static and
inflexible texts. Users are able translate unknown words by the simple tapping of a
word. The word is pronounced and its translation is inserted in the text. The idea
is implemented in the form of the Zeeguu Reader for iOS. The Zeeguu Reader for
iOS uses RSS feeds to deliver articles, however, the user should not need to know
about RSS and therefore it should be sufficient to just enter the url of the website
he wants to follow.

In addition to translating a single word, the application offers two other ways of
translating words. Translating a word pair and translating sentences/longer pieces

5



6 CHAPTER 1. INTRODUCTION

of text. These two options can help users to better understand what the text is
saying.

Since machine translation is not yet perfect, it can happen that the first trans-
lation is not the correct one. Therefore, the Zeeguur Reader for iOS allows the
reader to tap the translation which was inserted in the text and select an alternative
translation or provide a new translation.

The Zeeguu Reader is part of the Zeeguu platform. The Zeeguu platform is a
collection of apps and services to enhance language learning. To help the reader
remember words better, the Zeeguu platform offers personalized exercises, based
on the words that were translated earlier. The reader is presented with the English
translation and the context in which the foreign word appeared and has to type the
word that resulted in the given translation. To make these exercises easily accessible,
the Zeeguu Reader allows users to make these exercises as if they were part of the
app.

To validate whether the Zeeguu Reader for iOS is a good way to read text in
a second language, a user study was conducted to answer the following research
questions:

1. Do the learners like such an application that allows them to read texts on
their iOS device?

• Do users generally read on iPhone or iPad?
• How long do they use the app?

2. Which of the features of the application are the most used by the users?

• Do users like the interaction of tapping a word and having the translation
inserted in the text?

• Do users use the pronunciation feature?
• Which way of translating words/text do users use the most?

1.1 Structure

This document describes the Zeeguu Reader, the user study and the results of the
user study. The remainder of this document is structured as follows:

2. Related work
This chapter briefly introduces work related to the problem and solution.

3. System Design
This chapter describes the Zeeguu Reader for iOS, as a solution of the prob-
lem.



1.1. STRUCTURE 7

4. User Study
This chapter describes the user study we conducted and the usage results we
collected.

5. Results
This chapter describes the results we found and answers the research questions
that were introduced in the introduction.

6. Conclusion and Future Work
This chapter gives our conclusions about the results of the user study and
describes future work that can be done to improve the solution.



8 CHAPTER 1. INTRODUCTION



Chapter 2

Related work

The Zeeguu platform is not the only language learning service available. There
are already several other services that can help you learn a second language. Two
examples are Duolingo1 and Babbel2. In contrast to the Zeeguu platform, these
language learning services aim at learners who are starting to learn a second lan-
guage, whereas the Zeeguu platform requires already some knowledge about the
language, as the learner will read foreign texts.

There are also services available doing something similar to what the solution,
being the Zeeguu Reader for iOS, is doing. One such service/device is the Kindle
Reader.

2.1 Kindle Reader

The Kindle Reader offers users to tap/click a word to see a definition34. However,
these methods are cumbersome and non-intuitive. In the first blog article (footnote
3), the author describes that tapping (or clicking on older devices) a word gives a
definition of the word, usually in English. The author writes that one can use this
feature to translate words by downloading an appropriate dictionary, for example
English-Spanish, installing it on the device and setting it as the default dictionary.
Tapping/Clicking a word then gives a definition from the newly installed dictionary
and thus gives one or more translations.

The second blog article (footnote 4) describes a method of translating words
1https://www.duolingo.com
2https://www.babbel.com
3http://learnoutlive.com/how-to-use-your-kindle-to-study-a-foreign-language/
4http://ebookfriendly.com/translate-words-in-kindle-app/

9

https://www.duolingo.com
https://www.babbel.com
http://learnoutlive.com/how-to-use-your-kindle-to-study-a-foreign-language/
http://ebookfriendly.com/translate-words-in-kindle-app/


10 CHAPTER 2. RELATED WORK

from within the Kindle app. The Kindle app also offers the feature of ‘defining’ a
word by highlighting it. The definition appears at the bottom of the screen. The
author then describes that to translate a word, one taps the ‘Google’ link, to search
the definition using Google, and adds ‘to <language>’ to the search term to get
the translation.

Although these articles are a few years old, the Kindle app does not seem to offer
a translation feature but rather a ‘definition’ feature5. Therefore, translating words
using the Kindle reader or app does not offer the seamless translation experience
that the Zeeguu Reader for iOS offers.

2.2 Lingua.ly

Another service that is similar to the Zeeguu Reader for iOS is Lingua.ly6. This
service is very similar to the Zeeguu Reader for iOS and also similar to the Zeeguu
platform. It incorporates the same ideas into its apps: reading texts from regular
textbooks is boring. Users like reading texts about subjects they like. Users of
Lingua.ly can tap a word and a translation pops up below the word. Lingua.ly uses
three dictionaries to get the best translation and uses the translated words to build
exercises to help the user learn the language.

A difference between the Zeeguu Reader for iOS and Lingua.ly is that the Zeeguu
Reader for iOS inserts the translation into the text. Therefore, the user doesn’t need
to re-translate words as the translation is still there.

2.3 ALOE

Andrew Trusty and Khai N. Truong developed a FireFox extension that randomly
translates words on webpages to the language that the user wants to learn. They
did a user study to see whether the web can be used for vocabulary learning [1].

The extensions works as follows. The user just browses as usual, reads news
from his favorites news site, uses social media, etcetera. All this is just in his native
language. The ALOE extension randomly picks words within an active webpage
and changes them to the corresponding words in his second language, for example
French. As the user reads the webpage, he will encounter those French words a
should be able to infer the context. If not, he can click the word and he is presented
with a small quiz: guessing the original word, out of three possibilities. This way,
the user will encounter French words and learn them eventually.

5https://www.amazon.com/gp/digital/fiona/kcp-landing-page/
6https://lingua.ly

https://www.amazon.com/gp/digital/fiona/kcp-landing-page/
https://lingua.ly


2.4. WAITCHATTER 11

2.4 WaitChatter

A second language learning application which has a different approach than the
Zeeguu Reader for iOS is the WaitChatter extension [2]. It uses Google Chat as a
basis. The idea is that when the other party in a chat is typing, you are just waiting
for them to send the message. WaitChatter picks a word from the conversation and
asks the user for the translation in several different ways, depending on how often
the word has been presented to the user already.

Just like ALOE, WaitChatter is a passive form of learning a second language. It
happens while you are doing your usual activities, while the Zeeguu Reader for iOS
or services like Lingua.ly require the user to actively read something in their second
language.

2.5 The Zeeguu Platform

The initial version of the Zeeguu platform was created by Simon Marti [3] as a
bachelor’s project at the University of Bern. Since then, the Zeeguu platform has
grown and several applications were created as part of the Zeeguu platform, like the
Chrome extension and several Android based applications.

2.5.1 Chrome extension

The Chrome extension allows the learner to visit any foreign webpage they like and
click words they don’t know. The translation appears right below the word and users
can search several online dictionaries for other translations if the first one does not
seem right. The reader can bookmark difficult words. His list of bookmarked words
is used for the exercises, allowing the user to practice with the difficult words he
bookmarked.

2.5.2 Zeeguu Quantifier

The Zeeguu Quantifier was created as part of the bachelor’s project of Karan Sethi
[4]. It gives the user a metric about their progress in order to quantify the user’s
knowledge of the language they are learning.



12 CHAPTER 2. RELATED WORK

2.5.3 Zeeguu Translate

The Zeeguu Translate Android application is a translator that allows its users to
add words to their Zeeguu word list while on the go. It also allows the user to show
their current list of words and to do exercises. The app allows users to enter words
by typing, pasting from the clipboard and speaking into the microphone. The words
can be pronounced and bookmarked. The application was developed by Pascal Giehl
[5].

2.5.4 Zeeguu Reader for Android

A Zeeguu Reader for Android was already being developed by Linus Schwab [6] as
part of his bachelor’s project. The Android version of the reader follows a different
approach, as it is presented as an RSS reader to automatically provide the user with
the newest articles from his favorite news sources, whereas the iOS version tries to
hide the use of RSS from the user.

There are more differences between the Zeeguu Reader for Android and the
Zeeguu Reader for iOS. The Android version only allows the reader to select a word
and receive the translation, whereas The iOS version inserts the translation into the
text, next to the translated word. The iOS version also allows the reader to select
a word pair or a complete sentence.



Chapter 3

System Design

The Zeeguu Reader app communicates with the Zeeguu server to get translations,
translation history, user profile, etcetera. This document will focus mainly on the
iOS app, as the server existed before the app and is not within the scope of this
project.

Within this document, the server is considered a black box that runs a REST
API1, which has a set of endpoints that the app can communicate with [7].

The iOS version of the Zeeguu Reader app consists of two major distinct parts.
The user interacts with only one part: the app. Internally, the app has to commu-
nicate with the Zeeguu server, which is done via a reusable framework, which acts
as a wrapper around the Zeeguu server.

This section describes the most important classes of both the Zeeguu API iOS
framework and the Zeeguu Reader iOS app. Within these descriptions, other classes
may be discussed. Please note that any class or protocol that starts with the prefix
‘UI’ or ‘NS’ are classes provided by iOS. Have a look at the UIKit Framework
reference2 for more information about these classes.

1The server is located at https://www.zeeguu.unibe.ch/. The server is open source, its
code is located at https://github.com/mircealungu/Zeeguu-API.

2https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIKit_Framework/index.html

13

https://www.zeeguu.unibe.ch/
https://github.com/mircealungu/Zeeguu-API


14 CHAPTER 3. SYSTEM DESIGN

3.1 Zeeguu API iOS Framework

The iOS API framework3 is a set of public/private classes. There is one major
class that communicates with the API and a small set of helper classes that represent
types of data from the server. This section describes a few of these classes. Please
note that in this section, the programmer using the framework is referred to as ‘the
user’.

The Zeeguu API iOS framework consists of 5 public classes. Furthermore, the
Zeeguu API for iOS comes with a suite set of test cases to test whether each
endpoint is still functional.

3.1.1 The Communication Layer

The ZeeguuAPI class is the most important class of the framework. Its purpose
is to abstract away the process of creating a request, waiting for its response and
converting the response to something useful. It does this by offering a method
for each endpoint that expects all needed data and a completion block (a block
of code that can be passed around and used as if it was a function). The only
thing the user has to do in order to use an endpoint is the following: The user has
to gather all needed data (for example the user credentials in case of login) and
call the appropiate method on the ZeeguuAPI instance. The completion block is
executed as soon as a response is received. The completion block is called with the
requested data. In case of login, the completion will receive a boolean stating if
login succeeded (the REST API returns sessionID, which is hidden from the user) or
in case of translating a word, it will be called with the translation as an argument.

In order to fulfill its purpose, the ZeeguuAPI class must remember if the user
is logged in. Most of the API endpoints require a user to be logged in. In order
to verify a user being logged in, the endpoints require a session ID, which is given
once a user logs in. Therefore, the ZeeguuAPI class must remember that session
ID and send it to the server along with each request. To remember the session ID,
the ZeeguuAPI class is a singleton class, meaning that only one instance (with a
session ID) can exist at any given time [8].

3.1.2 The Domain Model

To ease working with the data from the server, the Zeeguu API iOS Framework offers
some classes to represent data collections from the server. The collections from the
server that make most sense to give their own class representations are articles,

3The source code of the Zeeguu API iOS framework is available at https://github.com/
JorritO/Zeeguu-API-iOS.

https://github.com/JorritO/Zeeguu-API-iOS
https://github.com/JorritO/Zeeguu-API-iOS


3.1. ZEEGUU API IOS FRAMEWORK 15

feeds and bookmarks. The Article, Bookmark and Feed classes represent
their respective types of data collections on the server.

These classes are easier to use and understand than using the arrays and dic-
tionaries returned by the REST API endpoints. They also offer some convenient
methods which wrap around some regular ZeeguuAPI methods, allowing for a
nicer and more readable way of working with these entities.

Article The Article class represents an article and contains its title, summary,
url, etcetera. In addition to the data that is provided by the server, the Article
class also provides some properties for local use, such as whether the article is read,
starred, liked, how difficult the article was for the user and whether the article was
completely read.

