
Prepared for submission to JCAP

CppTransport: a platform to automate
calculation of inflationary correlation
functions

David Seery

Astronomy Centre, University of Sussex, Falmer, Brighton BN1 9QH, UK

E-mail: D.Seery@sussex.ac.uk

Abstract. CppTransport is a numerical platform that can automatically generate and solve
the evolution equations for the 2- and 3-point correlation functions (in field space and for the
curvature perturbation ζ) for any inflationary model with canonical kinetic terms. It makes
no approximations beyond the applicability of tree-level perturbation theory. Given an input
Lagrangian, CppTransport performs symbolic calculations to determine the ‘Feynman rules’
of the model and generates efficient C++ to integrate the correlation functions of interest.
It includes a visualization suite that automates extraction of observable quantities from the
raw n-point functions and generates high quality plots with minimal manual intervention.
It is intended to be used as a collaborative platform, promoting the rapid investigation of
models and systematizing their comparison with observation. This guide describes how to
install and use the system, and illustrates its use through some simple examples.

mailto:D.Seery@sussex.ac.uk

Contents

1 Introduction 2
1.1 Automated calculation of inflationary correlation functions 3
1.2 The CppTransport platform 4
1.3 Summary of features 7
1.4 Notation and conventions 8

2 Installation 9
2.1 Minimum requirements 9
2.2 Downloading the CppTransport platform 11
2.3 Building the translator and installing the runtime system 11

2.3.1 Installing dependencies on OS X 11
2.3.2 Installing dependencies on Ubuntu 16.04 13

2.4 Building the translator 13
2.5 Configuring your environment 14

3 The translator: generating custom code for a specific model 17
3.1 Adding model metadata 18
3.2 Specifying a template 20
3.3 Choosing a stepper 20
3.4 Adding author metadata 22
3.5 Specifying field content and Lagrangian parameters 23
3.6 Specifying the Lagrangian 23
3.7 Running the translator and producing output 25
3.8 Using the code generation options 27

4 Building and running an integration task 31
4.1 Coupling a model to the runtime system 31
4.2 Translate and build using a CMake script 34
4.3 Adding an integration task 37
4.4 Running tasks 42

4.4.1 Running executables under MPI and creating a repository 43
4.4.2 Examining the repository wavenumber configuration databases 46
4.4.3 Launch and track tasks from the command line 50

4.5 What happens while an integration task is in progress 52
4.6 Using checkpoints and recovery to minimize data loss 54
4.7 How is the integration time spent? 57

4.7.1 Using HTML reports to analyse integration performance 57
4.7.2 Generating a Gantt chart of worker activity 60

4.8 Using the SQLite data container 63
4.8.1 Table definitions 63
4.8.2 Strict consistency checking 67

– i –

5 Options for integration tasks 67
5.1 General options 67
5.2 Two-point function tasks 70
5.3 Three-point function tasks 70

5.3.1 Cubic (k1, k2, k3) mesh 70
5.3.2 Fergusson–Shellard (kt, α, β) mesh 71
5.3.3 Specifying a storage policy 72
5.3.4 Specifying a triangle policy 73

6 Adding postintegration tasks 74
6.1 ζ tasks for the two- and three-point functions 75
6.2 Applying tags to control which content groups are used 76
6.3 Paired ζ tasks 77
6.4 Using ζ SQLite data containers 78

6.4.1 ζ two-point function tasks 78
6.4.2 ζ three-point function tasks 79

6.5 Inner-product tasks to compute fNL-like amplitudes 81
6.5.1 The standard templates 82
6.5.2 Building an inner-product task 82
6.5.3 Example: Using the SQLite data container to produce a plot 84

7 Generating derived products using output tasks 87
7.1 Selecting which data to plot using SQL query objects 87
7.2 Example: plotting the evolution of the background fields 88
7.3 Derived products: plots and tables 93

7.3.1 Standard options 93
7.3.2 Plot-specific options 95
7.3.3 Table-specific options 97

7.4 Available derived lines 98
7.4.1 Standard options 98
7.4.2 Options for 2-point correlation functions 100
7.4.3 Options for 3-point correlation functions 100
7.4.4 Time series 101
7.4.5 Wavenumber series 105
7.4.6 Integration cost analysis 107

7.5 Enabling or disabling indices using an index_selector<> 108
7.6 Examples: double quadratic inflation 108

7.6.1 ζ power spectrum 109
7.6.2 Spectral index for ζ power spectrum 109
7.6.3 Reduced bispectrum on equilateral configurations 110
7.6.4 Spectral index of reduced bispectrum on equilateral configurations 110
7.6.5 Squeezing dependence of reduced bispectrum: isosceles triangles 111
7.6.6 Time evolution of 3pf correlation functions 112
7.6.7 fNL amplitude 114

– ii –

8 Managing repositories 114
8.1 Managing records 114

8.1.1 Specifying which objects to modify 116
8.1.2 Adding and removing tags 116
8.1.3 Adding and removing notes 117
8.1.4 Deleting content groups 117
8.1.5 Lock and unlock groups 117

8.2 Summary of command-line options 117

9 Acknowledgments 120

A Third-party software used by CppTransport 121

– 1 –

1 Introduction

There is now broad agreement that the inflationary scenario [1–6] provides an acceptable
framework within which to interpret observations of the very early universe. In this scenario,
all structure arises from a primordial distribution of gravitational potential wells laid down
by quantum fluctuations during an early phase of accelerated expansion. After inflation the
universe is refilled with a sea of cooling radiation, and matter begins to condense within these
potential wells. This generates a network of structure inheriting its statistical properties from
those of the seed quantum fluctuations. By measuring these properties we can hope to infer
something about the microphysical modes whose fluctuations were responsible.

Information about the pattern of correlations visible within our Hubble patch can be
extracted from any observable that traces the condensed matter distribution. To determine
the viability of some particular inflationary model we must compare these observations with
predictions that carefully account for the precise character of quantum fluctuations given the
field content, mass scales and coupling constants of the model.

Unfortunately these calculations are challenging. Various approximate schemes to com-
pute a general n-point function are known, but even where these are available they require
numerical methods except in special cases. Such schemes typically break the calculation
into two pieces: a ‘hard’ contribution—that is, involving comparatively large momenta—
characterized by wavenumbers near the scale of the sound horizon k/a ∼ H/cs, and a ‘soft’
contribution involving comparatively low wavenumbers k/a � H/cs [7]. The soft contribu-
tion can be computed using the classical equations of motion and is normally the only one
to be handled exactly. The hard contribution is estimated by assuming all relevant degrees
of freedom are massless and non-interacting. A typical example is the δN formula for the
equal-time two-point function of the curvature perturbation ζ,

〈ζ(k1)ζ(k2)〉t = Nα(t, t∗)Nβ(t, t∗)︸ ︸
soft part

hard part︷ ︷
〈δφα(k1)δφβ(k2)〉t∗ . (1.1)

The indices α, β, . . . , label species of scalar field (with summation implied over repeated
indices) and the subscript attached to each correlation function denotes its time of evaluation.
The times are ordered so that t > t∗. Taking t∗ to label an epoch when k1/a = k2/a ∼ H/cs
makes NαNβ correspond to the soft piece and the t∗ correlation function correspond to the
hard piece. This division is entirely analogous to the factorization of hadronic scattering
amplitudes into a hard subprocess followed by soft hadronization.

Any scheme of this type will break down if the hard initial condition can not be approxi-
mated by the ‘universal’ massless, non-interacting case. In recent years it has been understood
that there is a rich phenomenology associated with this possibility, including ‘gelaton-like’ [8]
or ‘QSFI-like’ [9–11] effects. With sufficient care these effects can be captured in an approx-
imation scheme such as (1.1), but the approach becomes more complex—and even if this is
possible we have only exchanged the problem for computation of the hard component 〈· · · 〉t∗ .
If this hard component is not universal, then the problem is no easier than calculation with
which we started.

A different way in which (1.1) loses its simplicity occurs when there is not a single hard
scale, but a number of widely separated scales. For example, this can occur in an n-point

– 2 –

function with n > 3 where the external wavenumbers ki divide into groups characterized by
typical magnitudes µ1, µ2, . . . , µN and µ1 � µ2 � · · · � µN . In this case the factorization
in (1.1) becomes more involved [12], and must be modified in a way depending on the precise
hierarchy of groups.

Taken together, these difficulties generate a significant overhead for any analysis where
accurate predictions of n-point functions are important. The form of this overhead varies from
model to model, and even on the range of wavenumbers under consideration. If we choose
to pay the overhead and pursue this approach, we encounter three significant obstacles.
First, a sizeable investment may be required—due to field-theory calculations of the hard
component—before analysis can commence for each new model. Second, because each hard
component is model-specific, there may be limited opportunities for economy by re-use.
Third, if we implement the hard component of each model individually (perhaps using a
range of different analytic or numerical methods), we must painfully test and validate the
calculation in each case.

1.1 Automated calculation of inflationary correlation functions

To do better we would prefer a completely general method that could be used to obtain
accurate predictions for each n-point function, no matter what mass spectrum is involved or
what physical processes contribute to the hard component. Such a method could be used to
compute each correlation function directly, without imposing any form of approximation.

The same problem is encountered in any area of physics for which observable predic-
tions depend on the methods of quantum field theory. The paradigmatic example is collider
phenomenology, where the goal is to compare theories of beyond-the-Standard-Model physics
to collision events recorded at the Large Hadron Collider. In both early universe cosmology
and collider phenomenology the challenge is to obtain sufficiently accurate predictions from a
diverse and growing range of physical models—and, in principle, the obstacles listed above ap-
ply equally in each case. But, in collider phenomenology, the availability of sophisticated tools
to automate the prediction process has allowed models to be developed and investigated at a
remarkable rate. Examples of such tools include CompHEP/CalcHEP [13–16], FormCalc [17–
20], HELAC [21, 22], MadGraph [23–26], SHERPA [27, 28] and Whizard [29, 30]. (For an
early review of the field, see the Les Houches Guide to MC Generators [31].) Their common
feature is support for automatic generation of LHC event rates directly from a Lagrangian
by mixing three components: (1) symbolic calculations to construct suitable Feynman rules,
(2) automatically-generated compiled code to compute individual matrix elements, and (3)
Monte Carlo event generators to convert these matrix elements into measurable event rates.
This strategy of automation has successfully overcome the difficulties encountered in devel-
oping cheap, reliable, model-dependent predictions. In addition, reusable tools bring obvious
advantages of simplicity and reproducibility. There have also been indirect benefits. For
example, the existence of widely-deployed tools has provided a common language in which
to express not only the models but also the elements of their analysis.

In early universe cosmology the available toolbox is substantially less developed. A
number of public codes are available to assist computation of the two-point function, in-
cluding FieldInf [32–34], ModeCode and MultiModeCode [35–38], and PyFlation [39–41]. But
although these codes are generic—they can handle any model within a suitable class—they
are not automated in the sense described above, because expressions for the potential and

– 3 –

http://theory.sinp.msu.ru/~pukhov/calchep.html
http://www.feynarts.de/formcalc/
http://helac-phegas.web.cern.ch/helac-phegas/helac-phegas.html
http://madgraph.hep.uiuc.edu
https://sherpa.hepforge.org/trac/wiki
https://whizard.hepforge.org
http://theory.physics.unige.ch/~ringeval/fieldinf.html
http://modecode.org
http://modecode.org
http://pyflation.ianhuston.net

its derivatives must be obtained by hand and supplied as subroutines. For the three-point
function the situation is more restrictive. Currently the only public code is BINGO [42, 43]
which is limited to single-field canonical models.

