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Abstract: 

Advances in sensors and information technologies have brought Structural Health 

Monitoring (SHM) as a data-driven remedy for civil infrastructure safety. Smart and 

mobile sensor systems have taken SHM discipline to a new era in the last two decades. 

Smartphones, in parallel, have paved the milestones of innovative SHM applications 

empowered by smart, distributed, wireless, mobile, and participatory sensor networks. This 

chapter introduces the advent of smartphones as an SHM technology and describes 

crowd/citizen engagement into an SHM framework. In contrast with the traditional 

monitoring approaches, there is a lack of control in sensor operation in terms of time, 

location, duration, and coupling conditions. These discrepancies are formulated as citizen-

induced uncertainties, and smartphone-centric solutions are proposed. Smartphone-based 

SHM characterizes cyber-physical civil infrastructure systems, e.g. updating numerical 

bridge models with crowdsourced modal identification results. The chapter concludes with 

the state-of-the-art vision for smartphone usage in SHM, near future trends, and finally 

long-term research directions. 
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[Structural Health Monitoring] 

 

[15.1 Introduction] 

 

Infrastructure safety and integrity has always been a fundamental concern for decision-

maker authorities. Structural failure due to degradational and hazardous events has led to 

not only casualties but also direct and indirect economical losses, threatening societies’ 

well-being in massive scales. To understand existing structures’ behavior against natural 

and man-made demands, performance evaluation methods with structural analysis and 

local material sampling frameworks have been the main guidelines for the last few decades. 

However, these methods work heavily on a simulation basis which may deviate from the 

actual behavior due to the large uncertainty level of infrastructure systems.  

 

Recent progresses made in sensor and information technology offered a data-driven 

alternative to incorporate actual global structural behavior through vibration-based SHM 

methodologies [1-2]. Sensor data from structures can be processed to assess dynamic 

characteristics of structure, update mathematical models with field information, diagnose 

if any damage exists, and prognose any future threats based on projection of identified 

system properties on existing trends or expected extreme events. In other words, SHM 



 

offers methodological frameworks to interpret structural status with the state-of-the-art 

algorithms, inverse dynamics theories, and real observations from the actual buildings and 

bridges through sensors. 

 

Despite all the advantages proposed herein, SHM usage has been limited in infrastructure 

industry due to its costly instrumentation and labor as well as implementation difficulties. 

Fragile sensing equipment is susceptible to breakage under harsh field conditions which 

requires careful maintenance. Likewise, installation of conventional systems with cabling 

and dedicated positions require extensive time and labor efforts. In addition to all these, 

scalability has been an important problem due to large variety of infrastructure and limited 

observations. 

 

To tackle aforementioned problems, low-cost and practical attempts have been made with 

the help of emerging mobile and smart technologies [3-4]. Advances in communications 

and microelectromechanical systems (MEMS) [5] has enabled widespread sensor network 

possibilities with minimal investment yet proposed large-scale real-time output from 

multiple structures. Substitutes or supplementary systems with wireless, mobile, and 

distributed networks have been proposed in contrast with cabled, stationary, and 

centralized instrumentation. What is more, such new-age sensing equipment is already 

embedded in personal devices such as smartphones. This opened a new frontier in SHM in 

terms of engagement of citizens into the civil infrastructure sensing process and reach out 

to a gigantic network scale through modern communities. Consequently, a large number of 



 

recent studies are conducted taking smartphones as a sensing platform for civil 

infrastructure monitoring purposes [6]. 

 

This chapter reflects the recent SHM initiatives exploring smartphone sensors as the main 

source of instrumentation. Parallel with a dissertation published in 2016 dedicated to 

multisensory smartphone applications in vibration-based SHM [7], Subsection 15.2 

describes sensor evaluation phases at the early stages [8] and introduces the first 

crowdsourcing implementation in the field [9]. Subsection 15.3 idealizes citizen-induced 

uncertainties in terms of mobility [10-12] and Subsection 15.4 proposes a cyber-physical 

system formulation incorporating smartphone-based SHM [13]. Finally, Subsection 15.5 

summarizes the current state with further examples and identifies future trends in this 

arena. 