Furthermore, it contains a method for getting the contents of the article, as a
convenience for the user, so he doesn’t need to use the corresponding method on
the ZeeguuAPI class. The REST API offers an endpoint that retrieves an array
of articles for a given feed. The corresponding ZeeguuAPI method converts that
array of dictionaries into an array of Article objects, which eases the work for
the user, as he does not need to do that himself.

A similar method is offered for retrieving the difficulty of the article. The ‘get
contents’ endpoint of the REST API already includes the difficulty of the article,
but the getDifficulty method also offers the ability to select another difficulty
computation algorithm, in which case the regular ‘get difficulty’ endpoint is used.

The Article class implements the ZGSerializable protocol as described
in section 3.1.3.

Bookmark The Bookmark class represents a previously translated word or phrase
and contains the word/phrase, translation, optionally context, etcetera. Even though
the app is presenting the bookmarks as history, the server still calls it bookmarks.
The endpoints that retrieve bookmarks actually return arrays of Bookmark objects.

The Bookmark class offers some convenient methods for deleting the book-
mark, adding or removing translations and retrieving all translations for the book-
mark. These methods are just wrappers around the corresponding endpoints in the
ZeeguuAPI class, giving them the id of the Bookmark instance.

The Bookmark class also implements the ZGSerializable protocol, al-
though this functionality is not used by the Zeeguu Reader yet.

Feed The Feed class represents an RSS feed. It contains the feeds title, url,
language, imageURL, etcetera. It also contains a method that retrieves its image,



16 CHAPTER 3. SYSTEM DESIGN

using the imageURL that is present.

As the Article class includes an instance of Feed among its properties, the
Feed class is required to implement the ZGSerializable protocol.

ArticleDifficulty The String-based ArticleDifficulty enum represents
how easy it was for a reader to understand an article. The enum offers three choices:
Easy, Medium and Hard. Additionally it can have the value Unknown, for situ-
ations where the difficulty is not (yet) known. The enum offers a description
method which returns a localized version of its raw value, which is a String object,
suitable for use within a user interface. It also offers a color method that returns
a color based on which value the enum has. This color can be used in a graphical
user interface for easy recognition of the article difficulty.

3.1.3 Serialization

The Zeeguu Reader for iOS saves all articles locally in order to remember if the
reader read the article, liked it, etcetera. Saving the articles also allows for keeping a
history of articles, as the server only delivers the last n articles. To allow the Zeeguu
Reader to save articles, the ZGSerializable protocol and ZGSerialize helper
class were created. Objects conforming to ZGSerialize can be converted to a
dictionary and back. Dictionaries can easily be stored in plist4 based files, such as
the default preferences file that is used by NSUserDefault.

ZGSerializable The ZGSerializable protocol dictates an initializer and a
method for converting an object to a dictionary and back. This dictionary is of
type [String: AnyObject]. This protocol allows for easy conversion to and
from a dictionary, which makes it easy (and fairly trivial) to store an object in
NSUserDefaults. The Zeeguu Reader iOS app is using the availability of these
methods to store lists of Articles in NSUserDefaults.

Listing 3.1: The methods required by ZGSerializable

1 init?(dictionary dict: [String: AnyObject])
2 func dictionaryRepresentation() -> [String: AnyObject

]

The initializer should be of the form shown in listing 3.1. This initializer should
initialize an instance of the class implementing ZGSerializable, using the keys

4A ‘plist’ file is a ‘property list’ file that stores information in XML. For more infor-
mation see also https://developer.apple.com/library/mac/documentation/Cocoa/
Conceptual/PropertyLists/Introduction/Introduction.html

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html


3.1. ZEEGUU API IOS FRAMEWORK 17

and values in dict. Note that this initializer is a ‘failable initializer’, meaning that
the initializer may throw an exception or return nil.

The dictionaryRepresentation method must return a dictionary that
contains all information about the object that can be used to reconstruct the object
again using the initializer.

The Article, Bookmark and Feed classes all implement these methods by
returning a dictionary with all properties stored with their keys being the names of
the corresponding properties.

ZGSerialize The ZGSerialize class offers some static methods for ‘encod-
ing’ and ‘decoding’ ZGSerializable objects. It offers methods for both single
ZGSerializable objects and arrays of ZGSerializable objects.



18 CHAPTER 3. SYSTEM DESIGN

3.2 The User Interface

The Zeeguu Reader app5 consists of three main sections. The feeds/articles, word
translation history and profile, as shown in Figure 3.1:

Figure 3.1: The tabbar showing the three sections of the app

The feeds/article section contains the feeds and tapping a feed leads to a list of
its articles, which in turn gives access to the article’s contents.

The history section contains a list, grouped by date, of previously translated
words/phrases. By tapping a translation, also the original context of the translated
word is shown.

The profile shows the user’s name and email and allows the user to change their
base language and the language they want to learn.

Note: Some of the about 29 classnames are shortened for readability. TVC
stands for TableViewController and VC stands for ViewController.

AppDelegate The AppDelegate class is the main class of the Zeeguu Reader.
This class is responsible for handling all kinds of events from the system. For exam-
ple, if the application finished loading, the appropriate method of AppDelegate
is called, which sets up the initial views and presents a login screen if necessary. This
‘appropriate’ method is, among others, prescribed by the UIApplicationProtocol
, to which AppDelegate conforms.

Welcome screen The Zeeguu Reader for iOS features a very basic welcome
screen, that uses a UIScrollView to display a few UIImageViews to display a
few screenshots with added text to explain some of the features of the app. After
the user scrolls past all images, he can dismiss the welcome screen. The scroll
view has ‘paging’ enabled, meaning that if the user scrolls halfway an image and
releases his finger, the scroll view bounces to the image that is more than 50%
visible at that moment. To show the ‘scroll progress’, the welcome screen features
a UIPageControl that shows as many circles as there are images and shows at
which image the user is.

5The source code of the Zeeguu Reader iOS app is available at https://github.com/
JorritO/Zeeguu-Reader-iOS.

https://github.com/JorritO/Zeeguu-Reader-iOS
https://github.com/JorritO/Zeeguu-Reader-iOS


3.2. THE USER INTERFACE 19

3.2.1 Feeds

The Zeeguu Reader for iOS uses RSS feeds, managed by the Zeeguu REST API,
to deliver articles to its users. In contrast to the Android version of the Zeeguu
Reader (section 2.5.4), the iOS version tries to hide that fact from the user, by
allowing the user to enter normal site urls and having the Zeeguu Rest API find the
corresponding RSS feeds on the website.

FeedOverviewTVC The FeedOverviewTVC class is responsible for showing
all feeds the logged in user subscribed to. This class is a subclass of UITable-
ViewController, which displays a UITableView on the screen. The Feed-
OverviewTVC acts as the delegate6 and datasource of that table view and feeds
the tableview an entry for each feed. Each feed entry is displayed using an instance
of the FeedTableViewCell class.

Figure 3.2: A feed cell as displayed within the list of feeds

The FeedTableViewCell (Figure 3.2) displays the title and description of
the feed. Additionally, as most feeds feature a ‘feed image’, usually the logo of
the corresponding website, the cell also displays that image. To show the user how
many articles of the feed are unread, the articles are retrieved and each feed cell
shows how many articles the user hasn’t read yet.

Figure 3.3: The navigation bar featuring a title and an ‘Add’ button

The FeedOverviewTVC is displayed within a UINavigationController
, to enable easy navigation between view controllers7 and the navigation bar, which

6A delegate is an object that can be used to delegate operation to. For example, a user can
tap a row in a table view. The table view is a generic object, representing a table view element
on screen and doesn’t know what to do when a row is tapped, apart from selecting it. That is
were the delegate comes in. The table view informs the delegate about which row was tapped and
delegates the decision of what has to be done to the delegate object. The delegate conforms to a
protocol (in this case UITableViewDelegate), that prescribed methods that can be delegated.

7The UI-Navigation-Controller contains a view controller stack. The navigation be-



20 CHAPTER 3. SYSTEM DESIGN

is shown on top of the tableview (Figure 3.3). The FeedOverviewTVC is also
responsible for populating the navigation bar with a title and buttons. The Feed-
OverviewTVC class adds an add button to the navigation bar that allows the user
to add one or more feeds.

AddFeedTVC, SelectFeedsTVC The AddFeedTVC (Figure 3.4a) and Select
FeedsTVC (Figure 3.4b) allow the user to subscribe to extra news feeds. The
AddFeedTVC allows the user to enter a url of their favorite website. After adding
the url, the SelectFeedsTVC is presented, which will display all RSS feeds that
were found on the entered website8. The SelectFeedsTVC allows the user to
select one or more to add to their feed list.

(a) The ‘Add feed’ screen (b) ‘Select feed’ screen for http://spiegel.de

Figure 3.4: The ‘Add feed’ and ‘Select feed’ screens

The AddFeedTVC features an ‘interesting news sources’ section. This section,
generated by the Zeeguu server using its endpoint, only shows a list of news feeds
written in the language the user is learning.

Both the AddFeedTVC and SelectFeeddTVC use the FeedTableViewCell
to show the interesting news sources and available feeds respectively.

tween view controllers, which can be seen as screens of the app, is like the navigation between
screens within the settings app on iPhone. When a new view, managed by its view controller, is
pushed, it slides in from the right. Similarly, if the top view is popped, slides off screen to the
right, revealing the previous view.

8Some website mention multiple feeds in the head section of the page. For example, they offer
a general feed, with all articles and offer some specialized feeds with only sports articles, foreign
affairs, etcetera.



3.2. THE USER INTERFACE 21

3.2.2 Articles

ArticleListVC The ArticleListVC class is responsible for showing the articles
that belong to a given feed (or in one case for all subscribed feeds). This controller
also displays a table view that displays all articles by using instances of the Article
TableViewCell class for displaying the article titles and descriptions nicely.

Figure 3.5: An article cell as displayed within the list of articles

Each cell (Figure 3.5) shows the title, description and feed image. Additionally,
the difficulty is shown, using both color (green, orange or red) and text (easy,
medium or hard). Of course, the cell does not lack the date and time the article
was published. To indicate whether an article is unread, a blue circle is shown at
the left side of the cell and it disappears when the reader opens the article.

ArticleVC The ArticleVC is responsible for showing the article’s contents. In a
first version, it used an instance of the ArticleView class to display the article’s
title and contents. However, due to the Zeeguu REST API relying on the beautiful-
soup9 library which was not correctly extracting the contents of some articles, the
ArticleView was replaced by a web view. Take for example the german news
website ‘Der Spiegel’: the contents extracted by the server did not start with the
small description given by article entry within the feed. In this case, the intro of the
article was not positioned in the same element as the rest of the article, therefore,
the intro was missing in the extracted content and therefore the extracted content
did not correspond to the small description given by the feed.

To solve this problem, the second iteration of the application uses a web view
to display the articles. To achieve a consistent look, the url to the article online
is given to Readability10 and the resulting readability page is displayed in the web
view (Figure 3.6a).

While reading the article, there are a few things to customize (Figure 3.6b).
It if possible to change the font size of the article, to improve readability of the
text. The reader can disable links, allowing the reader to translate words inside
hyperlinks, without the article disappearing, because the web view followed the link.

9https://www.crummy.com/software/BeautifulSoup/
10https://www.readability.com

https://www.crummy.com/software/BeautifulSoup/
https://www.readability.com


22 CHAPTER 3. SYSTEM DESIGN

(a) The article screen

(b) Article options

Figure 3.6: Article screen with options

By default, if a word is tapped, it is pronounced. While the pronunciation is
played, the translation is retrieved from the server. The reader can choose to disable
the pronunciation, but can have it pronounced later on by tapping a speaker icon
(Figure 3.7a) next to the translation.

After the translation is retrieved, the translation is inserted into the text. If the
reader doesn’t like that, the reader can disable this behavior from the options menu.
When a translation is retrieved, the translation is briefly displayed at the bottom of
the article view instead.

If the given translation seems incorrect, tapping the translation (Figure 3.7a)
shows a view where the reader can select an alternative translation, give their own
translation or delete the existing one (Figure 3.7b). Deleting the translation removes
it both from the text and the history. If another translation is selected or given,
using the ‘Edit translation’ text field, the translation is updated both within the text
and the history.

