
Transport PCE
Network Function Virtualization

R. Vilalta(1), R. Muñoz(1), R. Casellas(1), R. Martínez(1), V. López(2), D. López(2)

(1) Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), ricard.vilalta@cttc.es

(2) Telefónica I+D

Abstract We propose a Transport PCE architecture to deploy a Transport PCE by means of Network
Function Virtualization. Virtual PCEs are deployed on demand, but they are perceived as a single
Virtualized Network Function. We present the benefits by experimental validation.

Introduction

Network Functions Virtualization (NFV) aims at
using IT virtualization techniques to virtualize
entire classes of network node functions. A
Virtualized Network Function (VNF) consists of a
network function running as software on several
virtual machines instead of having custom
hardware appliances for the proposed network
function1.

A transport Path Computation Element (PCE) is
a transport network function, which is able to
perform constrained path computation on a graph
representing a network (Traffic Engineering
Database - TED)2. The PCE global architecture
and communication protocol (PCEP) have been
standardized by IETF. The PCE can be run as an
application on top of Commercial Off-The-Shelf
(COTS) equipment3. The initial driver for the
deployment of PCEs was the increasing
complexity of path computation. The PCE
architecture has been extended to support
scalability constraints with the introduction of the
hierarchical PCE. Using hierarchical PCE
architecture, each PCE is considered as a single
network function.

In this paper, we propose the adoption of the NFV
architecture to deploy a PCE dedicated to path
computation of a transport network as a VNF.
Although the NFV architecture has successfully
been demonstrated for mobile networks, there
have been only few attempts to introduce this
architecture to core networks. A PCE NFV
orchestrator is introduced, so that the proposed
transport PCE NFV is be able to handle intense
peak loads of path computation requests. The
NFV orchestrator dynamically deploys virtual
PCEs (vPCEs) on demand to keep the quality of
the VNF (e.g., in terms of latency, request
processing time, dedicated algorithms, etc.). A
vPCE is a PCE instance, which is run as a
software application on a cloud computing
environment (e.g., a virtual machine).

We also introduce a PCE DNS4 in order to offer

the deployed vPCEs as a single VNF perceived
by the different Path Computation Clients (PCC).

Finally, a PCE front-end/back-end architecture is
proposed to bypass the limitations of the
presented approach.

Proposed Architecture

In this section, the proposed transport PCE NFV
architecture is described (Fig. 1.a). A PCE NFV
Orchestrator is the entity responsible for the
deployment of the PCE as a VNF. The PCE NFV
Orchestrator consists of three separated
modules: PCE VNF provider, Virtual IT resources
and PCE computation load monitoring.

The PCE VNF provider implements the
necessary logic for deploying the necessary
vPCE in order to guarantee the quality of the
VNF. In order to guarantee the quality, the PCE
VNF provider interacts with the PCE computation
load monitoring module in order to obtain the
necessary data to decide to deploy a new
instance of a vPCE or to delete one, via the virtual
IT resources module. Thus, the PCE VNF is the
responsible for deploying the logic of the
orchestrator.

The Virtual IT resources module is responsible
for managing a cloud infrastructure (e.g.,
OpenStack). The cloud infrastructure shall allow
the dynamic deployment and release of virtual
machines with custom images running vPCE as
an application. The cloud infrastructure must
assign to the vPCE a new IP address from a set
of available ones. This IP address is parsed and
the PCE DNS is notified with the new IP address
for a new available vPCE.

Finally, the PCE computation load monitoring
module is the responsible for monitoring the
quality of the VNF. The monitored parameters are
a set of the PCE monitoring parameters defined
in 5, which are exposed by the vPCEs, by means
of an HTTP server. One of these parameters is
the mean path processing time. If the mean path
processing time exceeds a certain threshold, the

PCE VNF could deploy a new vPCE to reduce the
peak request load in the PCE VNF.

As a PCE discovery mechanism, a PCE DNS is
proposed. DNS is a query-response based
mechanism. A Path Computation Client (a PCC)
can use DNS to discover a PCE only when it
needs to compute a path and does not require
any other node in the network to be involved. In
case of an intermittent PCEP session, which are
systematically opened and closed for each PCEP
request, a DNS-based query-response
mechanism is suitable. Moreover, DNS supports
load balancing where multiple vPCEs (with
different IP addresses) are known in the DNS for
a single PCE server name and are seen for the
PCC as a single resource. Requests are load-
balanced among vPCEs without any complexity
at the PCC.

The messages exchanged between the different
elements of the proposed architecture are
displayed in Fig. 1.b. It can be observed, that the
PCE NFV Orchestrator is the responsible for
checking the different quality parameters to the
deployed vPCEs. Once these quality parameters
are received, the PCE VNF provider module
within the PCE NFV Orchestrator is the
responsible to determine whether a new vPCE is
required.