Partially, this difference in availability of solvers for the two- and three-point functions
has arisen because a direct implementation of the Feynman calculus is not straightforward
for n-point functions with n > 3. In these cases, conversion of formal Feynman integrals
into concrete numerical results usually depends on techniques such as Wick rotation that are
difficult to implement without an analytic expression for the integrand. Such expressions are
seldom available for the time-dependent backgrounds required by cosmology, making integra-
tion over the time variable more demanding than for Minkowski-space scattering amplitudes.
For this reason it would be considerably more convenient to work with an explicitly real-time
formulation.

Recently, Dias et al. described a formulation of field theory with these properties. It
can be applied to time-dependent backgrounds more straightforwardly than the traditional
machinery of Feynman diagrams [44]. This formulation is based on direct computation of the
n-point functions by an evolution or ‘transport’ equation, allowing most of the complexities
of field theory to be absorbed into calculation of suitable initial conditions. In inflation these
initial conditions are universal, provided the calculation is started at sufficiently early times
where all scalar fields can be approximated as massless. Therefore, obtaining suitable initial
conditions becomes a one-time cost, the results of which are easy to compute numerically.
The remaining challenge is to implement the evolution equations that bring these initial
conditions to the final time of interest. These also have a universal form, parametrized by
coefficient matrices that depend only algebraically on the model at hand.

Using this scheme it becomes possible to implement automated calculation of inflation-
ary correlation functions in the same sense as the tools used in collider phenomenology. By
performing suitable symbolic calculations we can compute the necessary coefficient matrices
for any model, and given knowledge of these matrices it is straightforward to generate spe-
cialized code that implements the necessary evolution equations. When compiled this code
will take advantage of any opportunities for optimization detected by the compiler, making
evaluation of each correlation function as rapid as possible. Finally, by mapping each cor-
relation function over a range of wavenumbers we place ourselves in a position to determine
any late-universe observable of interest.

1.2 The CppTransport platform

CppTransport is a platform that implements this prescription. It is the result of three years
of development, amounting to roughly 60,000 lines of C++, and consists of three major com-
ponents:

1. A translator (17,000 lines) converts ‘model description files’ into custom C++ imple-
menting suitable evolution equations and initial conditions. The model description file
enumerates the field content of the model, lists any parameters required by the La-
grangian, and specifies the inflationary potential. It is also possible to document the
model by providing a rich range of metadata.

2. Once this specialized C++ code is available it must be compiled together with a runtime
support system to produce a finished product capable of integrating the transport

– 4 –

https://sites.google.com/site/codecosmo/bingo

����������

�����������������

����������

����������

�������������

�������������������

��������������

�������������������

����������������� ��������������������� ������������

����������������

������

���������������������

������������

���������������

Figure 1. Block diagram showing relation of CppTransport components.

equations and producing correlation functions. The management system (29,000 lines)
is the largest component in the runtime support and has responsibility for coordinating
integration jobs and handling parallelization. It also provides database services.

3. The remaining component is a visualization and reporting suite (15,000 lines) that can
process the raw integration data to produce observable quantities and present the results
as plots or tables. The reporting component generates interactive HTML documents
containing these outputs for easy reading or sharing with collaborators.

A block diagram showing the interaction among CppTransport components is given in Fig. 1.
To investigate some particular model normally requires the following steps:

1. Produce a suitable model-description file and process it using the CppTransport trans-
lator.

2. Produce a short C++ code that couples the runtime system to some number of model
implementations produced by the translator—at least one, but up to as many as re-
quired. Each implementation is pulled in as a header file via the #include directive.

– 5 –

The code can define any number of integration tasks, post-processing tasks and output
tasks that describe the work to be done:

• Integration tasks associate a single model with a fixed choice for the parameters
required by its Lagrangian, and initial conditions for the fields and their deriva-
tives. The task specifies a set of times and configurations (assignments for the
wavenumbers ki characterizing each correlation function) at which samples should
be stored.

• Post-processing tasks act on the output from an integration task or other post-
processing task. They are typically used to convert the field-space correlation
functions generated by integration tasks into observable quantities, such as the
correlation functions of the curvature perturbation ζ. Further post-processing
tasks can compute inner products of the ζ three-point function with commonly-
defined templates.

• Output tasks draw on the data produced by integration and post-processing tasks
to produce summary plots and tables.

3. When compiled and executed, the code writes all details of its tasks into a repository—
an on-disk database that is used to aggregate information about the tasks and the
numerical results they produce.

4. The runtime system uses the information stored in a repository to produce output for
each task on demand. The results are stored in the repository and information about
them is collected in its database.

5. Once predictions for the required correlation functions have been obtained, they can
be converted into science outputs:

• If relatively simple observables are required, such as a prediction of the amplitude
or spectral indices for the ζ spectrum or bispectrum, then it may be sufficient to
set up an output task to compute these observables directly. The result can be
written as a set of publication-ready plots in some suitable format such as PDF,
SVG or PNG, or as ASCII-format tables listing numerical values.

• Output tasks support a limited range of observables. For more complex cases, or
to produce plots by hand, the required data can be exported from the databases
stored inside the repository.
CppTransport does not itself provide this functionality, but because its databases
are of the industry-standard SQL type there is a wide selection of powerful tools
to choose from. Many of these are freely available.

• To share information about the results that have been generated, CppTransport
can produce a report in HTML format suitable for exchanging with collaborators.
These reports include a summary analysis of content generated by integration
tasks. They also embed the plots and tables produced by output tasks.

– 6 –

1.3 Summary of features

The remainder of this paper will describe these steps in more detail and illustrate how the
numerical results they generate can be used to study inflationary models. Acting together, the
components of CppTransport provide much more than a bare implementation of the evolution
equations for each n-point function. The main features of the platform are:

• Numerical results including all relevant field-theory effects at tree-level. The method
correctly accounts for a hierarchy of mass scales, interactions among different field
species, and correlation or interference effects around the time of horizon exit. It
makes no use of approximations such as the separate universe method or the slow-roll
expansion.1

• An SQL-based workflow based on the SQLite database management system,2 which
CppTransport uses for its data storage. Because SQL is an industry-standard technology
there is a rich ecosystem of existing tools that can be used to read SQLite databases
and perform real-time SQL queries. This enables powerful GUI-based workflows that
allow scientific exploitation and analysis without extensive programming.

• A fully parallelized MPI-based implementation that scales from laptop-class hardware
up to many cores, using adaptive load-balancing to keep all cores fed with work. A
transactional designmeans it is safe to run multiple jobs simultaneously, and automated
checkpointing and recovery prevent work being lost in the event of a crash. If modifi-
cations are required then the messaging implementation is automatically instrumented
to assist with debugging and performance optimization.

• Manages the data lifecycle by linking each dataset to a repository storing all information
about the parameters, initial conditions and sampling points used for the calculation.
The repository also collects metadata about the integration, such as the type of stepper
used and the tolerances applied. Together, this information ensures that each dataset is
properly documented and has long-term archival value. (All repository data is stored
in human-readable JSON documents in order that this information is accessible, if
necessary, without requiring the CppTransport platform.)

• The repository system supports reproducible research by providing an unambiguous
means to regenerate each dataset, including any products derived from it. This already
provides clear benefits at the analysis stage, because it is not possible to confuse when
or how each output was generated. But if shared with the community, the information
stored in a repository enables every step of an analysis to be audited.

1In order to obtain accurate estimates of the initial conditions, the slow-roll approximation should be
approximately satisfied at the initial time. For more details, see the accompanying technical paper [44]. This
also contains a discussion of the validity of the tree-level approximation.

2‘SQL’ is the Structured Query Language, a set-based language used nearly universally to express queries
acting on the most common ‘relational’ type of database. It is useful because, to extract some subset from a
large database, one need only describe the subset rather than give an explicit algorithm to search for it; it is
the responsibility of the database management system to devise a strategy to read and collate the required
records. This is very convenient for scientific purposes because it allows a dataset to be analysed in many
different ways, by many different tools, with only modest effort.

– 7 –

http://sqlite.org

• When derived products such as plots or tables are produced, their dependence on exist-
ing datasets is recorded. This means that the platform can be provide a detailed prove-
nance for any data product tracked by the repository. The reporting suite generates
HTML documents containing a hyperlinked audit trail summarizing this provenance.
Notes can be attached to each repository record, meaning that the report functions as
a type of electronic laboratory notebook.

• Leverages standard libraries, including the Boost C++ library. Integrations are per-
formed using high-quality steppers taken from Boost.odeint [45]. These steppers are
interchangeable, meaning that they can be customized to suit the model in question.
For difficult integrations, very high-order adaptive steppers are available.

• The translator is a full-featured tool in its own right, capable of customizing arbitrary
template code for each model using sophisticated replacement rules. It understands
a form of Einstein summation convention, making generation of specialized template
code rapid and convenient.

1.4 Notation and conventions

This document includes examples of computer code written in a variety of languages. To assist
in understanding the context of each code block, its background is colour-coded according to
the language:

• Shell input or output, blue background: export PATH=/usr/local/bin:$PATH

• Configuration files, green background: input = /usr/local/share/cpptransport

• C++ source code, yellow background: class dquad_mpi;

• Python source code, red background: def plot:

• CMake scripts, olive background: TARGET_LINK_LIBRARIES()

• SQL code, magenta background: SELECT * FROM

CppTransport uses units where c = ~ = 1 but the reduced Planck mass MP = (8πG)−1/2 can
be set to an arbitrary value.

Each inflationary model can have an arbitrary number of scalar fields. These are all
taken to be singlets labelled by indices α, β, . . . , and are written φα; their perturbations are
δφα.

CppTransport does not use the slow-roll approximation, and therefore it is necessary to
deal separately with the scalar field derivatives φ̇α and δφ̇α. We often write these generically
as πα and collect them into a larger set of fields indexed by labels a, b, . . . :

Xa = (φα, πα) or δXa = (δφα, δπα). (1.2)

– 8 –

http://www.boost.org
http://www.boost.org/doc/libs/release/libs/numeric/odeint

2 Installation

2.1 Minimum requirements

Compiler.—CppTransport is written in modern C++ and requires a relatively recent compiler
with support for C++14. It has been confirmed to build correctly with the three major
C++ toolchains—Clang (including Apple Clang), gcc and the Intel compiler. The minimum
recommended versions are > gcc 5.0 and > Intel 16.0. Versions of gcc prior to 5.0 have
insufficient standard library support, and versions of the Intel compiler prior to 16.0 contain
bugs that prevent a successful build.3 Any moderately recent version of Clang should work
correctly.