The first iteration of the application offered two methods of translation. Se-
lection of a single word or a whole sentence/large piece of text. With the new
approach, using the web view, three methods are offered (Figure 3.6b).

1. Instant translation. With this method active, if the reader taps a word, the
app immediately translates the word.



3.2. THE USER INTERFACE 23

(a) Translating ‘Jetzt’

(b) Update translation screen

Figure 3.7: Updating translation of ’Jetzt’

2. Translating a word pair (Figure 3.8). With this method, the reader has to
select two words. After having selected the second word, a small pop-up
appears with a ‘Translate’ button. Tapping the translate button fuses the
two words together, separated by a space, in the order they appeared in the
text and translates the combination.

3. Translating a sentence (Figure 3.9). Using this method, the reader has to
select two words again, but this time all text in between these two words is
also translated.

Figure 3.8: Selecting ‘hatte unterstützt’

The article view also features a toolbar at the bottom of the screen (Figure 3.6a).
This contains a like/dislike button, a ‘segmented‘ control for selecting the difficulty
and a ‘read all’ button. The interactions with these buttons are only stored locally,
so liked articles and difficulty assessments are not synchronized between multiple



24 CHAPTER 3. SYSTEM DESIGN

Figure 3.9: Selecting ‘Sie hatte die ... ihren Bruder gestellt.’

devices. Therefore, if the reader likes an article and assesses the article as hard, that
information is stored locally and persists after having restarted the app, updating
the buttons accordingly.

3.2.3 History

HistoryTVC The HistoryTVC is responsible for displaying the list of previously
translated words and phrases. The controller receives all Bookmark11 objects from
the ZeeguuAPI, grouped by date, and displays them using regular UITable-
ViewCell objects. The UITableViewCell offers a few layouts for displaying
information within a cell. First, this controller used the style that is displayed in
Figure 3.10. For just a single word (Figure 3.10b), this style is fine, however, the
reader also supports translating sentences or even complete paragraphs and in those
cases, this style fails in such a way that both the word and the translation get mixed
up in each other (Figure 3.10b).

(a) Single word (b) Sentence

Figure 3.10: First History table view cell style

(a) Single word (b) Sentence

Figure 3.11: Alternative History table view cell style

To solve this problem, it was possible to use one of the other available styles
(figures 3.11 and 3.12). After comparing Figure 3.11b with Figure 3.12b, it turns
out that the style from Figure 3.12 performs best with longer pieces of text. As a

11Though these aren’t really bookmarks, the ZeeguuAPI still refers to them as ‘bookmark’,
because the endpoints on the server still do.



3.2. THE USER INTERFACE 25

(a) Single word (b) Sentence

Figure 3.12: Second alternative History table view cell style

result, the style from Figure 3.12 was chosen, but with a slightly customized layout
(Figure 3.13).

(a) Single word (b) Sentence

Figure 3.13: Final History table view cell style

HistoryItemVC The HistoryItemVC class is responsible for displaying the orig-
inal word, the translation and the context in which the word was translated. This
controller is presented after a user tapped an entry in the HistoryTVC. The
HistoryItemVC just displays an instance of the HistoryItemView class that
is responsible for displaying the data correctly.

Figure 3.14: An example of a history item

The HistoryItemView (Figure 3.14) shows the original word and its trans-
lation. It also shows how the word appeared in its context and from which language
the word is.



26 CHAPTER 3. SYSTEM DESIGN

3.2.4 Profile

ProfileTVC The ProfileTVC (Figure 3.15a) is responsible for displaying the
user information. It shows the name, email, learn language and base language of
the user similar to how the HistoryTVC shows words and translations. It also
allows the user to change the learned and base language: it presents an instance of
the LanguagesTVC class, which displays all available languages for a given mode
(learned language or base language). Once the user chose a new language, the
ProfileTVC is notified, as it listed itself as a delegate of the LanguagesTVC
instance. Once the ProfileTVC is notified, it updates the language preference
using the ZeeguuAPI class and updates its view to reflect the changes.

(a) Profile

(b) Profile

(c) Exercise correctly answered

Figure 3.15: Profile and exercises

Additionally, the ProfileTVC offers a button to open the exercises (Figure
3.15b). For example, an exercise gives the translation of a word. It is then the job of
the user to identify the original word in the given context. The translation in Figure
3.15b is ‘monetary fund’. The user now has to identify which German word resulted
in this translation. In this example, the user should identify ‘Währungsfonds’ as the
original word (Figure 3.15c).

Login-, Register- and LoginRegisterTVC The LoginTVC (Figure 3.16b) al-
lows the user to login, the user enters their email and password and the LoginTVC
logs the user in or displays a failure message.



3.3. WEB VIEW INTEGRATION 27

The RegisterTVC (Figure 3.16c) allows the user to create an account. The
user has to enter their name, email and choose a password. The user also has to
choose the language they want to learn and their base language, which are also
chosen using the LanguagesTVC.

The LoginRegisterTVC (Figure 3.16a) simply offers the choice to login or
to register.

(a) Login or register (b) Login (c) Register

Figure 3.16: The login/register screens

3.3 Web View integration

This section describes the challenges and difficulties in displaying the article’s con-
tents and interacting with the words to translate them.

3.3.1 First Iteration

In the first iteration of the application, the ArticleVC was responsible for show-
ing the article’s contents. It used an instance of the ArticleView class to
display the article’s title and contents. The ArticleView used a subclass of
UITextView, called ZGTextView, that intercepted text selection events and
asked the ZeeguuAPI for a translation. The ZGTextView also inserted the re-
ceived translations in the article text, with a grey font color.

The ArticleVC was also responsible for toggling the translate mode that
the ArticleView used. There were two distinct translation modes. The first
mode intercepted the text selection and immediately began to retrieve a translation.
The second mode allowed the user to select more than one word, for example a
complete sentence, and showed a small popup with a ‘Translate’ button, like the
system default cut/copy/paste selection popup. The ‘Translate’ popup was also a



28 CHAPTER 3. SYSTEM DESIGN

responsibility of the ArticleVC. The ArticleVC added the translate button
to the general UIMenuController instance that actually implements the text
selection popup.

Because the automatically extracted article contents delivered by beautifulsoup
were not satisfactory, the decision was made to use a web view instead.

3.3.2 Second Iteration

Using a web view introduces several challenges, because the approach that worked
for the text view in the first iteration did not work for the web view.

Intercepting selection events For example, detecting selection and intercepting
selection events like before was not possible, as there was no way to achieve that
without some ‘hacks’.

The next approach was to detect a tap on the web view and then find out which
word was tapped. Also this approach was not viable, because it is impossible to
get from coordinates within the web view to an element from the HTML page, let
alone find out which word was tapped.

The final approach is to loop over all text elements of the HTML page. Each
text element is enclosed within <zeeguuParagraph></zeeguuParagraph>
tags. To detect which word is tapped, simply all words within the text elements
are enclosed within <zeeguuWord></zeeguuWord> tags. After that, simply
attaching a click handler to each zeeguuWord tag is enough to detect taps on
words.

Extracting context However, knowing the tapped word is not enough. To have
exercises, the context of the word is also important. To find the context, the period
(.), exclamation mark (!) and question mark (?) are enclosed in <zeeguuPeriod
></zeeguuPeriod> tags. Now, to find the context, the algorithm loops through
the neighboring elements until it finds the zeeguuPeriod element. This proce-
dure is executed twice, one time to find the beginning of the context and one time
to find the end of the context. If there is no zeeguuPeriod element is found, it
is considered done.

Take for example the word Finanzausschusses (line 13) in listing E.1 (section
E.1). To find its context, the algorithm will walk over all zeeguuWord elements
(towards the first one), until it is at the beginning of the zeeguuParagraph
element at the word Schneider (line 3). Then it will walk over all zeeguuWord
elements (towards the last one) until it finds a zeeguuPeriod element (line 34).
The resulting context is then: Schneider wies darauf hin, dass es in der Anhörung des



3.3. WEB VIEW INTEGRATION 29

Finanzausschusses zahlreiche Bedenken gegeben habe, ob das Ziel der Förderung
insbesondere des sozialen Wohnungsbaus mit dem vorgelegten Gesetzentwurf erre-
icht werden könne.

With this approach, there was still one challenge to solve. Like said before, each
text element was enclosed within <zeeguuParagraph></zeeguuParagraph
> tags. However, if there is some link (listing 3.2) in between the tapped word and
one of the context ends, the algorithm would stop at the link. So, for example, the
context of “word n-1 ” (listing 3.3, line 22) would become “word y+1 word y+2 ...
word n-1 word n.” Therefore, if the algorithm cannot go any further, it will check
if the neighbour of the current zeeguuParagraph is a link (or bold text using
<b></b>, etcetera), it will continue into the link and will also leave the link again
into the next neighboring zeeguuParagraph, until it finds the correct begin or
end of the context.

Using this modification, the context of “word n-1 ” becomes “word 1 word 2 ...
word x-1 word x word x+1 word x+2 ... word y-1 word y word y+1 word y+2 ...
word n-1 word n.”

Listing F.1 in appendix F shows the complete ‘get context’ algorithm.

Listing 3.2: Text elements with a link

1 <parent>
2 #text <!-- A text element with an arbitrary
3 amount of text -->
4 <a href="http://www.some.web/page.html">
5 #text
6 </a>
7 #text
8 </parent>

Listing 3.3: Text elements with a link, after being processed

1 <parent>
2 <zeeguuparagraph>
3 <zeeguuword>word 1</zeeguuword>
4 <zeeguuword>word 2</zeeguuword>
5 <zeeguuword>...</zeeguuword>
6 <zeeguuword>word x-1</zeeguuword>
7 <zeeguuword>word x</zeeguuword>
8 </zeeguuparagraph>
9 <a href="http://www.some.web/page.html">

10 <zeeguuparagraph>
11 <zeeguuword>word x+1</zeeguuword>
12 <zeeguuword>word x+2</zeeguuword>
13 <zeeguuword>...</zeeguuword>
14 <zeeguuword>word y-1</zeeguuword>



30 CHAPTER 3. SYSTEM DESIGN

15 <zeeguuword>word y</zeeguuword>
16 </zeeguuparagraph>
17 </a>
18 <zeeguuparagraph>
19 <zeeguuword>word y+1</zeeguuword>
20 <zeeguuword>word y+2</zeeguuword>
21 <zeeguuword>...</zeeguuword>
22 <zeeguuword>word n-1</zeeguuword>
23 <zeeguuword>word n</zeeguuword>
24 <zeeguuperiod id="zeeguuPeriod1">.</zeeguuperiod>
25 </zeeguuparagraph>
26 </parent>

3.3.3 Interaction between website and app

There are two interactions possible between a webpage and the app:

• The app executes code within the webpage.

• The webpage executes code within the app

To enable the app executing code within the webpage, the WKWebView class
offers a method that allows the programmer to execute JavaScript code within the
webpage. It even allows for injection of entire JavaScript files at each page load.
Consequently, the Zeeguu Reader has a few JavaScript files with all functionality
concerning the article text, which are being injected at each page load. Later
on, if something needs to be executed, the Zeeguu Reader executes a little bit of
JavaScript, usually a function call or setting the value of some global property.

To make this a bit easier, the ZGJavaScriptAction enum was introduced.
Each case may contain some arguments, in some cases a dictionary with all in-
formation. The enum offers a method that returns a string with the corresponding
JavaScript code. Some actions hold a dictionary and need the possibility to add a
translation to the dictionary or update one. There are methods available to handle
this, which do nothing if the enum has another value. Have a look at listing G.1 in
appendix G for the ZGJavaScriptAction enum.

To allow the webpage to execute code within the app, the WKWebView exposes
a webkit.messageHandlers.zeeguu.postMessage function, where the
zeeguu part is custom and defined by the app. By sending a dictionary with the
action information and any other necessary information, the app is able to determine
what it is supposed to do and executes the corresponding procedure. Listing 3.4
and 3.5 show how the webpage can have the app execute a specific action.