If a vPCE is selected to be deployed, the Virtual
IT resources module will deploy a new virtual
machine with the vPCE image, will assign a new
IP address to the vPCE and once the vPCE is
started, the Virtual IT resources module will notify
the new vPCE IP address to the PCE DNS.

Once a PCC requires a new path computation,
first will issue a DNS query to the PCE DNS. The
PCE DNS is responsible to load balance the

different vPCEs, so returns a single IP address
corresponding to one of the vPCEs. Finally, the
PCC establishes a path computation session with
the corresponding vPCE.

Experimental Performance

The experimental performance of the proposed
Transport PCE NFV architecture has been
evaluated in the Cloud Computing Platform of the
ADRENALINE Testbed at CTTC. An OpenStack6
cloud has been deployed on top of a Custom
Server using an Asus Z9NA-D6 board with 2 Intel
Xeon E5-2410 processors and 32 Gb RAM.

The proposed NFV orchestrator has been
developed in Python, and the PCE has been
described in 2. The PCE DNS server has been
setup using bind9, which is the standard linux
DNS server. All the deployed vPCE where
sharing a static network view of a typical Spanish
14-node 44-link Flexi-grid DWDM network. In the
future, BGP-LS could be used in order to
dynamically synchronize the TED of the different
vPCEs.

The deployed vPCEs allows the measurement of
the rolling mean (we use a 10 request window)
processing time of a request (time between a
request is received and responded) via HTTP
through an XML response.

Every new instance of vPCE is deployed by
means of the OpenStack nova API, which is
responsible for virtual machines management on
an OpenStack cloud. All deployed virtual
machines share a common file repository for
ease of synchronization. We have prepared a
vPCE snapshot, which is able to easily run a
vPCE.

The OpenStack neutron API, responsible for

Fig. 1: (left) Proposed Transport PCE NFV architecture, (right) PCE NFV Orchestrator message exchange

network configuration, assigns to the vPCE an IP
address, which is later added as a possible
resolution for pce.lab.cttc.es to the PCE DNS.

The PCC is responsible for issuing a DNS query,
when a new path computation request is issued.
When the PCE DNS receives a DNS query, it
applies a simple load balancing algorithm by
returning a different vPCE IP address for each
query. Finally, the PCC establishes a PCEP
session to the assigned vPCE. Fig. 2.a. shows
the standard PCEP session including OPEN,
KEEPALIVE, PCRequest, PCReply and CLOSE
messages.

In order to stress the proposed architecture, a
PCC requests 500 requests per second. Each
path computation request is randomly selected
between two endpoints of the described flexi-grid
network. The mean request processing time
(Tproc) is measured as a mean of the previously
defined request processing time of the current
vPCEs.

We have requested 10000 Path Computation
Requests for each measurement. When a single
vPCE (acting as a PCE) was deployed the Tproc
was 279 microseconds. It can be observed that
when more vPCEs have been deployed the
measured Tproc is reduced. For example, for 6
vPCEs deployed, Tproc is 248 us (Fig. 2.b).

Fig. 2.c shows the mean measured CPU load at
a single vPCE, when different vPCE have been
deployed. The measured CPU load tends to be
balanced by the different vPCEs, when 2 vPCE
are deployed the mean CPU load is of 7.2 %. If
there are 6 vPCEs deployed the CPU load is of
3.1%. It can be observed, that if more vPCEs are
deployed, the computational load is balanced
between them, allowing a faster mean request
processing time.

Conclusions

We have presented a transport PCE NFV
architecture, which is able to guarantee a mean
request processing time within a detected peak
of path computation requests. The proposed
architecture exploits the benefits of NFV. We
have experimentally evaluated the mean request
processing time, demonstrating the benefits of
the presented approach.

Further research shall be done on request peak
detection, the usage of pre-deployed vPCEs and
finally the introduction of the front-end/back-end
PCE architecture to bypass the need for a PCE
DNS, so that dedicated vPCEs and more
complex request allocation algorithms can be
exploited.

Acknowledgements
EU FP7 project STRAUSS (FP7-ICT-2013-EU-
Japan 608528) and Spanish MINECO project
FARO (TEC2012-38119).

References
[1] NFV whitepaper, ETSI, 2013.
[2] R. Casellas et al., “Applications and Status of

PCE”, JOCN, vol. 5 n.10, 2013.
[3] Y. Yoshida et al., “First international SDN-

based Network Orchestration of Variable
capacity OPS over Programmable Flexi-grid
EON”, ThA.2 OFC 2014.

[4] Q. Wu et al., “PCE discovery using DNS”,
draft-wu-pce-dns-pce-discovery-05, IETF.

[5] JP. Vasseur et al., “A Set of Monitoring Tools
for PCE-Based Architecture”, RFC 5886

[6] X. Wen et al., “Comparison of open-source
cloud management platforms”, FSKD 2012.

Fig. 2: a) Wireshark of different PCEP sessions established to different vPCEs. b) Mean request processing time (microseconds).

c) Mean vPCE CPU load (%)