In the absence of specialized requirements it is usually simplest to build with the default
toolchain on your platform. On Linux the default compiler will normally be gcc, and for
versions of OS X later than 10.7 it will be Clang. Testing has shown that there is little
to be gained by switching between different compilers, although the Intel compiler can give
better performance under certain circumstances. Where this occurs it is sometimes possible
to obtain the performance improvement by building executables for individual models using
the Intel compiler, even if the base CppTransport system is built with the default system
toolchain.4

Dependencies.—CppTransport is packaged to minimize its pre-requisites and dependencies.
Nevertheless, there are inevitably some libraries and tools that must be present before in-
stallation can be attempted. These dependencies have been organized by splitting them
into two groups. The first group contains those that must be installed system-wide (and
therefore may be not be installable by individual users in a cluster environment), or which
are very commonly available from package management systems. The second contains more
specialized libraries. CppTransport expects dependencies in the first group to be pre-installed
by a system administrator, or via a package-management system on a personal computer.
(Some examples are discussed below.) This approach uses system resources economically by
promoting use of shared libraries. Dependencies in the second group are managed internally
and do not require user intervention.

Pre-requisite dependencies.—The dependencies that must be installed prior to building Cpp-
Transport are:

• CMake build system. The build process for CppTransport is managed by the CMake
tool, which is responsible for finding the various libraries and system files needed by
CppTransport. It is also responsible for downloading and installing those dependen-
cies that CppTransport manages internally. Once all resources are available, CMake
automatically builds and installs the CppTransport platform.
CppTransport requires CMake version 3.0 or later.

• A working MPI installation. CppTransport uses the standard MPI message-passing
system to coordinate parallel calculations. A suitable implementation must therefore

3On Linux, the Intel compiler normally depends on the standard library supplied with gcc. This means
that gcc > 5.0 should also be available.

4This can go wrong if there are binary incompatibilities between compiled code generated by different
compilers.

– 9 –

http://clang.llvm.org
https://gcc.gnu.org
https://software.intel.com/en-us/c-compilers
https://cmake.org

be installed. Any standards-compliant choice should work, including OpenMPI, MPICH
(or its derivatives) or the Intel MPI libraries.

• The Boost C++ libraries. CppTransport uses a suite of C++ libraries called Boost. Most
Boost libraries are header-only and do not require shared libraries to be pre-built.
However, some do require a build step. Those required by CppTransport are Date_Time,
Filesystem, Log, MPI, ProgramOptions, Random, RegEx, System, Serialization, Thread and
Timer.
CppTransport will function with any version of Boost later than 1.56, but is more efficient
with version 1.58 or later.

• The GiNaC computer algebra library. GiNaC is a library for performing symbolic
computations in C++. It was originally developed as part of the XLOOPS-GiNaC project
to develop an automated 1-loop particle physics code. However, the library itself is
independent of any particular application. GiNaC has a further dependence on the CLN
project, but this will be handled automatically if installation is managed by a packaging
system.

• The SQLite database library. This is almost certain to be installed on every Linux or
OS X machine, but some extra developer files may be required.

• The OpenSSL library. This is needed to calculate MD5 hashes, which CppTransport
uses to uniquely identify models. The MD5 algorithm is used to give consistent results
on all platforms.

Typically, some of these dependencies (such as CMake, an MPI implementation, Boost,
SQLite, OpenSSL) will already be available in a managed HPC environment such as a compute
cluster. All of them are widely packaged for convenient installation on personal machines:
they are included in the most common Linux distributions, and are available using the Mac-
Ports or Homebrew package-management systems for OS X. CppTransport is agnostic about
how these libraries are installed, but unless there are compelling reasons to install in some
other way the packaged versions normally represent the most convenient approach.

In addition CppTransport can use certain external programs if they are available, but
does not depend on them for its core functionality:

• Using output tasks to generate plots depends on Python and the Matplotlib library. If
one or both is unavailable then it is instead possible to generate Python scripts which
can be processed to product plots at a later date. (This provides a means to customize
the plot format, if desired.)
If the seaborn statistical library is available, CppTransport can use it to style its plots.

• If the Graphviz tools are available, the HTML report generator will produce a depen-
dency diagram showing how each product generated by an output task depends on
content produced by earlier integration and post-processing tasks.

– 10 –

https://www.open-mpi.org
https://www.mpich.org
https://software.intel.com/en-us/intel-mpi-library
http://www.boost.org
http://www.boost.org/doc/libs/1_60_0/doc/html/date_time.html
http://www.boost.org/doc/libs/1_60_0/libs/log/doc/html/index.html
http://www.boost.org/doc/libs/1_60_0/doc/html/mpi.html
http://www.boost.org/doc/libs/1_60_0/doc/html/program_options.html
http://www.boost.org/doc/libs/1_60_0/doc/html/boost_random.html
http://www.boost.org/doc/libs/1_60_0/libs/system/doc/index.html
http://www.boost.org/doc/libs/1_60_0/libs/serialization/doc/
http://www.boost.org/doc/libs/1_60_0/libs/timer/doc/index.html
http://www.ginac.de
http://wwwthep.physik.uni-mainz.de/~xloops/
http://www.ginac.de/CLN/
https://www.macports.org
https://www.macports.org
http://brew.sh
https://www.python.org
http://matplotlib.org
https://stanford.edu/~mwaskom/software/seaborn
http://www.graphviz.org

2.2 Downloading the CppTransport platform

The CppTransport sources can be downloaded from various locations:

• Citeable archives tagged with a unique DOI and containing the source code are de-
posited at the CERN/OpenAIRE Zenodo repository

https://zenodo.org/record/61237

• The same tar archives can be downloaded from http://transportmethod.com, or from
CppTransport’s GitHub homepage:

https://github.com/ds283/CppTransport/releases

• If you wish to install a pre-release version of CppTransport, or contribute to its devel-
opment, you can fork or clone the git repository from GitHub.

Reporting issues.—Bug reports, feature requests or other issues are best reported using the
issue tracker on the GitHub page:

https://github.com/ds283/CppTransport/issues

2.3 Building the translator and installing the runtime system

This section describes how to install CppTransport, with explicit summaries for handling
dependencies in a number of common cases—OS X with MacPorts or Homebrew, and Ubuntu.
Users with experience building and installing software may wish to skip directly to §2.4 which
gives instructions for building the CppTransport once all dependencies have been installed.

2.3.1 Installing dependencies on OS X
As explained above, to build on OS X it is usually convenient to use the MacPorts or Homebrew
packaging systems to simplify installation of its dependencies. Whichever package manager
is chosen, the first step is to install Xcode and its associated command-line tools.

1. Download Xcode from the App Store. It is a large download (roughly ∼ 6 Gb) so this
may take a while.

2. Install the command-line tools associated with Xcode by opening the Terminal appli-
cation and typing:

1 xcode-select --install

3. Agree to the Xcode license by typing:

1 sudo xcodebuild -license

You will need to page to the end of the license or chose q to quit, followed by typing
agree to confirm that you accept the license.

Using MacPorts.—To install CppTransport’s dependencies using MacPorts:

– 11 –

https://zenodo.org/record/61237
http://transportmethod.com
https://github.com/ds283/CppTransport/releases
https://github.com/ds283/CppTransport/issues

1. Install the MacPorts system from http://www.macports.org. Installers are available
for each recent release of OS X.

2. Once MacPorts is installed, open a new Terminal. (MacPorts makes some changes to
your configuration files in order to make its packages available. These changes are only
picked up when you open a new Terminal.)
The dependencies for CppTransport can be installed simultaneously by typing

1 sudo port install cmake openmpi boost +openmpi ginac openssl

(Note that the combination boost +openmpi is a single item and instructs MacPorts
to install the Boost libraries using OpenMPI as the MPI implementation.) Each of
these packages has further dependencies which MacPorts will download and install
automatically. This process can take some time.
If you want to use Python to produce plots and Graphviz for dependency diagrams then
this can be followed with

1 sudo port install py-matplotlib py-seaborn graphviz

Alternatively you can combine all these packages together in a single sudo port install
instruction.

3. When all packages have installed, issue the command

1 sudo port select --set mpi openmpi-mp-fortran

This selects OpenMPI as the default MPI implementation, which will enable CppTrans-
port to find its libraries while it is being built.

Using Homebrew.—The procedure is similar for Homebrew.

• Install Homebrew by following the instructions at http://brew.sh.

• To install the major CppTransport dependencies, execute

1 brew install cmake openmpi ginac openssl
2 brew install boost --c++11 --with-mpi --without-single

• Although Homebrew includes Python and Graphviz it does not include Matplotlib, which
must be installed separately. First install Python and Graphviz:

1 brew install python graphviz

We will also want two further dependencies:

1 brew install pkg-config pip

It is now possible to install Matplotlib and seaborn:

1 pip2 install matplotlib seaborn

– 12 –

http://www.macports.org
http://brew.sh

2.3.2 Installing dependencies on Ubuntu 16.04
Most Linux distributions will include packages for all CppTransport dependencies. For illus-
tration we describe the process for Ubuntu 16.04, but the process will be nearly unchanged
for any Debian-based distribution.

From a terminal, issue the command:
1 sudo apt-get install libsqlite3-dev libboost-all-dev libginac-dev libopenmpi-dev libssl-dev cmake

python-matplotlib python-seaborn graphviz git texlive texlive-latex-extra
texlive-fonts-recommended

↪→
↪→

This will download and install all required packages and their dependencies. Depending what
is already available on your machine, this may be a sizeable download and could take some
time. The large texlive dependencies are needed only if you plan to use LATEX typesetting
with Matplotlib.

Ubuntu provides a tool called ubuntu-make which can conveniently install development
platforms and their dependencies. Although alternatives exist, you may wish to investigate
the CLion and DataGrip platforms which are available through ubuntu-make. These are
commercial products, but free licenses are available to researchers with an academic email
address. In particular, DataGrip is a good candidate for a tool to manage or interrogate the
SQL databases that CppTransport produces (see §4.4.2).

2.4 Building the translator
Once all dependencies are installed it is possible to build CppTransport. Assuming you have
downloaded the source code from zenodo.org, transportmethod.com or as a specific release
from GitHub, it will be packaged as a .tar.gz archive containing the source tree. Place this
archive in a suitable directory, then unpack the archive by typing

1 tar xvf CppTransport_2016_03.tar.gz

The name of the archive may be different if you are using a more recent version. The
CppTransport source code will be unpacked into a directory with the name CppTransport.
The build process proceeds by entering this directory, creating a new directory called build
that will hold temporary files, and then configuring CMake to use your preferred compiler
and install to your preferred location.

CppTransport can be installed system-wide, making it available to all users on a machine.
Alternatively it can be installed locally, just for a single user. For example, if installing
system wide we might choose to locate it in /usr/local. This usually requires administrator
privileges. Single-user installation would usually locate CppTransport within the user’s home
directory and does not require administrator privileges. This may be the only option if you
are building on a managed system such as a cluster.

In what follows we shall assume that installation is happening locally, but the changes
required for system-wide installation are minimal. First, enter the CppTransport directory
and create a new directory for temporary files:

1 cd CppTransport
2 mkdir build
3 cd build

The next step is to configure CMake. If you are building with the default compiler you can
enter

– 13 –

https://wiki.ubuntu.com/ubuntu-make
https://wiki.ubuntu.com/ubuntu-make
https://www.jetbrains.com/clion/
https://www.jetbrains.com/datagrip/
http://zenodo.org
http://transportmethod.com/cpptransport
https://github.com/ds283/CppTransport/releases

1 cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=~/.cpptransport-packages

This instructs CMake to build using a release configuration (some debugging code is sup-
pressed) and install to the directory ~/.cpptransport-packages. The precise name of this
directory is arbitrary and can be freely changed, although it is wise to avoid the names
~/.cpptransport and ~/.cpptransport_runtime which CppTransport expects to be asso-
ciated with configuration files. (See the discussion on p.16 below.) If you are installing
system-wide the install prefix should be set using -DCMAKE_INSTALL_PREFIX=/usr/local or simi-
lar.