3.3. WEB VIEW INTEGRATION 31

Listing 3.4: An example of how to send an action to the app from JavaScript

1 function zeeguuPostMessage(message) {
2 window.webkit.messageHandlers.zeeguu.postMessage(

message);
3 }
4
5 var word = "Wörterbuch";
6 var message = {action: "pronounce", word: word};
7 zeeguuPostMessage(message);

Listing 3.5: An example of how to receive an action from JavaScript

1 func userContentController(userContentController:
WKUserContentController, didReceiveScriptMessage
message: WKScriptMessage) {

2 guard let body = message.body as? Dictionary<String,
AnyObject> else {

3 return
4 }
5 var dict = Dictionary<String, String>()
6
7 let action = ZGJavaScriptAction.parseMessage(dict)
8
9 switch action {

10 case .Pronounce(_):
11 self.pronounceWord(action)
12 break
13 default:
14 break
15 }
16 }



32 CHAPTER 3. SYSTEM DESIGN



Chapter 4

User Study

After doing multiple iterations and testing the application within the team, we
decided that it was time to validate it with external users.

We organized a user study to validate whether our assumptions about the us-
ability and usefulness of the application were correct.

We conducted the user study in a similar way to how several other ways of
learning a second language were evaluated. [1, 9]

To conduct a user study, we first needed participants. We invited participants to
our study, by asking a professor the language center of the University of Groningen
to ask his students to participate. We also posted an announcement on Facebook.

Each participant was required to fill in a pre-study questionnaire before they
could use the Zeeguu Reader iOS app. The questionnaire gathers some information
about the participant, like name, email, age and further background information.
After the participants filled in the questionnaire, they received an email from Test-
Flight1 with instructions on how to install the app.

The pre-study questionnaire was filled in by 24 potential participants. The pre-
study questionnaire asked whether the future participant was interested in reading
texts on their iPhone or iPad, Android device or the Google Chrome browser, because
that is interesting to know for the Zeeguu Team (appendix B). This study only picked
the participants who were interested in reading texts on their iPhone or iPad, as
this study is about the Zeeguu Reader for iOS app. According to this criterion, 16
participants remained.

1Testflight is a service offered by Apple that lets developers test their applications without
needing to have the app in the App Store or fiddling with unique device IDs. Visit https:
//developer.apple.com/testflight/ for more information.

33

https://developer.apple.com/testflight/
https://developer.apple.com/testflight/


34 CHAPTER 4. USER STUDY

Of these 16 participants, 13 participants actually installed the app, and 7 used
it on a daily basis for about 5 to 15 minutes. The app sends certain events to the
server while the app is used. Table 4.1 shows the events that are sent to the server.
The ‘App use’ event is measured in on-screen time, during which the app is not
necessarily used. These events are used to determine which features are used by the
users and also allows for determining which features are popular or never used.

Event Arguments
userUsedAppInSeconds Time in seconds
userOpensArticle -
userTranslatedUsingInstantTranslation Translation response,

JavaScript action information
userOpensExercises -
userPronouncesWord -
userSwitchesToInstantTranslation -
userSwitchesToWordPairTranslation -
userSwitchesToSentenceTranslation -
userEnablesLinks -
userDisablesLinks -
userLikesArticle 1 if like, 0 if dislike, article url
userSaysArticleDifficultyEasy Article url
userSaysArticleDifficultyMedium Article url
userSaysArticleDifficultyHard Article url
userReadArticleCompletely Article url
userTranslatedUsingWordPairTranslation Translation response,

JavaScript action information
userTranslatedUsingSentenceTranslation Translation response,

JavaScript action information
userEditedTranslation JavaScript action information
userOpensHistoryItem -
userDeletedTranslation JavaScript action information

Table 4.1: The events that are sent to the server

To conclude the user study, the participants were asked to fill in a final ques-
tionnaire, which gathers information about how the users experienced the app. The
post-study questionnaire was filled in by 6 participants, who were generally positive
about the app (appendix D).

The users The 7 users who were using the app for multiple days, are mostly male
and between 35 and 44 years old. Most of them have graduated from a university
and two of them are doing or have finished their PhD. 2 out of the 7 users were still
Bachelor students. 3 participants were interested in learning German and 3 others
were interested in learning French. The last one wanted to learn Dutch.



35

One participant had a language level of A1, three participants had a language
level of B1, two participants had a language level of B2 and one participant had
a language level of C1. Therefore, we can assume that most users can at least
understand the main points of clear speech and can narrate an event, experience or
dream.



36 CHAPTER 4. USER STUDY

4.1 Usage results

As mentioned above, 7 used the app actively for multiple days. Some users used
the app more than others, but they all did some actual reading. Table 4.2 shows
the language level of each user.

User Language level
1 A1
2 B1
3 B1
4 B2
5 B2
6 B1
7 C1

Table 4.2: The language levels of each user

0	

2	

4	

6	

8	

10	

12	

14	

16	

us
erO

pe
ns
Ar
0c
le	
	

us
erT
ran
sla
ted
Us
ing
Ins
tan
tTr
an
sla
0o
n		

us
erO

pe
ns
Ex
erc
ise
s		

us
erP
ron
ou
nc
esW

ord
		

us
erS
wi
tch
esT
oIn
sta
ntT
ran
sla
0o
n		

us
erS
wi
tch
esT
oW
ord
Pa
irT
ran
sla
0o
n		

us
erS
wi
tch
esT
oS
en
ten
ce
Tra
ns
la0
on
		

us
erD

isa
ble
sLi
nk
s		

us
erL
ike
sA
r0
cle
		

us
erS
ay
sA
r0
cle
Diffi

cu
lty
Ea
sy	
	

us
erS
ay
sA
r0
cle
Diffi

cu
lty
Me
diu
m	
	

us
erT
ran
sla
ted
Us
ing
Wo
rdP
air
Tra
ns
la0
on
		

us
erT
ran
sla
ted
Us
ing
Se
nte
nc
eT
ran
sla
0o
n		

us
erE
dit
ed
Tra
ns
la0
on
		

us
erO

pe
ns
His
tor
yIt
em
		

us
erD

ele
ted
Tra
ns
la0
on
		

24-06-16	

29-06-16	

30-06-16	

01-07-16	

02-07-16	

04-07-16	

Figure 4.1: Usage data of user #1

Figure 4.1 shows the usage data of user #1. This user read many articles
and also translated many words. He has turned off the pronounce words option, as
visible by the fact that less words have been pronounced than words were translated.
This user has also switched to word pair and sentence translation and used these
translation modes to do some translations.

Figure 4.2 shows the usage data of user #2, who also translated many some



4.1. USAGE RESULTS 37

0	

2	

4	

6	

8	

10	

12	

14	

16	

us
erO

pe
ns
Ar
0c
le	
	

us
erT
ran
sla
ted
Us
ing
Ins
tan
tTr
an
sla
0o
n		

us
erO

pe
ns
Ex
erc
ise
s		

us
erP
ron
ou
nc
esW

ord
		

us
erS
wi
tch
esT
oIn
sta
ntT
ran
sla
0o
n		

us
erS
wi
tch
esT
oW
ord
Pa
irT
ran
sla
0o
n		

us
erS
wi
tch
esT
oS
en
ten
ce
Tra
ns
la0
on
		

us
erD

isa
ble
sLi
nk
s		

us
erL
ike
sA
r0
cle
		

us
erS
ay
sA
r0
cle
Diffi

cu
lty
Ea
sy	
	

us
erS
ay
sA
r0
cle
Diffi

cu
lty
Me
diu
m	
	

us
erT
ran
sla
ted
Us
ing
Wo
rdP
air
Tra
ns
la0
on
		

us
erT
ran
sla
ted
Us
ing
Se
nte
nc
eT
ran
sla
0o
n		

us
erE
dit
ed
Tra
ns
la0
on
		

us
erO

pe
ns
His
tor
yIt
em
		

us
erD

ele
ted
Tra
ns
la0
on
		

01-07-16	

02-07-16	

03-07-16	

Figure 4.2: Usage data of user #2

words and read less articles, however, this user only used the instant translation
option. Furthermore, user #2 is one of two users who discovered the existence of
the feature to edit and delete translations. User #2 had the pronounce word option
disabled from the beginning, because his graph doesn’t show any word having been
pronounced.

Figure 4.3 shows the usage data of user #3, who read few articles, but translated
more words than user #1 as well as user #2. This user left the option to automat-
ically pronounce words on, as Figure 4.3 shows exactly as many pronunciations as
there are translations.

Figure 4.4 shows the usage data of user #4. He read many articles and didn’t
need to translate many words. This user probably turned of the automatic pro-
nunciation feature after hearing the first pronounced word. He also switched to
both other translation modes, but has not used these translation modes to do any
translation.

Figure 4.5 shows the usage data of user #5. This user also read many articles,
but didn’t translate too many words. This user has not used any other translation
mode, besides the default one and also turned off the pronunciation feature quite
quickly. This user has a B2 language level, so it’s likely he understood what the
articles were saying and could infer most unknown words.