 

[15.2 Smartphones, Crowdsourcing, and Modal Identification] 

 

Since the very first generations released in late 2010s, most of the smartphone models are 

equipped with built-in sensors. For example, triaxial MEMS accelerometers are embedded 

in smartphone makes and models with a variety of quality in sensitivity and accuracy. For 

example, one of the earliest models, iPhone 3GS contains LIS331DL accelerometer from 

ST Microelectronics with a sensitivity of 18 mg/digit for +-2g range. Approximately five 

years later, iPhone 5 model included a significantly improved accelerometer (LIS331DLH 

from ST Microelectronics) with 1mg/digit for +-2g range. Similar progress is observed in 



 

computational capabilities of smartphones with the arrival of new generations. Detailed 

introductory information including datasheet references can be found in [8]. 

 

As discussed, accelerometers, which are one of the main sensor technologies used in 

vibration-based SHM, show a variation among different phone models. As an SHM 

performance measure, measured amplitude accuracy and identified frequencies have been 

the introductory criteria for the feasibility assessment studies. To observe the vibration 

measurement performance of different smartphone models with an experimental approach, 

several tests are conducted in laboratory and field environments. Laboratory tests include 

sinusoidal-wave, white noise, and seismic shaking table tests conducted in Columbia 

University, Carleton Laboratory. Smartphones instrumented on shaking tables are 

compared with high quality piezoelectric accelerometers (PCB 393B04) for comparison.  

 

The results show that two smartphone models (iPhone 3GS and iPhone 5) with a 5-year 

generation gap showed a significant difference in amplitude and frequency detection. For 

example, according to the sinusoidal-wave tests, vibration signal frequency is detected with 

only 1% error in iPhone 5 measurements, whereas earlier generation iPhone 3GS 

measurements show 5% error on a variety of wavelengths. Likewise, amplitude errors 

show similar performance, e.g. 44% to 8% for iPhone 3GS model, whereas 17% to 1% for 

newer generation iPhone 5 model. It is also observed that as measurement accuracy drops 

as vibration level decreases and gets close to ambient. Figure 15.1 shows exemplary sine 

wave tests comparing two smartphone generations with reference accelerometers. 
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Early stage laboratory tests demonstrate a good indication of smartphone accelerometer 

performance, however, do not directly reflect vibration characteristics of a realistic 

structure. To address this issue, smartphone-based (iPhone 5) vibration measurements are 

collected from a pedestrian bridge in New Jersey, USA under varying loading conditions. 

These conditions include ambient vibration, random dynamic, and synchronized jump 

tests. Similar with the laboratory tests, as the vibration amplitude increases, smartphone 

accelerometer meets the reference signal with much better time series.  

 

Figure 15.2 shows smartphone accelerometer time series compared with reference 

accelerometer under ambient vibrations and synchronized dynamic tests. For all different 

excitation types such as ambient, random, and synchronized vibrations, the phone data 

presents frequency identification errors not more than 1%. In summary, laboratory and 

field tests show that smartphones possess great potential for vibration measurement, 

however, phone model and signal-to-noise ratio are primarily decisive on measurement 

accuracy. 
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Aforementioned laboratory and field tests encouraged the authors to develop a standalone 

platform which can automate data acquisition and processing phases implicitly. In other 

words, a multilayered computer platform including mobile and web software is developed 

to enable citizens collect vibration measurements with their smartphone accelerometers 

and submit data to cloud services. The acceleration signals are then processed for modal 

identification and results are stored on a web database. In other words, integrating mobile 

applications with a server-side web software, vibration-based SHM processes are 

conducted in a citizen-friendly manner or through crowdsourcing processes. Figure 15.3 

shows the working principles of the multilayered crowdsourcing platform named Citizen 