If you wish to build with a different compiler then CMake will require further informa-
tion. For example, if the Intel compiler is available on your PATH and you wish to build with
it, you should use

1 cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=~/.cpptransport-packages
-DCMAKE_C_COMPILER=icc -DCMAKE_CXX_COMPILER=icpc↪→

More generally, you should pass the location of the C compiler as the value of CMAKE_C_COMPILER

and the location of the C++ compiler as the value of CMAKE_CXX_COMPILER.
If configuration is successful, build the translator and then install:

1 make CppTransport -j4
2 make install

Adjust the argument -j4 to correspond to the number of cores available on your machine;
for example, on a dual-core machine you should use -j2 and on a quad-core machine with
hyperthreading you could use -j8 . If you don’t wish to use parallelized builds then it is
possible to omit the -j argument altogether, although the process may take substantially
longer.

2.5 Configuring your environment

PATH variable.—CppTransport is now installed, but is not yet usable. The install proce-
dure writes a large number of files and resources into directories under the installation pre-
fix specified in CMAKE_INSTALL_PREFIX; see Fig. 2. One of these files is the translator, called
CppTransport, which is installed under bin. The operating system needs to know where to
find this when we ask it to process a model file, and this means adding its parent directory
to the PATH variable. We also have to inform CppTransport where its supporting files have
been installed; for example, the translator requires access to its templates, and the runtime
environment requires access to various assets that are used when writing HTML reports.

The first step is to add the bin directory to your path. Typically this would be set in
a configuration script such as .profile.5 You may find that this file already contains a line
of the form

1 export PATH=/opt/local/bin:/opt/local/sbin:$PATH

5There are several possible locations where PATH can be set, but .profile is a good choice because it
will typically be read for non-interactive shells. This can be important if you will be running CppTransport
via MPI in a cluster environment.

– 14 –

��������������������

��� ��� ����� �������

������������ ����������������������������������� ����� ������������ ����������������������������������

��������������������������������������� ���� ���������

�������������������������� ����������������������������

Figure 2. Directory structure created by CppTransport installation process.

although the precise list of colon-separated paths may be different. If not, or there was
no existing .profile script, add a new entry that points to the bin directory under your
installation prefix. For example, for a user named ds283 the resulting line might be

1 export PATH=/Users/ds283/.cpptransport-packages/bin:$PATH

Ensure that you add to the list of colon-separated paths rather than replacing any existing
ones, or you may find that you lose access to some of your installed software.

CppTransport resources.—At this stage it should be possible to invoke the CppTransport
translator simply by typing CppTransport at the command line. and it is worth opening a
new terminal (causing your ~/.profile script to be read) to check that this happens.

1 CppTransport --version

The translator should respond by printing information about the installed version, such as

CppTransport 2016.3 (c) University of Sussex 2016

If this has worked successfully then nothing else need to be done to translate model files
or build them into executables. The only step that is still required is to inform the runtime
system where it can find the files installed under share. There are two ways to do this:

• Use the CPPTRANSPORT_PATH environment variable. CppTransport will search a list of
filesystem locations when looking for files. One option is to supply this information as
a colon-separated list in the environment variable CPPTRANSPORT_PATH , which functions
very like the variable PATH used above to inform the shell where it should search for
executable files.
If set, CPPTRANSPORT_PATH should point to the subdirectory share/cpptransport of the
installation prefix. For example, your ~/.profile could include a line such as

– 15 –

1 export CPPTRANSPORT_PATH=~/.cpptransport-packages/share/cpptransport

The CPPTRANSPORT_PATH variable is used by both the translator and the runtime library.

• Use configuration files. Alternatively, options may be supplied to CppTransport using
configuration files in the top level of your home directory. The translator will look for
a configuration file named ~/.cpptransport, and the runtime environment will look
for a file named ~/.cpptransport_runtime. The use of separate files enables different
options to be passed to each component.
This method allows you to avoid adding extra material to your ~/.profile script (or
related files), if that is desirable. To use configuration files for this purpose, create a
~/.cpptransport file containing a the line such as

1 include = /Users/ds283/.cpptransport-packages/share/cpptransport

where the path on the right-hand side should be adjusted to have the correct prefix
and home directory. Notice that although is the same path that would appear in
CPPTRANSPORT_PATH , the symbol ~ cannot be used to represent the path to the home
directory.
The runtime system requires a separate configuration file called .cpptransport_runtime
which should include the same line:

1 include = /Users/ds283/.cpptransport-packages/share/cpptransport

Using Python to produce plots.—Provided the Python interpreter is available on your PATH it
will be automatically detected. CppTransport will also detect whether Matplotlib is available.
Therefore it is not necessary to adjust any settings in order to use these tools.

By default CppTransport will produce plots in Matplotlib’s own default style. This was
designed to mimic the appearance of MatLab and is not ideal for publication-quality re-
sults. If the installed version of Matplotlib is sufficiently recent to support style sheets, or if
the seaborn package is available, then CppTransport can use these features to produce more
attractive output. These features are enabled using the plot-style option. This can be
provided on the command line (see §8.2), but it is usually more convenient to include it in
the ~/.cpptransport_runtime configuration file. This file should include a line such as

1 plot-style = seaborn

Currently, the available styles are ggplot , ticks (corresponding to the Matplotlib style sheets
with the same name; for example, see here) and seaborn . If you wish to use a different
style it is possible to generate Python scripts from an output task and insert any required
customization by hand.

If you are running CppTransport via SSH or a similar remote login, you may need to
force Matplotlib to use a noninteractive backend. By default CppTransport will use whatever
backend has already been configured; for more details, see the Matplotlib documentation. If
Matplotlib has been configured to use an interactive backend this will usually fail for jobs
started via remote login. To fix this you should force CppTransport to use a noninterac-
tive backend using the --mpl-backend option. The allowed backends are Agg , Cairo , PDF

– 16 –

http://matplotlib.org/users/whats_new.html#style-package-added
https://tonysyu.github.io/raw_content/matplotlib-style-gallery/gallery.html
http://matplotlib.org/faq/usage_faq.html#what-is-a-backend

and MacOSX . The Cairo renderer sometimes has problems with LATEX-formatted text. The
Agg backend is a good choice unless you know you need something different. To set this
permanently, add line line

1 mpl-backend = Agg

to your ~/.cpptransport_runtime file.

Using Graphviz.—As for Python, CppTransport will automatically detect the Graphviz tools,
provided they are available on your PATH .

3 The translator: generating custom code for a specific model

The first step in using CppTransport to perform practical calculations is to generate a model
description file. As explained above, this describes details of the inflationary model such as
its field content and Lagrangian. It is used by the translator to generate specialized code
capable of computing the required initial conditions and transport equations. This code
is constructed from a supplied template by applying well-defined replacement rules. The
template can be modified if required, but in practice this is not normally necessary.

Warning

Will CppTransport work for my model?—Before using CppTransport to study a model,
you should carefully evaluate whether it satisfies the criteria for applicability of the
underlying numerical scheme. For more details see the accompanying technical pa-
per [44]. The key considerations are:

• Is it possible to find an initial time at which the slow-roll conditions approxi-
mately apply? CppTransport needs initial estimates of the two- and three-point
correlation functions, which are obtained from analytic methods that use the
slow-roll approximation.
Although the slow-roll conditions normally do not have to be strongly satisfied
at the initial time, they should be approximately satisfied in order that the ana-
lytic estimates fall within the basin of attraction of the true numerical solution.
Usually the initial conditions will safely relax to this true value, although there
is no guarantee that this will always happen.

• Does the tree approximation apply? CppTransport implements a numerical
scheme that computes tree-level estimates of each correlation function. For many
models this is safe, but you should exercise caution if:

– loop corrections are already important for S-matrix processes such scatter-
ing or decays

– copious particle production could allow significant contributions to the cur-
vature perturbation ζ from multiparticle production channels. Multiparti-
cle channels such as n → 1 decay for n > 2 make loop-level contributions
to expectation values, even if the n → 1 process itself is tree-level when
considered as an S-matrix element. For more details, see §3.1 of Ref. [44].

– 17 –

– production of finite-wavenumber modes can significantly drain energy from
the zero-mode, as in warm inflation or trapped inflation.

The model description file consists of a number of blocks that declare properties and
attributes for the model. They generally take the form

block-name tag { attribute-list }

Here, block-name is a keyword indicating what kind of attributes are being declared; tag is
a label used to identify the block; and attribute-list is a list of assignments in the form

property = value;

Breaking the model description into files.—If desired, it is possible to spread the model
description over several files by using the directive #include "string" . The effect is as if the
contents of the file whose name matchs string had been included at the same point. The
included file can itself contain further #include directives.

3.1 Adding model metadata

Blocks can come in any order, but it is generally preferable to place the model block at or
near the top of the file because it contains a range of useful summary information. Most of
the fields are optional, but if provided they are embedded within the custom C++ output and
subsequently attached to any data products that it is used to generate. By specifying this
data we reduce the risk of ‘orphaned’ code or data that cannot be traced back to a specific
combination of model, parameters and initial conditions.

The attributes available within the model block are:

• The tag: this is used to construct the names of the C++ classes build by the translator,
and also the names of the output files it generates. For this reason it should be fairly
short and obey the rules for constructing valid C++ identifiers and filenames.,

• name = "string";
Sets the model’s textual name to string . The textual name is generally used only
when producing reports; automatically-generated code normally refers to the model
using the tag associated with the block.

• description = "string";
Adds a short description of the model. This should briefly identify its origin and major
features.

• citeguide = "string";
Give short guidance about how to cite this model and its description file.

• license = "string";
If you intend to make your description file publicly available (eg. on the arXiv or via
a data repository service such as zenodo.org), you may wish to explicitly set a license
that allows re-use such as the Creative Commons Attribution license. Some funding
agencies may express a preference (or even specific requirements) for the licensing of
research outputs.

– 18 –

http://www.zenodo.org
https://creativecommons.org/licenses/

• revision = integer;
A model description may evolve through multiple iterations during its lifetime. Where
significant changes occur it can be helpful to indicate this unambiguously by changing
the model’s textual name and the tag used to identify it in generated C++. However,
for minor changes it may be less confusing to retain the same identifiers. In these
circumstances the revision field can be used to distinguish between different versions
of the model file.
The runtime system will not allow code generated using an earlier revision of a model
description file to handle tasks prepared using a later revision.

• references = [string, string, ...];
Attach a comma-separated list of strings that reference publications associated with
this model. The string are free-format and can be used for any suitable purpose. For
example, you may wish to identify papers by their arXiv number or by DOI.

• urls = [string, string, ...];
Attach a comma-separated list of strings corresponding to URLs associated with this
model. These should be internet locations to which an end-user can refer to obtain
more details about the model or its implementation.

Example

To illustrate the process of preparing a model file and constructing tasks, in these pan-
els we will work through the steps needed for the model of double quadratic inflation—
eventually building up to an analysis of its bispectrum.
This model was introduced by Rigopoulos, Shellard & van Tent [46, 47] and later
studied by Vernizzi & Wands [48]. It has been widely used as a test case for numerical
methods; see eg. Refs. [49, 50].
CppTransport does not expect any particular naming convention for model description
files, and they do not need to have a fixed extension. However, to keep them readily
recognizable it may help to apply a uniform extension such as .model or .mdl. In this
case we will write the model description into a file named dquad.model. The first step
is to construct a suitable model block. We use the tag "dquad" , and provide links to
the original literature. We also assign the model file a specific license by tagging it
with the abbreviation “CC BY”, which indicates the Creative Commons Attribution
License.