Figure 4.6 shows the usage data of user #6. This user has read few articles and



38 CHAPTER 4. USER STUDY

0	

5	

10	

15	

20	

25	

us
erO

pe
ns
Ar
.c
le	
	

us
erT
ran
sla
ted
Us
ing
Ins
tan
tTr
an
sla
.o
n		

us
erO

pe
ns
Ex
erc
ise
s		

us
erP
ron
ou
nc
esW

ord
		

us
erS
wi
tch
esT
oIn
sta
ntT
ran
sla
.o
n		

us
erS
wi
tch
esT
oW
ord
Pa
irT
ran
sla
.o
n		

us
erS
wi
tch
esT
oS
en
ten
ce
Tra
ns
la.
on
		

us
erD

isa
ble
sLi
nk
s		

us
erL
ike
sA
r.
cle
		

us
erS
ay
sA
r.
cle
Diffi

cu
lty
Ea
sy	
	

us
erS
ay
sA
r.
cle
Diffi

cu
lty
Me
diu
m	
	

us
erT
ran
sla
ted
Us
ing
Wo
rdP
air
Tra
ns
la.
on
		

us
erT
ran
sla
ted
Us
ing
Se
nte
nc
eT
ran
sla
.o
n		

us
erE
dit
ed
Tra
ns
la.
on
		

us
erO

pe
ns
His
tor
yIt
em
		

us
erD

ele
ted
Tra
ns
la.
on
		

18-06-16	

20-06-16	

30-06-16	

01-07-16	

02-07-16	

Figure 4.3: Usage data of user #3

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

us
erO

pe
ns
Ar
4c
le	
	

us
erT
ran
sla
ted
Us
ing
Ins
tan
tTr
an
sla
4o
n		

us
erO

pe
ns
Ex
erc
ise
s		

us
erP
ron
ou
nc
esW

ord
		

us
erS
wi
tch
esT
oIn
sta
ntT
ran
sla
4o
n		

us
erS
wi
tch
esT
oW
ord
Pa
irT
ran
sla
4o
n		

us
erS
wi
tch
esT
oS
en
ten
ce
Tra
ns
la4
on
		

us
erD

isa
ble
sLi
nk
s		

us
erL
ike
sA
r4
cle
		

us
erS
ay
sA
r4
cle
Diffi

cu
lty
Ea
sy	
	

us
erS
ay
sA
r4
cle
Diffi

cu
lty
Me
diu
m	
	

us
erT
ran
sla
ted
Us
ing
Wo
rdP
air
Tra
ns
la4
on
		

us
erT
ran
sla
ted
Us
ing
Se
nte
nc
eT
ran
sla
4o
n		

us
erE
dit
ed
Tra
ns
la4
on
		

us
erO

pe
ns
His
tor
yIt
em
		

us
erD

ele
ted
Tra
ns
la4
on
		

20-06-16	

21-06-16	

26-06-16	

30-06-16	

02-07-16	

03-07-16	

Figure 4.4: Usage data of user #4



4.1. USAGE RESULTS 39

0	

2	

4	

6	

8	

10	

12	

us
erO

pe
ns
Ar
0c
le	
	

us
erT
ran
sla
ted
Us
ing
Ins
tan
tTr
an
sla
0o
n		

us
erO

pe
ns
Ex
erc
ise
s		

us
erP
ron
ou
nc
esW

ord
		

us
erS
wi
tch
esT
oIn
sta
ntT
ran
sla
0o
n		

us
erS
wi
tch
esT
oW
ord
Pa
irT
ran
sla
0o
n		

us
erS
wi
tch
esT
oS
en
ten
ce
Tra
ns
la0
on
		

us
erD

isa
ble
sLi
nk
s		

us
erL
ike
sA
r0
cle
		

us
erS
ay
sA
r0
cle
Diffi

cu
lty
Ea
sy	
	

us
erS
ay
sA
r0
cle
Diffi

cu
lty
Me
diu
m	
	

us
erT
ran
sla
ted
Us
ing
Wo
rdP
air
Tra
ns
la0
on
		

us
erT
ran
sla
ted
Us
ing
Se
nte
nc
eT
ran
sla
0o
n		

us
erE
dit
ed
Tra
ns
la0
on
		

us
erO

pe
ns
His
tor
yIt
em
		

us
erD

ele
ted
Tra
ns
la0
on
		

25-06-16	

26-06-16	

27-06-16	

Figure 4.5: Usage data of user #5

0	

2	

4	

6	

8	

10	

12	

us
erO

pe
ns
Ar
0c
le	
	

us
erT
ran
sla
ted
Us
ing
Ins
tan
tTr
an
sla
0o
n		

us
erO

pe
ns
Ex
erc
ise
s		

us
erP
ron
ou
nc
esW

ord
		

us
erS
wi
tch
esT
oIn
sta
ntT
ran
sla
0o
n		

us
erS
wi
tch
esT
oW
ord
Pa
irT
ran
sla
0o
n		

us
erS
wi
tch
esT
oS
en
ten
ce
Tra
ns
la0
on
		

us
erD

isa
ble
sLi
nk
s		

us
erL
ike
sA
r0
cle
		

us
erS
ay
sA
r0
cle
Diffi

cu
lty
Ea
sy	
	

us
erS
ay
sA
r0
cle
Diffi

cu
lty
Me
diu
m	
	

us
erT
ran
sla
ted
Us
ing
Wo
rdP
air
Tra
ns
la0
on
		

us
erT
ran
sla
ted
Us
ing
Se
nte
nc
eT
ran
sla
0o
n		

us
erE
dit
ed
Tra
ns
la0
on
		

us
erO

pe
ns
His
tor
yIt
em
		

us
erD

ele
ted
Tra
ns
la0
on
		

27-06-16	

30-06-16	

02-07-16	

03-07-16	

Figure 4.6: Usage data of user #6



40 CHAPTER 4. USER STUDY

translated not so many words. This user also turned off the pronunciation feature
sometimes.

0	

10	

20	

30	

40	

50	

60	

us
erO

pe
ns
Ar
1c
le	
	

us
erT
ran
sla
ted
Us
ing
Ins
tan
tTr
an
sla
1o
n		

us
erO

pe
ns
Ex
erc
ise
s		

us
erP
ron
ou
nc
esW

ord
		

us
erS
wi
tch
esT
oIn
sta
ntT
ran
sla
1o
n		

us
erS
wi
tch
esT
oW
ord
Pa
irT
ran
sla
1o
n		

us
erS
wi
tch
esT
oS
en
ten
ce
Tra
ns
la1
on
		

us
erD

isa
ble
sLi
nk
s		

us
erL
ike
sA
r1
cle
		

us
erS
ay
sA
r1
cle
Diffi

cu
lty
Ea
sy	
	

us
erS
ay
sA
r1
cle
Diffi

cu
lty
Me
diu
m	
	

us
erT
ran
sla
ted
Us
ing
Wo
rdP
air
Tra
ns
la1
on
		

us
erT
ran
sla
ted
Us
ing
Se
nte
nc
eT
ran
sla
1o
n		

us
erE
dit
ed
Tra
ns
la1
on
		

us
erO

pe
ns
His
tor
yIt
em
		

us
erD

ele
ted
Tra
ns
la1
on
		

28-06-16	

29-06-16	

30-06-16	

01-07-16	

04-01-16	

Figure 4.7: Usage data of user #7

Figure 4.7 shows the usage data of user #7. This user read many articles, but
not too many per day. this user translated a huge amount of words. This user
has a language level of C1, so it is possible that he stumbled on an extremely hard
article or he was playing with the translation feature. Another possibility is that
he did not have the translations inserted in the text and had to retranslate a lot
of words. He also left the automatic pronunciation option turned on and even had
the app pronounce some words again. This user also found the sentence translation
mode and had it translate a few pieces of text. Furthermore, this user is the only
user having looked at the history of his translations and is the other of two users to
discover the existence of the feature to edit translations.



Chapter 5

Results

The collected user data revealed some interesting things. For example, only two
users discovered the possibility to tap a translation, which shows a screen where
the user can edit or delete a translation (Figure 3.7b, page 23). In hindsight, this
makes sense, as the users needs to tap the translation to get to this screen. If that
is not known to the user, he has to tap the translation by accident. The possibility
to edit the translation by tapping it is also not documented in the app, nor in the
welcome screen.

User Level Words translated Articles opened Average Median
1 A1 48 32 1.50 7.5
2 B1 34 11 3.09 12
3 B1 47 9 5.22 12
4 B2 15 16 0.94 2
5 B2 16 21 0.76 4
6 B1 16 7 2.29 2.5
7 C1 63 13 4.85 3

Table 5.1: The average and median amount of words each user translated per article

Table 5.1 shows that users translate only a few words per article, with the
exception of user #7. The median of user #7 is lower than his average, which
means that he has translated a lot of words within one article. Users #2 and
#3 have a median way higher than their average, which means that they have read
articles without translating words. The users translating only a few words per article
can only mean that all users understood what they were reading and that they didn’t
need that many words translated. As every user has translated a word at least once,
it cannot be the case that they didn’t know about the possibility of translating,
especially because a descriptive popup about the ‘tap-to-translate’ feature is shown

41



42 CHAPTER 5. RESULTS

when an article is opened. The reason that user #7 translated a lot of words can
mean two things. Either this user just had to translate a lot of words due to the
article being hard or this user disabled having the translations inserted in the text,
giving him the need to retranslate words he did not remember immediately. Sadly,
the app does not send an event for this particular setting.

Another thing that stands out is the fact that almost all users only use the ‘in-
stant’ translation feature. Only a few users switched to the other translation mode,
but they did not translate a lot using these modes. This can have two causes.
Either the users did not need to translated word pairs or sentences or they did not
known about the existence of these translation modes. However, some of the users
who did not use the other translation modes, did turn off the automatic pronunci-
ation option, indicating that they must have seen all translation modes. Therefore,
it is most likely the case that users were satisfied with the ‘instant’/‘single-word’
translations or did not realize it if translations were inaccurate.

The post-study questionnaire delivered some insights as well. For example, the
users who filled it in did like the fact that translations where inserted in the text.
Most participants liked it very much. There was one person who said that he didn’t
mind it and that he would have liked it to have the option of a popup box above
the clicked word. Essentially, this option is available, but currently, if this option is
selected, the translation is briefly shown at the bottom of the screen, rather than
as a popup above the tapped word.

Users were also quite happy about the given translations. This also indicates
that the users didn’t particularly feel the need to edit the given translations and
that they didn’t mind it if the translations were not accurate or did not realize the
translations were wrong. Having the possibility to edit the translation was not given
as a hint, so the users who didn’t knew about the feature probably didn’t miss it.
There was also a user who said that he used on of the other translation modes to
get the correct translation for some word, however this user didn’t state whether
he was happy about the given translation, but he did say he got “a lot of weird
translations” (appendix D, answer 3d) for verbs, for which word pair or sentence
translation worked better.

An issue that arose during the study was the fact that the Zeeguu server was
not able to find RSS feeds for every URL that was entered by users. This was the
reason to introduce a section with interesting feeds, in order to provide the user
with alternative content sources, if his own preferences did not work right away.

5.1 Research questions

In the introduction (section 1, page 5), some questions were posed which should be
answered by the user study:



5.1. RESEARCH QUESTIONS 43

1. Do the learners like such an application that allows them to read texts
on their iOS device?
The users are generally positive about the app. They liked the interaction
of translating words by tapping them and seeing the translation within the
text. However, they did point out improvements that can be made to make
an even better app. There are even users still using the app after the user
study ended, which indicates that these users like the app to read texts in a
second language on their iOS device.

• Do users generally read on iPhone or iPad? 6 out of 7 users have
installed the the app on their iPhone, whereas 2 out of 7 users installed
the app on their iPad. It can be concluded that a majority of these users
read on their iPhone.

• How long do they use the app?
The users who did some reading have all used the app for a few days.
Per day, the users were using the app ranging from 5 minutes up to
half an hour. It should be noted that the app measures on-screen time,
therefore it is not guaranteed that the users were actually reading for half
an hour, however, the usage time is a sum of the whole day. Some users
have read somewhere in the morning and than later in the afternoon
they did some reading again.

2. Which of the features of the application are the most used by the
users? As seen in section 5, users mainly read articles and translate words.
All other features of the app are not used very much. Some users did use or
try some of the other features, but most users stuck to reading and translating
single words. However, most users did have a look at the exercises and some
users visited the exercises two or three times. Because the exercises are based
on earlier translations, they was not enough data yet for exercises as most
users created an account to use the app, which means that they did not have
a lot of translations to create exercises from.

• Do users like the interaction of tapping a word and having the
translation inserted in the text?
Users do like the translations being inserted in the text. The post-study
questionnaire received mostly positive reactions about this feature. One
user did have a side note about having a popup above the tapped word,
which could be the replacement of the current optional feature which
shows translations briefly at the bottom of the screen instead of within
the text.

• Do users use the pronunciation feature?
The pronunciation feature was an idea of one of the linguistics students,
while we discussed the application with them. Some users seem to like
this feature and others don’t. As the graphs in section 4.1 show, some
users had this feature turned off and others had it turned on. It is good
to note that the feature is turned on by default. During this study, only



44 CHAPTER 5. RESULTS

two participants left the feature turned on. As a conclusion, one could
argue that users don’t like this feature, however, turning it off can have
a few reasons, not relating to whether users like it or not. If one uses
the Zeeguu Reader mainly in public, say while traveling by bus or train,
it is only logical to turn this feature off, as well as when playing music.
Having it turned off once, users may forget to turn it on once they are
reading in private or using headphones.

• Which way of translating words/text do users use the most?
The ‘instant’ translation option, which translates only a single word is
definitely the most used form of translation. It is likely that users also
like this form of translation the most, as it involves just tapping a word
and the translation appears, which is far more easier, compared to the
other translation modes. It could also be the case that the other two
translation modes were unknown to the user, however that does not
seem likely, as most users have seen the options popover (Figure 3.6b,
page 22).



Chapter 6

Conclusions and Future
Work

The Zeeguu Reader for iOS is not finished yet. Issues arose both in functionality
and in usability. Some features where not clearly indicated and others had issues.

The study revealed that most users probably didn’t know about the possibility
to edit translations and therefore the app should make it clear that the translation
can be tapped, either by telling the user specifically about the feature or giving the
translation an indication that it can be tapped, like underlining, as if it were a link.
Of course, implementing both options is also a possibility.

A big issue was adding feeds. Some users had trouble adding their feeds. As
explained in section 3.2.1, the Zeeguu Reader for iOS tries to hide the fact that
it uses RSS to get the articles. However, because not every website announces its
RSS feeds in the head section of the HTML source, the Zeeguu server did not
find these RSS feeds and it is hard to find these feeds automatically. Therefore, it
would be better to still try to hide the RSS, but when no feeds are found, to give
an option to the user to manually enter the RSS feed(s) he wants to follow.

Despite some issues, the users generally liked the app and some even still use the
app. The users liked the interaction of tapping a word and getting the translation,
whereas immediately hearing the pronunciation was not that popular.

By conclusion, the user study with the Zeeguu Reader for iOS indicates that
this concept of reading texts in a foreign language and inserting translations within
the text is a promising way of encouraging second language learners to read articles
written in the language they are learning. However a more longitudinal study is
needed to find out if this way of reading and translating words helps with learning

45



46 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

a second language.