Sensors for SHM (CS4SHM) [9].  
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CS4SHM aims to bring all of the necessary information technology items together such 

that ordinary participants can contribute to an SHM database with the help of their 

smartphones. It comprises of a user-side platform which consists of the mobile software 

modules. This corresponds to an iOS application which is developed via XCode and 

published on Apple Store. Users can gather accelerometer data with their smartphones and 

submit to the server. Then, the server-side platform runs a set of PHP-based web scripts to 

conduct modal identification and save the results in a MySQL database which is accessible 



 

online. The communication between user and server is simply maintained by internet 

connection. Figure 15.4 shows user interfaces of CS4SHM from the mobile and web 

applications. 
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Eventually, a pedestrian steel link bridge on Columbia University campus is taken as a 

testbed and students with their smart devices are assigned to acquire vibration 

measurements from the bridge. In summary, more than a hundred samples are received and 

peak frequencies from each record is autonomously obtained via Discrete Fourier 

Transform on the server. These findings are compared with the ones obtained under a 

controlled environment. Figure 15.5 shows distribution of identified frequencies from the 

crowd versus the controlled environment [9].  
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In spite of the dispersion in the crowd tests, there is an apparent trend match between the 

first, second, and third modal frequencies obtained from crowdsourced and reference tests. 

It is an obvious fact that crowdsourced vibration measurements are susceptible to numerous 



 

sources of errors due to the uncontrolled instrumentation and sensor configuration. In the 

forthcoming subsections, these uncertainties are discussed within three idealization 

scenarios. 

 

[15.3 Formulation of Citizen-Induced Uncertainties] 

 

Following the first successful crowdsourcing-based SHM implementations named 

CS4SHM, the authors delved into fundamental error sources increasing uncertainties in 

smartphone measurements. According to the proposed framework, three fundamental 

instrumentation problems are investigated. These are 1) spatiotemporal uncertainties [10], 

2) directional uncertainties [11], and 3) uncertainties associated with biomechanical 

inference of the crowdsourcer [12].  

 

To explain with further details, spatiotemporal uncertainty corresponds to the lack of 

operational control on smartphone position in a timely manner. Similarly, distortions in the 

smartphone orientation before or during measurements are included as a citizen-induced 

uncertainty. Eventually, human biomechanical characteristics are studied as an 

intermediate medium between the sensor and the structure being monitored, and solutions 

are proposed. Figure 15.6 summarizes the three uncertainties due to the citizen involvement 

in the sensing process. In the following subsections, mobile and multisensory solutions to 

these uncertainties are investigated.  

 

*** Insert Figure 15.6 *** 
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[15.3.1 Identification under Spatiotemporal Errors] 

Due to the lack of control in sensor position, duration, and timing, data extracted from 

multiple smartphone sensors involve heterogeneity in terms of vibration signal properties. 

Synthesis of heterogeneous signals from asynchronous multiple devices to get global 

dynamic characteristics of structures, is therefore, an uncommon case in SHM literature. 

To overcome this problem, the authors propose a signal processing scheme to eliminate 

location and time dependent heterogeneity through multisensory smartphone data [10].  

 

The process can basically be classified into two phases: 1) detecting device position 

through location services or identity tags on the structure, 2) energy-to-power conversion 

with the help of measurement length or timestamped data. After these issues are resolved, 

accelerometer data with varying lengths and from multiple locations can be fused together 

in a uniform setting to compose structural dynamic characteristics, e.g. mode shapes. 