– 19 –

1 model "dquad"
2 {
3 name = "Double quadratic inflation";
4 description = "A two-field model with quadratic potentials";
5 citeguide = "Example from the CppTransport user guide";
6 license = "CC BY";
7 revision = 1;
8
9 references = ["astro-ph/0504508",

10 "astro-ph/0511041",
11 "astro-ph/0603799",
12 "arXiv:160x.yyyy"];
13 urls = ["http://transportmethod.com"];
14 };

3.2 Specifying a template

The translator produces customized C++ output by reading the model description file, using
it to construct all the information needed for concrete calculations, and then writing this
information into a template. We will examine this process in more detail in §3.7. CppTransport
allows arbitrary templates to be used, although there will not normally be any need to
modify the supplied examples. The purpose of the model block is to tell CppTransport which
templates are intended for use. It does not have a tag.

To use the standard templates, the templates block should read:
1 templates
2 {
3 core = "canonical_core";
4 implementation = "canonical_mpi";
5 };

Notice that two templates are required. The core template writes an output file called
tag_core.h and defines a C++ class called tag_core , where tag is the tag used to declare the
model block. This class provides common services such as computation of initial conditions
and mass matrices, which are the same no matter how we choose to solve the equations
of motion for each correlation function. The implementation class defines a C++ class that
integrates these equations.

In principle CppTransport can support many different implementations. For example,
these could use different resources to carry out the calculation, perhaps by splitting the work
across a range of CPUs and offload processors such as GPUs or Xeon Phis. Currently only
an MPI-based CPU integrator is supplied because testing has shown that—for the specific
system of differential equations that CppTransport needs to solve— it is not straightforward
to extract good performance from GPUs. This difficulty is partially driven by memory
requirements, and may change in future. The CPU integrator is supplied as a template
called canonical_mpi.h and writes an output file called tag_mpi.h. It defines a C++ class
called tag_mpi .

3.3 Choosing a stepper

The translator customizes the integration template to use a stepper drawn from the Boost.odeint
collection. Not all the steppers provided by odeint are available, and the selection may expand

– 20 –

http://www.boost.org/doc/libs/1_60_0/libs/numeric/odeint/doc/html/boost_numeric_odeint/getting_started/overview.html

in future. Currently, the supported steppers are:

• runge_kutta_dopri5. This is a 4th/5th-order Dormand–Prince solver, and a good general
purpose stepper. It is capable of efficiently interpolating the solution between sample
points, meaning that the step-size can often be kept large even when high accuracy is
required. This gives the method good overall performance. It should be regarded as
the default unless the model requires special treatment.

• runge_kutta_fehl78. This is a 7th/8th order Fehlberg solver. It is higher-order than the
Dormand–Prince algorithm, but cannot interpolate the solution between sample points
and therefore sometimes struggles to control its step-size. Nevertheless, it remains a
useful alternative.

• bulirsch_stoer_dense_out. This is a Bulirsch–Stoer algorithm that adapts both its
step-size and the order of the method, currently up to 8th order. It can interpolate the
solution, enabling the same good control of step-size exhibited by the Dormand–Prince
algorithm. It is typically slower than the other algorithms but is a good choice where
high precision is required. It may be the only practical choice if the solution exhibits
sharp features, which the adaptive order control can handle quite effectively.

No matter which stepper is selected, it is a good idea to check that features in a solution are
stable to changes in the stepper and sample mesh.

Because the background equations seldom require a stepper with advanced capabilities it
is possible to specify separate steppers for the background and perturbations. At present this
has limited utility because background integrations usually constitute a negligible proportion
of the runtime, but it may have more impact in future.

The background stepper is specified with a background block, and the stepper for per-
turbations is specified with a perturbations block. Each block accepts the same attributes,
and neither has a tag.

• stepper = "string";
Sets the stepper for this block to be one of the supported steppers listed above.

• stepsize = number;
Sets the initial step-size. All steppers supported by CppTransport are adaptive and will
adjust their step-size depending on the structure of the solution, but an initial estimate
is needed. The step-size is measured in e-folds. Typically values in the range 10−12

to 10−15 are reasonable. The stepsize will rapidly be adjusted upwards if the solution
makes this practicable.

• abserr = number;
Sets the absolute tolerance for the stepper.

• relerr = number;
Sets the relative tolerance for the stepper.

Suitable values for the tolerances are typically in the range 10−8 to 10−12, although in some
cases they need to be smaller. A reasonable default choice is 10−8, followed by reduction to
10−10 or 10−12 if the stepper fails to keep the solution under control.

– 21 –

Example

Nothing special is needed for the double-quadratic model, so we can use the default
runge_kutta_dopri5 solver and conventional values for the step-size and tolerances. In
addition we are using the standard templates, so we should add the following lines to
the description:

1 templates
2 {
3 core = "canonical_core";
4 implementation = "canonical_mpi";
5 };
6
7 background
8 {
9 stepper = "runge_kutta_dopri5";

10 stepsize = 1E-12;
11 abserr = 1E-12;
12 relerr = 1E-12;
13 };
14
15 perturbations
16 {
17 stepper = "runge_kutta_dopri5";
18 stepsize = 1E-12;
19 abserr = 1E-12;
20 relerr = 1E-12;
21 };

3.4 Adding author metadata

The authors of the model description file can be identified by including one or more author
blocks. In principle these are intended to identify the authors of the model description rather
than to assign credit for the original model, which can be done via the references attribute
of the model block.

The tag for each block should be a string giving the author’s textual name. The available
attributes are:

• email = "string";
Attaches an email address for this author. Only one address is allowed per author. If
multiple email attributes are given then the translator will issue a warning.

• institute = "string";
Attach an institutional affiliation. As with email addresses, only one affiliation is al-
lowed per author.

Example

A suitable author block for our example file might be:

– 22 –

1 author "David Seery"
2 {
3 institute = "Astronomy Centre, University of Sussex";
4 email = "D.Seery@sussex.ac.uk";
5 };

3.5 Specifying field content and Lagrangian parameters
The final step is to specify the Lagrangian of the model. Because CppTransport is currently
restricted to models with canonical kinetic terms it is only necessary to specify the poten-
tial. Before doing so, we must enumerate the fields used by the model and any parameters
appearing in the Lagrangian. This is done by giving a field block for each field, and a
parameter block for each parameter. The tag for each block is a symbolic name that can be
used to refer to the corresponding quantity in the potential. Currently, only one attribute is
available which is used to give a LATEX name for the quantity:

• latex = "string";
Set the LATEX name of the quantity to be string . The LATEX name is available for use
when generating derived products such as plots.

Example

In the double-quadratic inflation there are two fields, conventionally φ and χ, and the
potential is

V (φ, χ) = 1
2M

2
φφ

2 + 1
2M

2
χχ

2. (3.1)

This means there are two parameters, Mφ and Mχ. To declare all of these objects we
would write

1 field phi
2 {
3 latex = "\phi";
4 };
5
6 field chi
7 {
8 latex = "\chi";
9 };

10
11 parameter Mphi
12 {
13 latex = "M_\phi";
14 };
15
16 parameter Mchi
17 {
18 latex = "M_\chi";
19 };

3.6 Specifying the Lagrangian
Once all fields and parameters have been declared we can use them to give an expression for
the potential. The syntax for this is potential = expression; where expression is a mathe-

– 23 –

function meaning

abs(x) absolute value |x|

sqrt(x) square root
√
x

sin(x) sine sin x

cos(x) cosine cosx

tan(x) tangent tan x

asin(x) inverse sine sin−1 x

acos(x) inverse cosine cos−1 x

atan(x) inverse tangent tan−1 x

atan2(y,x) inverse tangent tan−1 y/x using signs of x, y to determine quadrant

sinh(x) hyperbolic sine sinh x

cosh(x) hyperbolic cosine cosh x

tanh(x) hyperbolic tangent tanh x

asinh(x) inverse hyperbolic sine sinh−1 x

acosh(x) inverse hyperbolic cosine cosh−1 x

atanh(x) inverse hyperbolic tangent tanh−1 x

log(x) natural logarithm ln x

pow(x, y) exponentiation xy

Table 1. Mathematical functions understood by CppTransport

matical expression written using the same kind of syntax one would employ in Mathematica
or Maple. CppTransport understands the standard mathematical operators, including + for
addition, - for subtraction, * for multiplication, / for division and ^ for exponentia-
tion. Nested brackets (· · ·) can be used to indicate precedence. It also understands the
mathematical functions listed in Table 1.

In simple cases it is easy to specify the potential in just one line. For example, in
single-field φ2 inflation we could write

1 potential = m^2 * phi^2 / 2;

Fields are assumed to have dimension [M], and the pre-defined symbol M_P is available to
represent the Planck mass.

In more complex cases, single-line expressions become difficult to read or debug and it is
preferable to break the potential down into subexpressions. CppTransport provides a subexpr
block for this purpose. Its tag is the symbol that will be used to refer to the subexpression,
and the block accepts two attributes:

• latex = "string";
Specifies a LATEX symbol associated with this subexpression.

– 24 –

• value = expression;
Defines the symbolic expression associated with this quantity.

For example, consider the potential studied by Gao, Langlois & Mizuno [51],

V (φ, χ) = 1
2M

2[χ− (φ− φ0) tan Ξ
]2 cos2 ∆θ

2 + 1
2m

2
φφ

2, (3.2)

where Ξ is defined by
Ξ ≡ ∆θ

π
tan−1 s(φ− φ0)

M2
P

. (3.3)

This potential is designed to contain an inflationary valley with a turn. The quantities M
and mφ are mass scales, and φ0, ∆θ and s are constants that parametrize the turn. Assuming
we have defined suitable fields phi , chi and parameters M , mphi , phi0 Delta and s , the
potential can be broken down into subexpressions:

1 subexpr Xi
2 {
3 latex = "\Xi";
4 value = (Delta/pi) * atan(s*(phi-phi0) / M_P^2);
5 };
6
7 subexpr V1
8 {
9 latex = "V_1";

10 value = (1/2) * M^2 * (chi - (phi-phi0)*tan(Xi))^2 * cos(Delta/2)^2;
11 };
12
13 subexpr V2
14 {
15 latex = "V_2";
16 value = (1/2) * mphi^2 * phi^2;
17 };
18
19 potential = V1 + V2;

Example

The potential for double-quadratic inflation is simple. Given the fields and parameter
definitions described above it can be written in one line:

1 potential = Mphi^2 * phi^2 / 2 + Mchi^2 * chi^2 / 2;

3.7 Running the translator and producing output

Once the model description is complete, the translator is run to produce C++ classes that
implement the transport equations for it. Provided your environment has been set up as
described in §2.5 it should be possible to invoke the translator simply by typing CppTransport
at the shell prompt.

The translator accepts a number of arguments. Some of these perform simple house-
keeping functions:

• --help
Display brief usage information and a list of all available options

– 25 –

• --version
Show information about the version of CppTransport being used.

• --license
Display licensing information.