6.1 Future Work

During the development and user study of the Zeeguu Reader for iOS, many ideas
for future improvements and features arose.

Because the Zeeguu Reader for iOS uses RSS feeds to collect articles, it was
quite easy to just name the news sources feeds. The goal was to hide RSS, but
the concept of feeds was not really hidden because the app mentions feeds. An
improvement would be to rename the feeds within the app to, for example, ‘News
sources’.

The results of the user study showed that not all users used the options to
translate word pairs or sentences. To encourage users to switch between translation
modes, a toolbar could be added, allowing users to switch translation modes without
them having to open the ‘Options’ menu. Of course, this toolbar should not be
limited to only switching translation modes, but other popular or useful settings
could be added too.

The Zeeguu Reader for iOS uses Readability to show the articles in a clean way
to the user. To make the app future proof, the use of Readability could be optional.
The alternative would be to show the original webpage with the article. This ensures
that the app is not dependent on Readability and that users can continue using the
app if Readability does not work any longer.

There was a user (appendix D, answer 1a) who mentioned that translations took
a long time. An improvement would be to make the translations faster by caching
or prefetching the most likely words to be translated.

This user also mentioned the toolbar with the like button and easy/medium/hard
buttons. He didn’t know what the easy/medium/hard buttons are for. The purpose
of these buttons should be indicated somewhere. Also, at the moment, the buttons
do nothing except sending an event to the server. In the future, these buttons could
be used to improve the algorithm that calculates how difficult a text is going to be
for a user.

Additionally, the user behind answer 1c mentions that the app is limited to RSS
feeds. This is indeed true. To resolve this problem, the app could feature a web
browser, allowing the user to browse any website they like, which would be similar
to the experience with the Chrome extension (chapter 2).

The answers of question 2 from the post-study questionnaire (appendix D) men-
tioned that users would have used the app more if they would have received no-



6.1. FUTURE WORK 47

tifications saying it is time to read or when a new article is published. A system
of reminders, using push notifications for example, could increase engagement with
the application.



48 CHAPTER 6. CONCLUSIONS AND FUTURE WORK



Appendix A

Requirements

This chapter describes the original requirements of the Zeeguu Reader iOS app by
the help of a user story.

A.1 Persona

To scope the requirements of the application, the news reader for iOS should have
in mind the following persona:

• Jenny, a British young woman who lives in the Netherlands, studying psychol-
ogy at the University of Groningen. She owns an iPad mini and the latest
version of the iPhone.

• She has taken several beginner level courses in Dutch, and she is now at the
level where she can speak the basics of the language, she can read an easy
book or an easy news article, but still there are many words that she encounters
and are new for her. Thus reading a paper based book or a newspaper is too
difficult since she would have to constantly look up words in the dictionary.

• Moreover, she would like to improve her vocabulary in Dutch or at least learn
some of the most frequently encountered words.

• She reads news in English on her iPad mini

• She does not want to read language textbooks in Dutch anymore. They are
boring. She wants to read interesting news in Dutch. Maybe general news, or
even news about specific subjects of her interest, but these texts should not
be too hard.

49



50 APPENDIX A. REQUIREMENTS

• She wants to be able to have her word list synced across devices, such that
she can rehearse when she is waiting in the bus station or traveling by train.

A.2 Factors

To address this persona a news reader should take into account the following factors:

• It would probably not be the main news reader for Jenny, so article manage-
ment is not the most important feature. The graphics of how the articles are
presented for example is not important. A simple list with the articles and
first few lines should be sufficient.

• It should be able to remember the current article when the app is restarted.

• It should make it really easy to translate a word that the user does not un-
derstand.

• The reader should start with a welcome screen. After that the user should
either log in or create an account.

• A setting page should allow the user to login, logout.

• The words that have been looked up in the past should be stored in a database,
such that if the user wants to review them it should be possible.

• The app requires a connection to the internet for the translation functionality
to be available.

• The user should not be aware of the existence of RSS. The user should be
able to insert a link to their news site/blog of choice (in the target language
of course) and the app should find the RSS information itself.

A.3 Screens

The app should have the following screens:

• Welcome screen
Short description of the project.

• Login / Create account page
Users should be able to login using their existing account or create an account
if they don’t have one yet.



A.3. SCREENS 51

• Article list
List with articles, add news source, delete news source should be available,
maybe also the possibility to only see articles from one news source or all.

• Article reader
Single page. Font size should be changeable. A readable font should be
default, if well chosen no need to provide an option of changing it.

• Account/Settings screen
A screen where the user can change their base language and the language
they learn, as well as log out.

• History page
A list of previously translated words, sorted by date.



52 APPENDIX A. REQUIREMENTS



Appendix B

Pre-Study Questionnaire

The pre-study questionnaire asked the following questions to potential participants:

1. Name

2. Email

3. Gender

• Male

• Female

4. What is your approximate age?

• Below 18

• 18 - 24

• 25 - 34

• 35 - 44

• 45 - 54

• 55 and over

5. What is your current educational status?

• Doing my Bachelors

• Doing my Masters

• Doing my PhD

• I’ve graduated from the university

• Other

53



54 APPENDIX B. PRE-STUDY QUESTIONNAIRE

6. What is your native language?

7. Which language are you learning?
If you are currently learning multiple languages, please select the one you want
to improve using Zeeguu.

• Dutch

• French

• Italian

• German

• Spanish

8. What is your current language level in this language that you are learn-
ing?

• A1 - Beginner. Can recognize and use simple phrases

• A2 - Elementary. Using simple words, can describe his or her surround-
ings and communicate immediate needs

• B1 - Intermediate. Can understand the main points of clear standard
speech. Can narrate an event, an experience or a dream.

• B2 - Upper Intermediate. Can speak in a clear, detailed way on a number
of subjects; express an opinion on current affairs, giving the advantages
and disadvantages of the various options.

• C1 - Advanced. Can use the language effectively and fluently in a social,
professional or academic context.

• C2 - Master. Can express him or herself precisely in a spontaneous,
fluent way, conveying finer shades of meaning precisely

9. For how many years have you been studying this language?

• Lass than 1 year

• 1 - 2 years

• 2 - 3 years

• More than 3 years

10. Are you living in a country where people speak the language you are
learning?

• Yes

• No

11. What way of learning the language are you currently using? (multiple
choice)

• I’m not learning it yet, but I will



55

• Learning texts in the other language

• Using a textbook for the other language

• Talking/chatting with other people speaking the foreign language

• Other

12. How do you translate the words you don’t understand in texts written
in the language you are currently learning?
Do you use a dictionary application / website? If so, which? Do you use a
browser plugin? If so, which?

13. What is your current motivation for trying out the Zeeguu apps?

• Improving my current language skill

• I am curious about the software

• Maintaining my current level of language

• Testing my current level of language knowledge

• I just want to provide feedback to the app creators

• Other

14. What is your usual web browser?

• Google Chrome

• Firefox

• Internet Explorer

• Safari

• Other

15. Do you have a website that you visit frequently from your computer,
even if you feel that you should be visiting it less? (multiple choice)
This info is optional even if it is very relevant for a later study. Answering it
now would be cool!

• Facebook

• Twitter

• Instagram

• Other

16. Which of the following are interesting for you as a means for reading
new texts in your learning language? (multiple choice)
In the current study we are interested in people who want to read on their
iPhone, iPad or in their Chrome Browser. In the future we will run another
study for those who use other browsers, or other types of mobile devices.

• I would like to read texts on my iPhone or iPad



56 APPENDIX B. PRE-STUDY QUESTIONNAIRE

• I would like to read texts in my Chrome browser

• I would like to read texts on my Android phone or tablet

• Other

17. Would you be willing to spend at least 15 minutes every day studying
your second language with Zeeguu?

• Yes for one week

• Yes for two weeks

• No way! I don’t have that much time!

• Other

18. How did you find out about Zeeguu?



Appendix C

Post-Study Questionnaire

The post-study questionnaire asked the following questions to participants:

1. Name

2. Email

3. What did or didn’t you like about the app?

4. What would have made you use the app more?

5. Were you happy about the given translations?

6. Did you like that the translations were inserted in the text?

7. If not, why not?

8. Did you like the exercises?

9. If not, what could have been better?

10. Did you miss any features?

11. Was the app usable on your device?
Like, were features there where you’d expect them, buttons/text large enough
on iPhone etc.

12. Would you recommend the Zeeguu Reader to your friends?

• Yes

• No

13. Wat score would you give the Zeeguu Reader for iOS?

57



58 APPENDIX C. POST-STUDY QUESTIONNAIRE

• 1

• 2

• 3

• 4

• 5

• 6

• 7

• 8

• 9

• 10

14. Other remarks, tips or feedback



Appendix D

Post-Study Questionnaire
Answers

The post-study questionnaire was answered by 6 participants (designated with letters
from a to f) as listed below. The answers of one participant are discarded and not
shown, because this participant did open the app only once and did not generate
useful data (only 3 events, excluding some usage events). His answers on the post-
study questionnaire came across as trolling and thus this appendix contains only
the answers of the 5 serious participants.

1. What did or didn’t you like about the app?

(a) Did like: overview of news items of different sites. Didn’t like: the
sometimes long time is takes to translate a word. When I clicked several
words it didn’t translate anything in the article. In the news site Die
Bild some articles start with only links and no text to read, even when I
switch off links. It would come in handy to see switching off is applicable
the whole time instead of switching it off in every article. In the bottom
there are bottoms for easy, medium and hard, but I don’t know where I
should use them for.

(b) I had to reset my password which was complicated, which dissuaded
me from using the app (already emailed with team about this). Once I
used it, I really liked the words both showing in context in the story in
translation + the pronunciation. I used the feeds that were pre-populated
in the app, which worked well for me, but the NOS feed wouldn’t work
consistently, and that’s actually the main Dutch news source I read.

(c) The layout of the documents wasn’t as good as with some other RSS
readers. Limited to RSS feeds. The inline translation option was great.

59



60 APPENDIX D. POST-STUDY QUESTIONNAIRE ANSWERS

(d) When clicking on articles, more articles were loaded. Instead of the
article selected.

(e) More features:
- I like that i can edit the word or add my own translation
- translate pair of words/more words is cool
- the history of words

2. What would have made you use the app more?

(a) Popup: "time to read" at an indicated time. Or notify the user when
there is an article about a favourite subject. And maybe highlight the
words that are already added, in new articles

(b) A better user interface. I’d like to see the images from the stories...
Maybe the option to set a daily notification to read. Also, I think it
would be great to have a Quizlet-style review of the words I translated
and/or allow me to easily export the list to Quizlet so I can review with
the randomization to make sure I actually remember the words!

(c) Browsing other pages. Better layout. Blendle support.
(d) Nothing really specific
(e) - Really trying to learn a language at the moment:) which isn’t the case

- Having a version for English, with thesaurus

3. Were you happy about the given translations?

(a) Yes!
(b) as far as I can tell, yes! :)
(c) Yes, much better than expected.
(d) I learned later that you could also translate multiple words or a sentence,

this works especially better for verbs since I got a lot of weird translations
for that.

(e) Yes, most of the time it was the right translation

4. Did you like that the translations were inserted in the text? If not,
why not?

(a) I didn’t mind it, but it would be nice to have an option to choose for an
popup box above the clicked word.

(b) Yes, very much
(c) Yes. Worked well (if you only need to translate a couple of words)
(d) See previous answer, for verbs usually you have to select more words to

get a better translation. Other than that translations are OK.
(e) Yes, it’s a brilliant idea. It’s cool to visualise it and be able to come back,

or see how many words you didn’t know from the text when finished with
an article. if forgetting the meaning, you don’t have to click again on
the word. it’s cool.



61

5. Did you like the exercises? If not, what could have been better?

(a) I didn’t do the exercises, because I was interested in reading. Maybe it
would be nice to leave out words (that are already selected) or show the
translation in new articles so you are learning while reading.

(b) Umm... what exercises? :) Was this something I could access on the iOS
app? I would say that I couldn’t find the exercises, so, no, I wasn’t happy
with them on iOS. I like to study with "gamification" on my iPhone, so
if it’s web only, I don’t necessarily spend the time. My comptuer feels
like work. Studying Dutch is both education + leisure.