Figure 15.7 shows the flowchart of the method which is finalized with modal identification.   
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In the field verification study, the same pedestrian bridge is addressed as a testbed. A single 

smartphone is positioned at 8 different locations on the bridge and acquired accelerometer 

data from each location. Figure 15.8 shows the modal identification results which shows 

0.XX, 0.XX, and 0.XX MAC values for the proposed method’s mode shape results 

compared with the reference measurement system. 
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[15.3.1 Identification under Directional Errors] 

 

In addition to spatiotemporal uncertainties studied in the previous section, incorrect sensor 

alignment or changes in orientation are possible consequences of uncontrolled 

instrumentation. To handle this error source, the authors propose a coordinate system 

transformation framework which implements additional sensor data such as gyroscope and 

magnetic compass into the citizen-engaged measurement processes. With multisensory 

smartphone data, changes in device orientation can be detected through accelerometer and 

gyroscope data and device coordinate system can be identified with global reference 

vectors such as gravity and the North Magnetic Pole [11].  

 

The transformation procedure connects the link between sensor, structure, and the global 

coordinates through a smart monitoring scheme. Figure 15.9 depicts the flowchart 



 

explaining the methodology and sensor usage and Figure 15.10 demonstrate accelerometer 

waveforms before and after directional distortions and corrected signals through the 

coordinate system transformation procedure. 
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[15.3.1 Identification under Biomechanical Errors] 

 

The third source of uncertainty discussed in citizen-engaged SHM processes is related to 

human biomechanical nature, which corresponds to mobile and indirect sensor 

measurements. This can refer to phone carried or held by a pedestrian performing certain 

activities (e.g. walking, standing). In this case, two structure-relevant information lies 

beneath smartphone data: 1- information related to forces imposed on the structure 2- 

information related to structural dynamic characteristics [12]. 

 



 

The primary information type reflects pedestrian walking on a bridge, therefore, imposing 

dynamic forces on it. To depict this, Figure 15.11 shows theoretical forces vs. forces 

estimated by a smartphone accelerometer incorporating pedestrian weight and motion. In 

other words, keeping track of a pedestrian’s position on a structure and measurement 

acceleration data attached to the pedestrian, one can dynamically idealize how a human 

body interacts on a structure.  
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In addition to this highly active scenario, there can be relatively immobile scenarios such 

as a pedestrian resting in a stationary spot on a bridge. In this case, the authors propose to 

extract vibration data from the pedestrian smartphone, remove features associated with 

pedestrian, and insulate bridge-only vibration features. This can be done by developing 

transfer function of human body and filtering it out from the smartphone data while a 

pedestrian stands on a bridge.  

 

Figure 15.12 shows how the vibration evolves through the structure and the pedestrian 

before reaching the mobile device. Figure 15.13 shows transfer functions obtained from 

analytical vs. smartphone-based approaches. Compatible with the figure, the results show 

that insulation process is highly effective for high frequency components where human 



 

biomechanics is not dominant, whereas frequency in the range of 5 to 10 Hz is susceptible 

to error due to transfer function peaks representing human body.  
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[15.4 Cyber-Physical System Approach to Civil Infrastructure] 

 

The final subsection introduces cyber-physical system concept into the CS4SHM processes 

through a finite element model updating and structural reliability estimation paradigm. 

With the ubiquitous usage of sensor technology in industrial processes combined with 

advanced computation, idea of cyber-physical processes emerged as a new era in science 

and engineering. In this study, cyber-physical system formulation is given from a structural 

perspective where mobile accelerometer data can contribute to the accuracy of 

mathematical models and associated computer-aided analyses [13].  

 

Setting up a probabilistic analysis framework, stakeholders can be assisted with risk 

assessment and optimized decisions. Such decisions will incorporate future status of 



 

structural system which can again be sensed and modified by the sensor feedback, therefore 

will complete a loop behavior formulating structures’ operational usage and management. 

Figure 15.14 shows the connection between cyber-physical system modules with CS4SHM 

approach.  
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According to Figure 15.14, mobile sensor data from smartphones indicate vibration 

behavior of structures which represents the physical information related to the system. Such 

data recorded by crowdsourcers or citizens is transferred to the cyber platform for 

mathematical computations and data analytics. In particular, urban infrastructure 

conditions are generally represented with finite element models which do not fit actual 

behavior in many cases (for example, the difference between measured/identified modal 

characteristics vs. modal analysis of a finite element model). Therefore, smartphone 

accelerometer data can be a source to modulate finite element model which was developed 

on a theoretical basis, and at the end of modification process, can match the actual behavior 

better.   