• --no-colour or --no-color
Do not produce colourized output. CppTransport will normally detect the type of ter-
minal in which it is running and adjust its output formatting appropriately. Where
colour is available, it is used to add clarity. However, if you are redirecting its output
to a file (or if this happens automatically as part of a batch environment), you may
wish to suppress this behaviour.

• --verbose, or abbreviate to -v
Enable verbose output, giving more information about the different phases of transla-
tion and some statistics about the process.

Others affect the files read or written by the translator:

• --include, or abbreviate to -I
Should be followed by a path to be added to the list of paths searched when looking
for template files. For example, if extra templates have been written (or installed in
a different location), this argument can be used to enable CppTransport to find them.
The templates should be stored in a directory named templates under this path.

• --no-search-env
Do not use the environment variable CPPTRANSPORT_PATH to determine a list of search
paths; use only paths specified by --include on the command line.

• --core-output
Followed by a path that specifies the file to which the customized core template should
be written. By default the name tag_core.h is used, where tag is the tag used to
declare the model block. In most cases this default will be suitable, so it is not necessary
to specify a filename explicitly.

• --implementation-output
Followed by a path that specifies the file to which the customized implementation
template should be written. By default the name tag_implementation.h is used,
where tag is the tag used to declare the model block and implementation is the name
of the integration implementation; in the current version this is always mpi. In most
cases this default will be suitable, so it is not necessary to specify a filename explicitly.

A final set of options influence the C++ code generated by the translator:

• --no-cse
Disable common sub-expression elimination, described in more detail in §3.8 below.

• --annotate
Annotate the generated code with comments, including comments to indicate which
template line corresponds to each output line. This option can be useful for debugging,
but often generates large files.

– 26 –

• --unroll-policy
Followed by an integer corresponding to the maximum allowed size of an unrolled index
set, described in more detail in §3.8.

• --fast
Unroll all index sets, regardless of size.

These options may also be specified in the ~/.cpptransport configuration file discussed
on p.16. Each option should be placed on a new line, without the leading --. Options such as
--include that accept an argument should be written in the format option = argument , such
as include = /usr/local/share/cpptransport as described above. If an option appears both in
the configuration file and on the command line, then values specified on the command line
are preferred.

Example

For double-quadratic inflation no special options are required (although see the dis-
cussion of --fast in §3.8 below, which can be used to improve the execution time for
this model). To print status messages during the different phases of translation we can
run the translator with the --verbose or -v switch to product verbose output. This
gives:
$ CppTransport -v dquad.model
CppTransport: translating '...templates/canonical_core.h' into 'dquad_core.h'
CppTransport: translation finished with 1216 macro replacements
CppTransport: macro replacement took 0.172s, of which time spent tokenizing 0.00881s (symbolic

computation 0.0223s, common sub-expression elimination 0.087s)↪→
CppTransport: translating '...templates/canonical_mpi.h' into 'dquad_mpi.h'
CppTransport: translation finished with 8102 macro replacements
CppTransport: macro replacement took 0.169s, of which time spent tokenizing 0.00547s (symbolic

computation 0.0179s, common sub-expression elimination 0.0919s)↪→
CppTransport: 153 expression cache hits, 415 misses (time spent performing queries 0.0116s)
CppTransport: processed 1 model in time 0.391s

CppTransport gives information about each file it translates. Here, the files being
translated are the core template canonical_core which becomes dquad_core.h, and
the implementation template canonical_mpi which becomes dquad_mpi.h. Recall
that the stem dquad used to construct these filenames is taken from the tag provided
to the model block in §3.1.
In the subsequent messages, CppTransport informs us of the number of tokens
(‘macros’) replaced while customizing each file, and also the time spent performing each
step. Sometimes common sub-expression elimination becomes very time-consuming;
in this case, see the discussion in §3.8.

3.8 Using the code generation options

As explained above, the translator’s task is to produce customized output. It does this by
rewriting the template files according to well-defined rules.

In order to perform this rewriting the translator recognizes a large number of tokens, of
the form $NAME, $CITEGUIDE, $DESCRIPTION (and so on), which are replaced with the corresponding
data from the model description file. There are also tokens such as $HUBBLE_SQ and $EPSILON

– 27 –

which are replaced with symbolic expressions computed from the Lagrangian of the model—
here, these would be expressions to compute the square of the Hubble rate H2 and the
slow-roll parameter ε = −Ḣ/H2, respectively.

Unrolling index sets.—In addition to these simple rewriting rules, the translator must be
able to generate code that implements the transport equations for the two- and three-point
functions. Writing these correlation functions as

〈δφα(k1)δφβ(k2)〉t = (2π)3δ(k1 + k2)Σαβ

〈δφα(k1)δφβ(k2)δφγ(k3)〉t = (2π)3δ(k1 + k2 + k3)ααβγ ,
(3.4)

their evolution equations become

dΣαβ

dN = uαγΣγβ + uβγΣαγ

dααβγ
dN = uαδα

δβγ + uαδεΣδβΣεγ + cyclic,
(3.5)

where dN = H dt represents the number of e-folds which elapse in a cosmic time interval dt.
Here, uαβ and uαβγ are coefficient matrices calculated internally by the translator and de-
pending on the wavenumbers k1, k2, k3. These matrices are represented using further tokens
such as $U2_TENSOR[AB] (corresponding to uαβ) and $U3_TENSOR[ABC] (corresponding to uαβγ).
The labels [AB] and [ABC] represent the associated indices. The translator understands enough
of the Einstein summation convention to represent (for example) the transport equation for
the two-point function as

1 dSigma[$A][$B] $= $U2_TENSOR[AC] * Sigma[$C][$B];
2 dSigma[$A][$B] $+= $U2_TENSOR[BC] * Sigma[$A][$C];

It has been assumed that the two-point function Σαβ is encoded in an array-like object
Sigma[][] and the derivative is to be written into a separate array-like object dSigma[][] .
In particular, given these expressions the translator understands that the free indices [A]

and [B] label independent components of the overall matrix equation, and that the repeated
index [C] is to be summed over. The transport equation for the three-point function can be
represented similarly.

During translation these compact expressions must be unpacked into valid C++ that
performs the required calculations. There are N2 independent equations for the two-point
function, each of which entails a sum over one dummy index. Therefore the overall size for
this set of equations scales as O(N3). For the three-point function there are N3 independent
equations, but now each equation entails a sum over two dummy indices. Therefore the
overall size scales as O(N5). After unpacking we incur two types of cost. One is execution
time: no matter how they are expressed, the amount of work involved in solving these
evolution equations will scale roughly like O(N3) or O(N5), respectively. The other is space:
if unpacked in the most literal fashion, by simply writing out each component of Eq. (3.5)
sequentially, the size of the generated C++ code will also scale roughly like O(N3) or O(N5).

We cannot alter the power law in these scalings, but it is possible to make some limited
tradeoffs between the space cost and execution time:

– 28 –

• To obtain the fastest execution time, we can opt for the space-hungry strategy of writing
out each equation explicitly. CppTransport describes the indices being unpacked as an
index set, and refers to the process of writing them out sequentially as unrolling.6

Unrolling allows the C++ compiler to generate simple linear code that performs all the
required computations without branches or jumps, which would be required by loops
and may incur performance penalties. Also, because this strategy is completely explicit
it maximizes the compiler’s opportunities to optimize away redundant calculations.
The downside is that generated C++ files become very large even for moderate N . If we
require the three-point function then the dominant scaling comes from terms of the form
uαδεΣδβΣεγ . We have been estimating the number of terms in each sum as ∼ N , but it
is usually 2N because we must account both for the fields and their canonical momenta.
Therefore, assuming the dominant terms generate ∼ (2N)5 lines and supposing each
of these lines to average ∼ 50 characters, it follows that even N = 20 will generate
an implementation file of size ∼ 10 Gb. Such large files require a prohibitively large
amount of time and memory to compile. This places a practical upper limit on the
maximum size of a C++ file. On typical hardware this limit is already much smaller
than 1 Gb, making unrolling an unacceptable strategy except when N is rather small.

• Alternatively, the indices can be unpacked into a C++ for -loop. For example, the
translator might unpack the line dSigma[$A][$B] $= $U2_TENSOR[AC] * Sigma[$C][$B]; into

1 for(int A = 0; A < 2*N; ++A)
2 {
3 for(int B = 0; B < 2*N; ++B)
4 {
5 dSigma[A][B] = 0.0;
6 for(int C = 0; C < 2*N; ++C)
7 {
8 dSigma[A][B] += U2_TENSOR[A][C] * Sigma[C][B];
9 }

10 }
11 }

assuming that the array-like object U2_TENSOR[][] has been initialized with the com-
ponents of the tensor uαβ.
The loop-based representation is considerably more economical with space, because
its storage requirements do not grow with N .7 For this reason it is the only viable
approach for general N . The disadvantage is that we may forfeit opportunities for
optimization.8 For example, it sometimes happens that certain components of uαβ
or uαβγ are zero, and therefore the corresponding terms in the summation can be
omitted. When all expressions are written explicitly it is easy for the compiler to make

6The name is borrowed from a very similar loop optimization technique.
7To be explicit, it is the storage requirements to express the algorithm itself that are under discussion here.

The storage requirements for the state variables Sigma and dSigma always scale with N .
8Another disadvantage might come from the extra overhead associated with a loop counter and branch

penalties. But the C++ compiler might decide it it worthwhile to optimize the loop by unrolling it anyway,
in which case these disadvantages disappear. The disadvantage of masking zeros in in uαβ or uαβγ generally
cannot be fixed, however, even by a good optimizing compiler.

– 29 –

https://en.wikipedia.org/wiki/Loop_unrolling

setting core implementation CPU/configuration CPU total

--fast 135 kb 649 kb 0.993 s 47 m 17 s

--unroll-policy 1000 145 kb 211 kb 1.60 s 1 h 16 m 20 s

--unroll-policy 0 118 kb 89 kb 2.41 s 1 h 54 m 16 s

Table 2. Comparison of generated code size and execution time for 2856 bispectrum configurations
and an axion+quadratic model V = m2φ2/2+Λ4(1−cos 2πf−1χ); see Elliston et al. for a description
of the parameters and initial conditions [52]. We use the first set of parameters described in §5.1.2
of that reference. Timings are averages of 3 runs using OS X 10.11.4 and the Apple Clang compiler
7.3.0 on an Ivy Bridge i7-3770 machine. Each CppTransport job used 7 worker processes.

such optimizations. In the loop-based approach the compiler will normally be unable
to skip particular iterations of the loop body, and therefore these terms will not be
optimized away. The effect of these irrelevant operations can accumulate to a sizeable
performance difference over many integrations; see Table 2.

CppTransport attempts to find a compromise between these strategies. It will elect to
unroll index sets where the result will not be too large, with the distinction being set by
the value assigned to --unroll-policy. The default is 1000. Also, the elements of a tensor
such as uαβ are stored in temporary arrays (such as U2_TENSOR[][] in the above example)
because this is required for large index sets that ‘roll up’ into for -loops. Depending on the
compiler settings, this use of temporary arrays may inhibit some optimization of redundant
arithmetic.