(c) n/a

(d) Exercises are OK, but doing them on the phone is not convenient for
me.

(e) i haven’t tried the exercises :/

6. Did you miss any features?

(a) See the answer above

(b) not sure

(c) see above

(d) Maybe to save an article you read, so you can later come back to it.

(e) There could be some other features

7. Was the app usable on your device?
Like, were features there where you’d expect them, buttons/text large enough
on iPhone etc.

(a) Yes!

(b) It was OK, but a very basic design.

(c) yes, on a ipad

(d) Everything looked fine on a iphone 4s.

(e) Yes, did not have problems

8. Would you recommend the Zeeguu Reader to your friends?

(a) Yes

(b) Yes

(c) No

(d) Yes

(e) Yes

9. Wat score would you give the Zeeguu Reader for iOS?

(a) 6



62 APPENDIX D. POST-STUDY QUESTIONNAIRE ANSWERS

(b) 6

(c) 7

(d) 8

(e) 8

10. Other remarks, tips or feedback

(a) See the answers above :)

(b) Good start!

(c) Great idea. Well executed for a first project. With additional develop-
ment, this could be a killer-app

(d) The articles problem mentioned earlier on is huge. When I click on article
I want to read that article and not get other suggestions.

(e) Some suggestions:
- would be useful to have the already read articles in the left column
marked as read, as well as current article=> it happened to get out of
the article and then needed some time to find it again in the list!
- when editing translation, it feels like should be a button ’Update’ rather
than only enter (Update Translation should do that, doesn’t work)
- would be nice to be able to tick the words from the History, when I
think I know them, have a visual representation of them (eg. green tick)
(and maybe reorder them on the column:))
- be able to delete words from history



Appendix E

Web View Interaction

E.1 Example German paragraph

Listing E.1 shows an example paragraph in HTML. The original paragraph text from
the website1 without HTML tags is listed below:

Schneider wies darauf hin, dass es in der Anhörung des Finanzausschusses zahlre-
iche Bedenken gegeben habe, ob das Ziel der Förderung insbesondere des sozialen
Wohnungsbaus mit dem vorgelegten Gesetzentwurf erreicht werden könne. ...

Listing E.1: Example German paragraph in HTML

1 <p class="MsoNormal">
2 <zeeguuparagraph>
3 <zeeguuword>Schneider</zeeguuword>
4 <zeeguuword>wies</zeeguuword>
5 <zeeguuword>darauf</zeeguuword>
6 <zeeguuword>hin</zeeguuword>,
7 <zeeguuword>dass</zeeguuword>
8 <zeeguuword>es</zeeguuword>
9 <zeeguuword>in</zeeguuword>

10 <zeeguuword>der</zeeguuword>
11 <zeeguuword>Anhörung</zeeguuword>
12 <zeeguuword>des</zeeguuword>
13 <zeeguuword>Finanzausschusses</zeeguuword>
14 <zeeguuword>zahlreiche</zeeguuword>

1http://www.readability.com/m?url=http://www.handelsblatt.com/
politik/deutschland/mietwohnungsbau-spd-brueskiert-eigene-ministerin/
13832808.html

63

http://www.readability.com/m?url=http://www.handelsblatt.com/politik/deutschland/mietwohnungsbau-spd-brueskiert-eigene-ministerin/13832808.html
http://www.readability.com/m?url=http://www.handelsblatt.com/politik/deutschland/mietwohnungsbau-spd-brueskiert-eigene-ministerin/13832808.html
http://www.readability.com/m?url=http://www.handelsblatt.com/politik/deutschland/mietwohnungsbau-spd-brueskiert-eigene-ministerin/13832808.html


64 APPENDIX E. WEB VIEW INTERACTION

15 <zeeguuword>Bedenken</zeeguuword>
16 <zeeguuword>gegeben</zeeguuword>
17 <zeeguuword>habe</zeeguuword>,
18 <zeeguuword>ob</zeeguuword>
19 <zeeguuword>das</zeeguuword>
20 <zeeguuword>Ziel</zeeguuword>
21 <zeeguuword>der</zeeguuword>
22 <zeeguuword>Förderung</zeeguuword>
23 <zeeguuword>insbesondere</zeeguuword>
24 <zeeguuword>des</zeeguuword>
25 <zeeguuword>sozialen</zeeguuword>
26 <zeeguuword>Wohnungsbaus</zeeguuword>
27 <zeeguuword>mit</zeeguuword>
28 <zeeguuword>dem</zeeguuword>
29 <zeeguuword>vorgelegten</zeeguuword>
30 <zeeguuword>Gesetzentwurf</zeeguuword>
31 <zeeguuword>erreicht</zeeguuword>
32 <zeeguuword>werden</zeeguuword>
33 <zeeguuword>könne</zeeguuword>
34 <zeeguuperiod id="zeeguuPeriod16">.</zeeguuperiod

>
35 ...
36 </zeeguuparagraph>
37 </p>



Appendix F

Get context algorithm

Listing F.1 shows the algorithm that is used to get to context of a tapped word.
Note that each word is enclosed in <zeeguuword></zeeguuword> tags and
that walking over siblings involves walking over zeeguuword elements.

Listing F.1: The get context algorithm

1 zgjq = jQuery.noConflict(true);
2 var zeeguuInlineTextElementsToWalkThrough = ["a", "b", "i

", "u"];
3 var zeeguuParagraphTagName = "zeeguuParagraph";
4 var zeeguuTranslatedWordTagName = "zeeguuTranslatedWord";
5 var zeeguuPronounceTagName = "zeeguuPronounce";
6 var zeeguuPeriodTagName = "zeeguuPeriod";
7
8 function isWalkThroughElement(el) {
9 return zeeguuInlineTextElementsToWalkThrough.indexOf(

el.tagName.toLowerCase()) != -1;
10 }
11
12 function enterParagraphOutSideCurrent(el,

directionIsPrevious) {
13
14 var siblingProperty = directionIsPrevious ? "

previousSibling" : "nextSibling";
15 var firstLastChildOfParagraph = directionIsPrevious ?

"firstChild" : "lastChild";
16 var firstLastChildOfLink = directionIsPrevious ? "

lastChild" : "firstChild";
17

65



66 APPENDIX F. GET CONTEXT ALGORITHM

18 var parentSibling = null;
19 var isInside = false;
20 if (isWalkThroughElement(el.parentNode.parentNode)) {

// The parent of el (zeeguuParagraph) has a
parent that is in the walkthrough list (such as 'a
')

21 isInside = true;
22 parentSibling = el.parentNode.parentNode[

siblingProperty];
23 } else {
24 parentSibling = el.parentNode[siblingProperty];
25 }
26
27 if (parentSibling == null) {
28 return null;
29 }
30
31 if (el == el.parentNode[firstLastChildOfParagraph] &&

parentSibling.nodeType != 3 /* is not a text node

*/ && isWalkThroughElement(parentSibling)) {
32
33 // There is a link (or bold, etc.) next to the

parent
34 // Assume that each 'a' element has a zeeguu

paragraph as first child
35
36 var zeeguuParagraph = el.parentNode[

siblingProperty].firstChild;
37 return zeeguuParagraph[firstLastChildOfLink];
38 } else
39 // We are in a link (or bold, etc.) and want to

continue in the adjoining zeeguuParagraph
40 if (isInside &&
41 el == el.parentNode[firstLastChildOfParagraph

] &&
42 parentSibling.nodeType != 3 /* is not a text

node */ &&
43 parentSibling.tagName.toLowerCase() ==

zeeguuParagraphTagName.toLowerCase()) {
44
45
46
47 return parentSibling[firstLastChildOfLink];
48 }
49 return null;
50 }



67

51
52 function walkElementsStartingWith(element,

directionIsPrevious, callback) {
53 var siblingProperty = directionIsPrevious ? "

previousSibling" : "nextSibling";
54
55 var text = "";
56 var siblingElement = element[siblingProperty];
57 while (siblingElement != null) {
58 var currentElement = siblingElement;
59 siblingElement = siblingElement[siblingProperty];
60
61 if (callback != null) {
62 var str = callback(currentElement,

directionIsPrevious);
63 if (str === "continue") continue;
64 if (str === "break") break;
65 }
66
67 if (siblingElement == null) {
68 siblingElement = enterParagraphOutSideCurrent

(currentElement, directionIsPrevious);
69 }
70 }
71 return text;
72 }
73
74 function elementIsPeriod(el) {
75 return el.tagName && el.tagName.toLowerCase() ==

zeeguuPeriodTagName.toLowerCase();
76 }
77
78 function elementIsTranslation(el) {
79 return el.tagName && el.tagName.toLowerCase() ==

zeeguuTranslatedWordTagName.toLowerCase();
80 }
81
82 function elementIsPronounceIcon(el) {
83 return el.tagName && el.tagName.toLowerCase() ==

zeeguuPronounceTagName.toLowerCase();
84 }
85
86 function getContextNextTo(element, directionIsPrevious) {
87 var text = "";
88
89 walkElementsStartingWith(element, directionIsPrevious



68 APPENDIX F. GET CONTEXT ALGORITHM

, function (currentElement, directionIsPrevious) {
90 if (elementIsTranslation(currentElement) ||

elementIsPronounceIcon(currentElement)) {
91 return "continue";
92 }
93
94 if (!directionIsPrevious) {
95 text = text + zgjq(currentElement).text();
96 }
97
98 if (elementIsPeriod(currentElement)) {
99 return "break";

100 }
101
102 if (directionIsPrevious) {
103 text = zgjq(currentElement).text() + text;
104 }
105 });
106
107 return text;
108 }
109
110 function getContextOfClickedWord(wordID) {
111 var el = document.getElementById(wordID);
112
113 var text = zgjq(el).text();
114
115 text = getContextNextTo(el, true) + text;
116 text = text + getContextNextTo(el, false);
117
118 return text.trim();
119 }



Appendix G

JavaScript action

Listing G.1 shows the ZGJavaScriptAction enum. In Swift, enums can have
some variables attached to them. Swift enums also support methods. For example,
the ZGJavaScriptAction enum provides a method to get the JavaScript code
that corresponds to the action.

Listing G.1: The ZGJavaScriptAction enum

1 /**
2 Holds a JavaScript action to be executed.
3 */
4 enum ZGJavaScriptAction {
5 /// No action
6 case None
7 /// The translate action.
8 ///
9 /// Use the `ZGJavaScriptAction.

getJavaScriptExpression` method to retrieve a
JavaScript expression that will insert the
translation behind the original word.

10 ///
11 /// **Important**: Before using `ZGJavaScriptAction.

getJavaScriptExpression`, use `ZGJavaScriptAction.
setTranslation` to set a translation, to make sure
the JavaScript expression can be created!

12 case Translate(Dictionary<String, String>)
13 /// The edit translation action.
14 ///
15 /// Use the `ZGJavaScriptAction.

getJavaScriptExpression` method to retrieve a

69



70 APPENDIX G. JAVASCRIPT ACTION

JavaScript expression that will update the
translation behind the original word.

16 ///
17 /// **Important**: Before using `ZGJavaScriptAction.

getJavaScriptExpression`, use `ZGJavaScriptAction.
setTranslation` to set a new translation, to make
sure the JavaScript expression can be created!

18 case EditTranslation(Dictionary<String, String>)
19 /// The delete translation action. The value is the

JavaScript element id of the HTML element that
displays the translation.

20 case DeleteTranslation(String)
21 /// The change font size action. The value indicates

the factor of change (1 = +10%, -1 = -10%, ...)
22 case ChangeFontSize(Int)
23 /// The change translate mode action. The value

indicates the translation mode.
24 case ChangeTranslationMode(ArticleViewTranslationMode

)
25 /// The enable/disable links action. The value

indicates whether links should be disabled or not.
26 case DisableLinks(Bool)
27 /// The remove selection highlights action. This

action will remove selections of word groups that
were selected for translation.

28 case RemoveSelectionHighlights
29 /// The selection incomplete action. If this action

was parsed, it means a selection between two words
is incomplete and that the user tapped a second

word outside the paragraph of the first word. This
is not supported yet.

30 case SelectionIncomplete
31 /// The pronounce action. If this action was parsed,

the given word is pronounced by iOS. The string is
the word/phrase to pronounce.