 

After the gap between the model and the experimental behavior is closed, further 

computational processes can be performed in an automated manner, e.g. residual reliability 

estimation. In this study, these processes are still covered in a local manner, however, the 



 

ideal scenario would be integrating these into the cloud services (as it is done in the modal 

identification process). Eventually, reliability results combined with loss estimation will 

propose a quantitative decision-making tool for the stakeholders. In other words, CS4SHM 

concept connects civil infrastructure with administrative features through a mobile and 

server-side platform and community participation. Figure 15.15 demonstrates the 

representative scheme for CS4SHM cyber-physical environment. 
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To clarify the engagement between mobile sensor data with finite element model updating 

Figure 15.16 demonstrates the sensing and model updating phases of the platform. In the 

figure, uncertainties associated with modeling is solved by generating thousands of finite 

element models with a range of mass, stiffness, and boundary condition parameters. The 

subsets of generations are compared with the measured/identified results in terms of modal 

frequencies and the model with minimal error is determined as the updated finite element 

model. Figure 15.17 shows the combination of parameters which return minimal error in 

terms of individual modes in 2-D plots and combined modes in 3-D plot. The figure 

corresponds to the fixed-roller boundary condition case where all the error function 

scenarios lead to a similar optimal solution. 
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Upon determination of the optimal model, the computational procedure continues with 

time history analyses under designated earthquake records. This study picks a set of 

earthquake records from 1994 Northridge Earthquake for illustrative purposes. As a result 

of 151 time history analysis results from under different ground motions, maximum 

displacement response of the bridge is collected as an indicator of structural performance. 

Looking at the results in Figure 15.18, there is a significant match between the analyses 

output and log-normal distribution. Based on the probabilistic distribution of structural 

response and a designated threshold, one can estimate the exceedance probability and 

therefore structural reliability according to a certain performance state [13]. 
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In summary, mobile sensor data obtained from citizens proposes valuable information 

regarding urban infrastructure conditions and can be integrated into the performance 



 

assessment and decision-making phases in an automated and remote form. Collecting such 

information at no or minimal cost imposes sustainable and resilient benefits not only on 

civil infrastructure but also monitoring and assessment systems themselves. 

 

[15.5 Future Trends] 

 

In conclusion, this chapter merges a number of mobile and smart SHM applications under 

citizen science and crowdsourcing umbrella to propose a futuristic smart city agenda from 

urban infrastructure safety point of view. The study starts with early-stage verification of 

smartphone accelerometer data and real crowdsourcing implementations as novel SHM 

prototypes. It continues with citizen-induced error sources such as spatiotemporal, 

directional, and biomechanical uncertainties, as well as smart, mobile and heterogeneous 

solutions to each of these problems. Eventually, it takes a step further to deploy cyber-

physical system as an SHM formulation. All of the phases of the study are demonstrated 

on an actual structure, a pedestrian bridge, which makes it easier to understand the 

connection among each other. 

 

To summarize, numerous case studies, successful deployment of participatory sensing 

software platforms with actual evidences, multisensory solutions to citizen engagement 

problems, and automation potential for further deep analyses offer a promising framework 

for scalable, cost-efficient, and self-sufficient SHM networks. What is mentioned, but not 

explicitly studied, is big data analytics when SHM data pools in variety, velocity, volume, 

and veracity. Likewise, distributed, multi-device, large-scale and asynchronous SHM 



 

forms -fitting smartphone sensor network endeavors to a better extent- require utmost 

attention according to the reviewers [14].  

 

In addition to these materials, there is still a significant amount of smartphone research 

unexplored in SHM field from data heterogeneity and multisensory technology usage. 