The default unroll policy of 1000 is intended to give reasonable performance for models
with modest N , while simultaneously allowing models with large N to be handled. However,
we will see shortly that if N is not too large then global unrolling should be preferred. In
cases where it is known that the resulting C++ files will be acceptable to the compiler it
is possible to force global unrolling using the command-line switch --fast. This instructs
CppTransport to disregard the unroll policy limit and unroll all index sets. In addition, the
translator will no longer store the elements of tensors such as uαβ in a temporary array,
but instead cache them in const local variables. This gives the compiler the best chance of
removing unnecessary operations.

Table 2 shows a comparison of execution times for a particular N = 2 model with --fast
and unrolling limits of 1000 and 0 (forcing roll-up of all index sets). It shows a significant
advantage for --fast. This is a fairly general phenomenon; testing has shown that models
with N = 2 or N = 3 can often be unrolled effectively, yielding a non-negligible performance
improvement.

Common sub-expression elimination.—To keep its generated files as small as possible, Cpp-
Transport uses a second strategy called common sub-expression elimination. The automated
symbolic calculations performed internally by the translator are not automatically simplified,
and therefore the results resemble those from Mathematica before application of Simplify[]
or FullSimplify[]. These expressions often share common building blocks, such as the Hub-
ble rate H or the slow-roll parameter ε, which CppTransport tries to factor out intelligently.

– 30 –

Even when this has been done there may be further common pieces that can be extracted.
For example, after common sub-expression elimination, CppTransport would translate the
expression (A+B + 1)2/(A+B) into C++ of the form

1 const auto temp_1 = A + B;
2 const auto temp_2 = temp_1 + 1.0;
3 const auto temp_3 = temp_2 * temp_2;
4 const auto temp_4 = temp_3 / temp_1;

The local variable temp_4 would be used to represent the value of the expression.
This procedure is generally effective at minimizing the size of the generated code, and

therefore making the compiler’s job as straightforward as possible. However, the task of
finding common sub-expressions is expensive in the same way that Mathematica’s Simplify[]
or FullSimplify[] operations can be expensive. For more complex models it is usually the
most time-consuming step in the translation process, by a considerable margin. If desired,
CppTransport provides the command-line switch --no-cse to disable common sub-expression
elimination. This will dramatically speed up translation, but leaves the compiler with a
harder job because the same task has effectively been transferred to it.

Normally it is advisable to leave common sub-expression elimination enabled unless
there is a particular difficulty with performing it for a model.

4 Building and running an integration task

4.1 Coupling a model to the runtime system

Once customized core and header files have been produced, they can be used to perform cal-
culations. This involves connecting the translated files to other components of CppTransport,
especially those that are needed to carry out integration tasks. To do so we create a short
C++ program; for the double-quadratic example this could be called dquad.cpp. A simple
implementation takes the form:

1 // include implementation header generated by translator
2 #include "dquad_mpi.h"
3
4 int main(int argc, char* argv[])
5 {
6 // set up a task_manager instance to control this process
7 transport::task_manager<> mgr(argc, argv);
8
9 // set up an instance of the double quadratic model

10 std::shared_ptr< transport::dquad_mpi<> > model = mgr.create_model< transport::dquad_mpi<>
>();↪→

11
12 // hand off control to the task manager
13 mgr.process();
14
15 return(EXIT_SUCCESS);
16 }

This code involves the following steps:

1. First, the implementation header file produced in §2.4 is included using #include "dquad_mpi.h" .
Nothing else is needed to use the CppTransport runtime system; any necessary library
files are automatically included by the implementation header.

– 31 –

2. The only function provided is main() . It has three reponsibilities:

(a) Create a task manager instance. The task manager is a class provided by the
runtime system. It is responsible for coordinating what happens during execution.
For example: if we are running a parallel computation under MPI, each copy of the
executable may be either the master process or a worker. It is the responsibility
of the task manager to decide which is correct and behave appropriately.
If it is the master process, the task manager builds a list of work using options
specified in the configuration file or on the command line. It scatters these tasks
to the workers and coordinates their activity. On the other hand, if it is a worker,
the task manager waits for tasks to be issued by the master process and arranges
for them to be carried out.
The task manager class is called task_manager<> . It shares a common feature with
most other CppTransport components: it lives inside the namespace transport .
This prevents any conflict between symbols defined in user code and those used
internally by CppTransport. As for objects defined in any namespace, each Cpp-
Transport component should be prefixed by the namespace name and two colons,
as in transport::task_manager .9 The meaning of the brackets <> is explained in
the Advanced usage panel on p.33.
The task_manager<> constructor requires the arguments argc and argv provided
to main() . It will process these internally. The options understood by the task
manager are described in XXX.

(b) Create an instance of the implementation class. Second, we need an instance of
the implementation class generated by the translator. As explained in §3.2, this
class will be called tag_mpi if we use the canonical_mpi template. For us this will
be dquad_mpi . Like task_manager<> its name should be followed by angle brackets
<> .
To create the instance we use the task_manager<> method create_model() . This is
a templated method that requires the name of the instance class to be provided
between angle brackets; here, this is < transport::dquad_mpi<> > . The method
itself takes no arguments. It returns a shared smart pointer to the implementation
class instance. The use of create_model() is necessary, rather than constructing
an instance directly, in order that the CppTransport runtime system is aware of
the model and can find it when needed for computations.
Notice that there is no need to explicitly deallocate the pointer model . It is
deallocated automatically when the smart pointer that manages it is destroyed.

(c) Pass control to the task manager. It is possible to create instances of as many
implementation classes as are required. Each one should be constructed using
create_model() . When all implementation classes have been instantiated, control
should be passed to the task manager via its process() method.

9It is possible pull all symbols defined within the transport namespace into the global namespace with
the using directive, as in for example using namespace transport; . However, this practice is not recom-
mended because it risks conflicts between user-space symbols and those belonging to CppTransport itself.

– 32 –

http://en.cppreference.com/w/cpp/memory/shared_ptr

When running as the master, process() will distribute tasks to the workers. When
running as a worker it will await instructions from the master.

3. Finally, the process() method returns when all work has been exhausted. At this point
the process should terminate, so we return EXIT_SUCCESS .

Most CppTransport executables will contain a main() function of almost exactly this form.
The general case differs only by providing extra functions to generate tasks and derived
products, which will be explained in §4.3 and §7 below.

Advanced usage: Custom integration data types

Like most CppTransport components, task_manager<> is a template class. This is in-
dicated by the angle brackets <> following the object name. A template is a class or
other object that can be customized by providing a list of data types such as double

(or other parameters) between the brackets. For CppTransport, the customization takes
place in the integration engine, that is capable of integrating the transport equations
using any suitable data type. If no type name is given, as in the example above, the
integrator will default to double .
For almost all users the default choice is suitable, so there is no need to specify a type
explicitly. As an alternative, however, is it possible use the single-precision type float

if the intention is to trade off some accuracy against speed.a For greater precision it
is possible to use long double , or even a customized type from a library such as the
GNU Multiple Precision Arithmetic Library GMP or the Class Library for Numbers
CLN.b Using types with higher precision than double will increase the computation
time (eg. switching to long double very roughly doubles the time required), whereas
float may require less stringent tolerances to prevent to integrator’s stepsize becoming
very small. Attempting to use types from GMP or CLN will likely require some
template specializations to be provided. If so, this will manifest itself as missing
symbols reported during the link step.
It is possible to use the same core and implementation classes with different data types,
just by changing the type name provided in the template specialization brackets <...> .
However, the current version of CppTransport does not support mixing different types
within the same executable because the task manager needs to know which data type
is in use, and therefore also requires a template specialization such as <double> .

aAlthough it is often true that float s are half as long as double s, this is a platform dependent
statement. On some platforms there may be no difference between float and double .

bThere are some caveats. Although CppTransport can integrate using any required type, for stor-
age it relies on the SQLite engine which expects real numbers to be stored as 64-bit IEEE floating-
point numbers. On most platforms this corresponds to a double , and in fact the SQLite API
is written under this assumption. (For details, see the SQLite documentation. There is only a
sqlite3_bind_double() , but no comparable method for the other floating-point types.) This means
that, no matter what precision was used during integration, CppTransport always stores the results
as double precision. Using higher precision for intermediate values may still be useful, however, to
reduce roundoff error in the integrator.

– 33 –

https://gmplib.org
http://www.ginac.de/CLN
https://www.sqlite.org/c3ref/bind_blob.html

4.2 Translate and build using a CMake script

It is possible to build CppTransport executables by manually invoking the compiler. However,
this is not always convenient because it is necessary to locate the Boost and MPI libraries on
which the runtime system depends. The recommended way to build is using a CMake build
script. When CppTransport is installed, it provides some CMake tools that are intended to
simplify this process.

The CMake build script should be called CMakeLists.txt and placed in the same di-
rectory as the main C++ file—for the example of double-quadratic inflation this is the file
dquad.mpi described above. A suitable script is:

1 CMAKE_MINIMUM_REQUIRED(VERSION 3.0)
2 PROJECT(dquad)
3
4 SET(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "~/.cpptransport-packages/share/cmake/")
5
6 SET(CMAKE_CXX_FLAGS_RELEASE "-Ofast -DNDEBUG")
7 SET(CMAKE_C_FLAGS_RELEASE "-Ofast -DNDEBUG")
8
9 FIND_PACKAGE(CppTransport REQUIRED)

10
11 INCLUDE_DIRECTORIES(${CPPTRANSPORT_INCLUDE_DIRS} ${CMAKE_CURRENT_BINARY_DIR})
12
13 ADD_CUSTOM_COMMAND(
14 OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/dquad_core.h ${CMAKE_CURRENT_BINARY_DIR}/dquad_mpi.h
15 COMMAND CppTransport --verbose --fast ${CMAKE_CURRENT_SOURCE_DIR}/dquad.model
16 DEPENDS dquad.model
17)
18
19 SET(HEADERS ${CMAKE_CURRENT_BINARY_DIR}/dquad_core.h ${CMAKE_CURRENT_BINARY_DIR}/dquad_mpi.h)
20 ADD_CUSTOM_TARGET(Generator DEPENDS ${HEADERS})
21
22 ADD_EXECUTABLE(dquad dquad.cpp)
23 ADD_DEPENDENCIES(dquad Generator)
24 TARGET_LINK_LIBRARIES(dquad ${CPPTRANSPORT_LIBRARIES})
25 TARGET_COMPILE_OPTIONS(dquad PRIVATE -std=c++14 -mavx)

The steps involved are:

1. The lines
1 CMAKE_MINIMUM_REQUIRED(VERSION 3.0)
2 PROJECT(dquad)

are required by CMake. They specify the minimum version of the CMake tool that is
required (here version 3.0) and the name of the project being built.

2. The line
1 SET(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "~/.cpptransport-packages/share/cmake/")

should be adjusted to point to the share/cmake directory installed under your instal-
lation prefix (see Fig. 2). This will allow CMake to locate the build tools installed by
CppTransport.

3. The lines

– 34 –

1 SET(CMAKE_CXX_FLAGS_RELEASE "-Ofast -DNDEBUG")
2 SET(CMAKE_C_FLAGS_RELEASE "-Ofast -DNDEBUG")

set the compiler flags to be used when building in ‘Release’ mode. Generally it
is desirable to optimize CppTransport to at least -O2 or similar, because the tem-
plated Boost.odeint steppers require optimization to produce acceptable results. Also,
a high optimization setting will encourage the compiler to optimize the automatically-
generated C++ produced by the translator. Clang and the Intel compiler produce good
results using their -Ofast setting, and gcc produces good results using -O3. (For the
Intel compiler, -fast is also a possibility.) The switch -DNDEBUG disables debugging
code associated with the assert() macro.