32 case Pronounce(Dictionary<String, String>)
33 /// The set inserts translation action. Sets whether

the translation will be inserted or not. If the
translation is not inserted, it is possible to
translate a word multiple times.

34 case SetInsertsTranslation(Bool)
35 /// The insert loading icon action. The string

contains the id of the element after which to put
the loading icon.

36 case InsertLoadingIcon(String)
37 /// Send a post request with a URL, Method and POST



71

parameters. Use this if you want to load a POST
request with parameters using WKWebview. WKWebView
ignores the HTTPBody of an NSURLRequest by

default.
38 case SendPOSTRequest(String, String, String)
39 /// Get the page as an HTML string
40 case GetPageHTML
41 /// Get the page text as a string
42 case GetPageText
43
44 static func parseMessage(dict: Dictionary<String,

String>) -> ZGJavaScriptAction {
45 var dict = dict
46 guard let action = dict.removeValueForKey("action

") else {
47 return .None
48 }
49 if action == "translate" {
50 if let _ = dict["word"] {
51 return .Translate(dict)
52 }
53 } else if action == "editTranslation" {
54 if let _ = dict["oldTranslation"], _ = dict["

originalWord"] {
55 return .EditTranslation(dict)
56 }
57 } else if action == "selectionIncomplete" {
58 return .SelectionIncomplete
59 } else if action == "pronounce" {
60 if let _ = dict["word"] {
61 return .Pronounce(dict)
62 }
63 }
64 return .None
65 }
66
67 mutating func setTranslation(newWord: String) {
68 switch self {
69 case var .Translate(dict):
70 dict["translation"] = newWord
71 self = .Translate(dict)
72 case var .EditTranslation(dict):
73 dict["newTranslation"] = newWord
74 self = .EditTranslation(dict)
75 default:
76 break // do nothing



72 APPENDIX G. JAVASCRIPT ACTION

77 }
78 }
79
80 mutating func setOtherTranslations(ot: String) {
81 switch self {
82 case var .EditTranslation(dict):
83 dict["otherTranslations"] = ot
84 self = .EditTranslation(dict)
85 default:
86 break // do nothing
87 }
88 }
89
90 mutating func setBookmarkID(id: String) {
91 switch self {
92 case var .Translate(dict):
93 dict["bookmarkID"] = id
94 self = .Translate(dict)
95 default:
96 break // do nothing
97 }
98 }
99

100 mutating func setPronounceID(id: String) {
101 switch self {
102 case var .Translate(dict):
103 dict["pronounceID"] = id
104 self = .Translate(dict)
105 default:
106 break // do nothing
107 }
108 }
109
110 func getActionInformation() -> Dictionary<String,

String>? {
111 switch self {
112 case let .Translate(dict):
113 return dict
114 case let .EditTranslation(dict):
115 return dict
116 case let .Pronounce(dict):
117 return dict
118 default:
119 return nil
120 }
121 }



73

122
123 func getJavaScriptExpression() -> String {
124 switch self {
125 case let .Translate(dict):
126 guard let translation = dict["translation"],

word = dict["word"], context = dict["
context"], id = dict["id"], bid = dict["
bookmarkID"], pid = dict["pronounceID"]
else {

127 fatalError("The ZGJavaScriptAction.
Translate(_) dictionary is in an
incorrect state!")

128 }
129 let t = translation.stringByJSEscaping()
130 let c = context.stringByJSEscaping()
131 let w = word.stringByJSEscaping()
132
133 return "insertTranslationForID(\"\(t)\", \"\(

w)\", \"\(c)\", \"\(id)\", \"\(bid)\",
\"\(pid)\")"

134 case let .EditTranslation(dict):
135 guard let word = dict["newTranslation"], id =

dict["id"] else {
136 fatalError("The ZGJavaScriptAction.

EditTranslation(_) dictionary is in an
incorrect state!")

137 }
138 let w = word.stringByJSEscaping()
139 if let ot = dict["otherTranslations"] {
140 let str = ot.stringByJSEscaping()
141
142 return "updateTranslationForID(\"\(w)\",

\"\(id)\", \"\(str)\")"
143 } else {
144 return "updateTranslationForID(\"\(w)\",

\"\(id)\", null)"
145 }
146 case let .DeleteTranslation(id):
147 return "deleteTranslationWithID(\"\(id)\")"
148 case let .ChangeFontSize(factor):
149 return "document.getElementsByTagName('body')

[0].style.webkitTextSizeAdjust='\(100 +
factor * 10)%'"

150 case let .ChangeTranslationMode(mode):
151 return "setTranslationMode(\(mode.rawValue));

"



74 APPENDIX G. JAVASCRIPT ACTION

152 case let .DisableLinks(disable):
153 return "zeeguuLinksAreDisabled = \(disable ?

"true" : "false"); zeeguuUpdateLinkState()
;"

154 case .RemoveSelectionHighlights():
155 return "removeSelectionHighlights();"
156 case let .SetInsertsTranslation(inserts):
157 return "setInsertsTranslation(\(inserts ? "

true" : "false"));"
158 case let .InsertLoadingIcon(id):
159 return "insertIconAfterID(\"\(id)\");"
160 case let .SendPOSTRequest(url, method, params):
161
162 var json = "{ "
163 let pairs = params.characters.split(",").map(

String.init)
164 for pair in pairs {
165 let kv = pair.characters.split("=").map(

String.init)
166 let key = kv[0]
167 let value = kv[1]
168 json += "\"\(key)\": \"\(value)\","
169 }
170 json = String(json.characters.dropLast()) + "

}"
171
172 return ["function post(path, params, method)

{\n",
173 " method = method || \"post\"; //

Set method to post by default if
not specified.\n",

174 " \n",
175 " // The rest of this code assumes

you are not using a library.\n",
176 " // It can be made less wordy if

you use one.\n",
177 " var form = document.

createElement(\"form\");\n",
178 " form.setAttribute(\"method\",

method);\n",
179 " form.setAttribute(\"action\",

path);\n",
180 " \n",
181 " for(var key in params) {\n",
182 " if(params.hasOwnProperty(key

)) {\n",



75

183 " var hiddenField =
document.createElement(\"input\")
;\n",

184 " hiddenField.setAttribute
(\"type\", \"hidden\");\n",

185 " hiddenField.setAttribute
(\"name\", key);\n",

186 " hiddenField.setAttribute
(\"value\", params[key]);\n",

187 " \n",
188 " form.appendChild(

hiddenField);\n",
189 " }\n",
190 " }\n",
191 " \n",
192 " document.body.appendChild(form)

;\n",
193 " form.submit();\n",
194 "}\n",
195 "post(\"\(url)\", \(json), \"\(method

)\");"].reduce("", combine: +)
196 case .GetPageHTML:
197 return "document.documentElement.outerHTML.

toString()"
198 case .GetPageText:
199 return "document.documentElement.outerText.

toString()"
200 default:
201 return ""
202 }
203 }
204 }



76 APPENDIX G. JAVASCRIPT ACTION



Appendix H

List of Figures

3.1 The tabbar showing the three sections of the app . . . . . . . . . . 18
3.2 A feed cell as displayed within the list of feeds . . . . . . . . . . . . 19
3.3 The navigation bar featuring a title and an ‘Add’ button . . . . . . 19
3.4 The ‘Add feed’ and ‘Select feed’ screens . . . . . . . . . . . . . . . 20
3.5 An article cell as displayed within the list of articles . . . . . . . . . 21
3.6 Article screen with options . . . . . . . . . . . . . . . . . . . . . . 22
3.7 Updating translation of ’Jetzt’ . . . . . . . . . . . . . . . . . . . . 23
3.8 Selecting ‘hatte unterst[Pleaseinsertintopreamble]tzt’ . . . . . . . . 23
3.9 Selecting ‘Sie hatte die ... ihren Bruder gestellt.’ . . . . . . . . . . 24
3.10 First History table view cell style . . . . . . . . . . . . . . . . . . . 24
3.11 Alternative History table view cell style . . . . . . . . . . . . . . . . 24
3.12 Second alternative History table view cell style . . . . . . . . . . . . 25
3.13 Final History table view cell style . . . . . . . . . . . . . . . . . . . 25
3.14 An example of a history item . . . . . . . . . . . . . . . . . . . . . 25
3.15 Profile and exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.16 The login/register screens . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Usage data of user #1 . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Usage data of user #2 . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Usage data of user #3 . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Usage data of user #4 . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Usage data of user #5 . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6 Usage data of user #6 . . . . . . . . . . . . . . . . . . . . . . . . 39
4.7 Usage data of user #7 . . . . . . . . . . . . . . . . . . . . . . . . 40

77



78 APPENDIX H. LIST OF FIGURES



Appendix I

List of Tables

4.1 The events that are sent to the server . . . . . . . . . . . . . . . . 34
4.2 The language levels of each user . . . . . . . . . . . . . . . . . . . 36

5.1 The average and median amount of words each user translated per
article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

79



80 APPENDIX I. LIST OF TABLES



Appendix J

List of Listings

3.1 The methods required by ZGSerializable . . . . . . . . . . . . . . . 16
3.2 Text elements with a link . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Text elements with a link, after being processed . . . . . . . . . . . . . . 29
3.4 An example of how to send an action to the app from JavaScript . . . . 31
3.5 An example of how to receive an action from JavaScript . . . . . . . . . 31
E.1Example German paragraph in HTML . . . . . . . . . . . . . . . . . . . 63
F.1The get context algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 65
G.1The ZGJavaScriptAction enum . . . . . . . . . . . . . . . . . . . . 69

81



82 APPENDIX J. LIST OF LISTINGS



Appendix K

Bibliography

[1] A. Trusty and K. N. Truong, “Augmenting the web for second language vocab-
ulary learning,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’11, (New York, NY, USA), pp. 3179–3188, ACM,
2011.

[2] C. J. Cai, P. J. Guo, J. R. Glass, and R. C. Miller, “Wait-learning: Leveraging
wait time for second language education,” in Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems, CHI ’15, (New
York, NY, USA), pp. 3701–3710, ACM, 2015.

[3] S. Marti, “A platform for second language acquisition through free reading and
repetition,” bachelor’s thesis, University of Bern, Aug. 2013.

[4] K. Sethi, “Modelling the acquisition of natural language,” bachelor’s thesis,
University of Bern, Aug. 2015.

[5] P. Giehl, “Zeeguu translate application — extending the Zeeguu platform to the
Android device,” bachelor’s thesis, University of Bern, Aug. 2015.

[6] L. Schwab, “Using rss feeds to support second language acquisition,” bachelor’s
thesis, University of Bern, June 2016.

[7] M. Lungu, K. Sethi, S. Marti, and L. Schwab, “The Zeeguu API - Mod-
eling Learner Progress to Accelerate Vocabulary Acquisition,” July 2016.
doi:10.5281/zenodo.58569.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., Inc., 1995.

83



84 APPENDIX K. BIBLIOGRAPHY

[9] D. Dearman and K. Truong, “Evaluating the implicit acquisition of second lan-
guage vocabulary using a live wallpaper,” in Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’12, (New York, NY,
USA), pp. 1391–1400, ACM, 2012.


	Introduction
	Structure

	Related work
	Kindle Reader
	Lingua.ly
	ALOE
	WaitChatter
	The Zeeguu Platform
	Chrome extension
	Zeeguu Quantifier
	Zeeguu Translate
	Zeeguu Reader for Android


	System Design
	Zeeguu API iOS Framework
	The Communication Layer
	The Domain Model
	Serialization

	The User Interface
	Feeds
	Articles
	History
	Profile

	Web View integration
	First Iteration
	Second Iteration
	Interaction between website and app


	User Study
	Usage results

	Results
	Research questions

	Conclusions and Future Work
	Future Work

	Appendix Requirements
	Persona
	Factors
	Screens

	Appendix Pre-Study Questionnaire
	Appendix Post-Study Questionnaire
	Appendix Post-Study Questionnaire Answers
	Appendix Web View Interaction
	Example German paragraph

	Appendix Get context algorithm
	Appendix JavaScript action
	Appendix List of Figures
	Appendix List of Tables
	Appendix List of Listings
	Appendix Bibliography