Dissemination of computer vision in smartphone research also proposes advantageous 

monitoring tools thanks to the rapidly improving smartphone computational facilities. In 

fact, such hybrid solutions are already being developed, for example, combination of 

noncontact vision-based displacement data with invasive accelerometer data [15]. More 

examples within this direction engaging smartphone sensors alternative to accelerometers 

are expected to have interesting research output according to the authors. 

 

What is not covered in this study is extension of smartphone technology into more practical 

and mobile sensing cases, e.g. vehicular sensor networks. Recent advancements in drive-

by sensing offers possible methods to collect structural features from moving devices 

embedded in transportation modules. Early examples include modal identification and 

damage detection scenarios from moving vehicles [16-17] or pavement monitoring 

applications [18-19]. The authors encourage further research in this direction with real-

world applications and opportunistic case studies.  

 

It should be emphasized that these collections of studies are produced with a dominant 

contribution from Columbia University, Department of Civil Engineering and Engineering 

Mechanics. However, smartphone-based SHM literature is not limited to these approaches. 



 

There is significant amount of research from Asia [20-24], America [25-26], and Europe 

[26-28] contributing to smartphone sensor literature and, in particularly, this rapidly 

advancing SHM subdiscipline. 

 

Engaging smartphone data in SHM research has never been so deployable and so 

multidisciplinary with the contribution of engineering mechanics, information 

technologies, citizen sciences which, in conjunction, point out the smart city melting pot. 
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a)  

b)  

Figure 15.1 Shaking table tests: (a) exemplary setup and (b) waveforms. 

 

 

 

 

Reprinted from Feng, M., Fukuda, Y., Mizuta, M., & Ozer, E. (2015). Citizen sensors for SHM: use of 

accelerometer data from smartphones. Sensors, 15(2), 2980-2998. DOI: 

https://doi.org/10.3390/s150202980.  
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a)  

b) c)  

Figure 15.2 Field tests: (a) testbed, measurements under (b) ambient and (c) synched 

vibrations. 
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accelerometer data from smartphones. Sensors, 15(2), 2980-2998. DOI: 
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Figure 15.3 CS4SHM crowdsourcing platform architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reprinted from Ozer, E., Feng, M. Q., & Feng, D. (2015). Citizen sensors for SHM: Towards a 

crowdsourcing platform. Sensors, 15(6), 14591-14614. DOI: https://doi.org/10.3390/s150614591. 
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a)  

b)  

Figure 15.4 Screenshots from (a) mobile (b) web user interfaces. 
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a)  

b)  

c)  

Figure 15.5 Mudd-Schapiro Bridge (a) outer view, (b) reference identification, and (c) 

crowd results. 
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Figure 15.6 Errors due to (a) spatiotemporal, (b) directional, and (c) biomechanical 

uncertainties. 
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Figure 15.7 Flowchart addressing spatiotemporal heterogeneity in sensor data. 
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a)  

b)  

c)  

Figure 15.8 Location identification: (a) nodes, (b) geolocation data, and (c) QR codes. 
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Figure 15.9 Identified mode shapes with a single smartphone. 
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a)  

b)  

Figure 15.10 Direction uncertainties via (a) device orientation and (b) proposed 

coordinate systems. 
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a)  

b)  

Figure 15.11 Orientation errors showing (a) test configurations and (b) accelerometer 

waveforms. 
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Figure 15.12 Pedestrian-induced forces from (a) theoretical model and (b) smartphone 

data. 
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Figure 15.13 Indirect bridge vibration data influenced by pedestrian biomechanics. 
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Figure 15.14 Biomechanical feature cancellation process through the frequency domain. 
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Figure 15.15 Cyberphysical system idealization from CS4SHM perspective. 
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Figure 15.16 CS4SHM theme engaging crowd, infrastructure, and administrators. 
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Figure 15.17 Finite-element model development and proposed updating parameters. 
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Figure 15.18 Objective function surfaces considering different vibration modes. 
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Figure 15.19 Probability distribution of structural response with updated model. 
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