4. The next step is to detect the libraries and include files needed by CppTransport. This
is managed in a single line:

1 FIND_PACKAGE(CppTransport REQUIRED)

It was for this command to function correctly that we needed to adjust CMAKE_MODULE_PATH

above. Specifically, this will detect the SQLite, Boost and MPI libraries required by
CppTransport. It will also detect the libraries installed by CppTransport itself.
To make the header files required by these libraries available we use the line

1 INCLUDE_DIRECTORIES(${CPPTRANSPORT_INCLUDE_DIRS} ${CMAKE_CURRENT_BINARY_DIR})

The variable CPPTRANSPORT_INCLUDE_DIRS contains the include paths required by Cpp-
Transport and its dependencies. The variable CMAKE_CURRENT_BINARY_DIR adds the CMake
build directory to the include path, which is done to make the translated core and
implementation header files available (see below).

5. Next we must instruct CMake to build the final executable. This is done in two stages:
first, we arrange for the model description file dquad.model to be translated to the core
and implementation headers dquad_core.h and dquad_mpi.h; and second, we instruct
the compiler to process the main file dquad.cpp with all the previously-determined
include paths and library locations.

(a) CMake is instructed to invoke the CppTransport translator using an ADD_CUSTOM_COMMAND()

block,
1 ADD_CUSTOM_COMMAND(
2 OUTPUT
3 ${CMAKE_CURRENT_BINARY_DIR}/dquad_core.h ${CMAKE_CURRENT_BINARY_DIR}/dquad_mpi.h
4 COMMAND CppTransport --verbose --fast ${CMAKE_CURRENT_SOURCE_DIR}/dquad.model
5 DEPENDS dquad.model
6)

The OUTPUT line advises CMake that this block gives a recipe for constructing the
files dquad_core.h and dquad_mpi.h. The DEPENDS line advertises that this recipe
depends on the file dquad.model, and therefore should be re-run if it is changed.
Finally, the COMMAND line gives the command to execute; it invokes the CppTrans-
port translator with the options --verbose and --fast. The CMake variables

– 35 –

http://en.cppreference.com/w/cpp/error/assert
http://en.cppreference.com/w/cpp/error/assert

CMAKE_CURRENT_SOURCE_DIR and CMAKE_CURRENT_BINARY_DIR refer to the source and build
directories managed by CMake.

(b) At this stage CMake knows how to generate the core and implementation header
files, but it does not know that it should do so. To instruct it that these files are
required, we add a target (a deliverable set of objects that CMake can build):

1 SET(HEADERS
2 ${CMAKE_CURRENT_BINARY_DIR}/dquad_core.h ${CMAKE_CURRENT_BINARY_DIR}/dquad_mpi.h
3)
4 ADD_CUSTOM_TARGET(Generator DEPENDS ${HEADERS})

This tells CMake that a target called Generator depends on the core and imple-
mentation header files. If we try to build this target, CMake will invoke the recipe
above in order to generate these files.

(c) Finally, we set up a second target dquad that consists of the finished executable
and make this depend on the Generator target declared above. CMake then knows
that the files associated with Generator must be built before dquad.

1 ADD_EXECUTABLE(dquad dquad.cpp)
2 ADD_DEPENDENCIES(dquad Generator)
3 TARGET_LINK_LIBRARIES(dquad ${CPPTRANSPORT_LIBRARIES})
4 TARGET_COMPILE_OPTIONS(dquad PRIVATE -std=c++14 -mavx)

The TARGET_COMPILE_OPTIONS() command adds extra compiler flags to the dquad tar-
get. The flag -std=c++14 is required, because it enables certain C++14 features that
are used by the CppTransport platform. Other code generation or optimization
options can be specified here; an example is the switch -mavx which informs the
compiler that it is allowed to generate code using the AVX instruction set ex-
tensions available on Intel since Sandy Bridge and on AMD since late 2011/early
2012. Where these instructions are available they can give a useful performance
boost.
Depending on your processor, even more recent instruction set extensions may
be available such as AVX-2. These extensions have been available on Intel since
Haswell, and on AMD they are currently implemented for the Carrizo platform.
If using the Intel compiler to target Intel processors, the switch -xHost may be
used to indicate that code generation should use all features of the machine being
used to build. It is implied by the -fast optimization, which is more aggressive
than -Ofast. Note, however, that -xHost should be used with caution if you
plan to run executables in a heterogeneous cluster environment because different
machines may support different instruction set enhancements. If the executable
requires instructions that are not available on the host machine it will terminate
with an error message.

The CMake script can be adapted for any CppTransport executable.

Build using CMake.—The build process is the same as for CppTransport itself. First, starting
from the directory containing the CMakeLists.txt script, create a build directory and move
into it:

– 36 –

1 mkdir build
2 cd build

Next, configure CMake to build using the ‘Release’ configuration.
1 cmake .. -DCMAKE_BUILD_TYPE=Release

Because it is typically unnecessary to install individual executables the CMAKE_INSTALL_PREFIX

option can be omitted. However, if you wish to later install your executables to a standard
location such as ~/bin then you can specify a suitable prefix here. Also, if you wish to
build with a compiler other than the default then you should specify CMAKE_C_COMPILER and
CMAKE_CXX_COMPILER as in §2.4.

When configuration is complete, the build is initiated by issuing the make command. If
you then wish to install to a different location, use make install . Once the executable has
built you may wish to verify that it function correctly by trying the following invocations:

1 ./dquad --version
2 ./dquad --models
3 ./dquad --help

4.3 Adding an integration task

To make the executable dquad useful we must add tasks to generate n-point functions, and
also tasks to convert these raw n-point functions into observables. This is done by using the
task manager’s add_generator() method to inform it that the executable includes specifica-
tions for some number of tasks. The add_generator() method takes one argument, which
should be a callable object accepting a reference to a transport::repository<> object as its
single argument. CppTransport stores all information about initial conditions, parameter
choices, tasks, derived products and any generated content in disk-based databases called
repositories. The repository<> class manages these databases and offers related services to
other CppTransport components.

The first step is always to build some number of integration tasks, because all other
tasks depend on the n-point functions that they compute. In this section we illustrate the
steps required to build, store and execute a collection of integration tasks.

If you are not familiar with constructing callable objects then a simple option is to use
the C++11 lambda feature. This is a shorthand way to notate functions. First, declare a
function write_tasks() that accepts two arguments: a repository<> and a model pointer:

1 void write_tasks(transport::repository<>& repo, transport::dquad_mpi<>* m);

This function should be registered using the add_generator() method, by inserting the lines

1 // register task writer
2 mgr.add_generator([=](transport::repository<>& repo) -> void { write_tasks(repo, model.get());

});↪→

immediately prior to the call to mgr.process() .

– 37 –

Advanced usage: Callable objects

The add_generator() method accepts any callable, such as a std::function<> object.
It is not necessary to lambdas if a different solution is preferable. For example, it is
also possible supply an instance of any class that provides a call operator operator() .

In this implementation, the argument of add_generator() is the function

[=](transport::repository<>& repo) -> void { write_tasks(repo, model.get()); }

This is a lambda expression. It represents an object that behaves as a callable function,
taking a single repository<> as an argument. The function body is the code enclosed by
braces { ... } . It calls the function write_tasks() , passing on the repository<> object
given as its own argument and using the raw model pointer obtained from model.get() . For
the meaning of the prefix [=] , see here.

Building a task.—The final step is to provide a definition for write_tasks() . This should
construct the integration tasks we want, and store them in the repository<> object it is
passed.

Integration tasks package together all the information needed to perform a computation
of the 2- or 3-point functions. This includes:

• details of the model to be used, identified through the pointer to the model instance
passed to write_tasks()

• a choice for any parameters used in the Lagrangian, and a value for the Planck mass
MP

• a choice for the initial values of the background fields (and optionally their derivatives)

• fixed start and end times for the integration, and a mesh of sample points between
these times where samples will be recorded

• a mesh of wavenumber configurations (values of the wavenumber k for the 2-point
function, and configurations {k1,k2,k3} for the 3-point function) where the 2- and
3-point functions should be sampled

In addition, CppTransport provides various options for customizing an integration—for ex-
ample, by changing the way initial conditions are handled. These options will be described
in §5 and are recorded as part of the integration task.

Specifying parameters.—We work with the double-quadratic model as an example. Cpp-
Transport works in units where c = ~ = 1 but allows us to measure the Planck scale MP
using whatever units we find convenient. Typically, however, ‘natural’ units with MP = 1
give good results and in what follows we will make this choice.

The double-quadratic potential (3.1) requires us to specify the mass scales Mφ and
Mχ. We will choose Mφ = 9 × 10−5MP and Mχ = 10−5MP. A parameter package consists
of a model, a choice for the Planck mass, and choices for each of the parameters in the
Lagrangian. CppTransport collects this information using a transport::parameters<> object.

– 38 –

http://en.cppreference.com/w/cpp/language/lambda

Its constructor takes three arguments: the value of the Planck mass; a list of values for the
model parameters in the same order they were declared in the model description file; and
a pointer to the model instance. With our choices we can construct a suitable parameter
package using:

1 void write_task::operator()(transport::repository<>& repo)
2 {
3 const double Mp = 1.0;
4 const double Mphi = 9E-5 * Mp;
5 const double Mchi = 1E-5 * Mp;
6
7 transport::parameters<> params(Mp, {Mphi, Mchi}, model);
8 }

To aid readability it can be helpful to use named temporary variables that give meaning to
numbers that are quoted directly. We could have achieved the same effect by writing the
single-line construction

1 transport::parameters<> params(1.0, {9E-5, 1E-5}, model);

but it would then be more difficult to identify the meaning of the numbers.
If it is more convenient, the parameter list can be specified using any suitable iterable

container, such as std::vector<double> or std::list<double> rather than quoting it directly
as the initialization list {Mphi, Mchi} . If an incorrect number of parameters are passed then
CppTransport will throw a std::out_of_range exception.

Specifying initial conditions.—Next we combine the parameter package with a choice of
initial conditions to make an initial conditions package. This information is stored in a
transport::initial_conditions<> object. Its constructor accepts three mandatory arguments:
a textual name, which will be used later to refer to this initial conditions package; a parameter
package, which specifies the model and parameters to be used; and a list of initial values for
the fields. In an N -field model this list can contain either exactly N or exactly 2N values:

• if N values are given, CppTransport will interpret these as the initial conditions for
the background fields in the order they were declared in the model description. It will
infer initial conditions for the field derivatives using the slow-roll equation 3Hφ̇α = ∂αV ,
where ∂α denotes the field derivative ∂/∂φα.

• if 2N values are given, these are interpreted as N initial conditions for the background
fields φα (in the same order they were declared) followed by N initial conditions for
their derivatives dφα/dN (in the same order as the fields). Here, dN = H dt is a
derivative with respect to e-folding number.

As for parameters , the value list can be specified using any suitable container or by quoting
it directly as an initialization list. If a number of values other than N or 2N is given then
CppTransport will raise a std::out_of_range exception.

In addition, the initial conditions package should include information about the time
during inflation when these initial field values are intended to apply. This information can
be specified in two ways:

• as an initial time Ninit (specified in e-folds) together with the number of e-folds Npre
from Ninit to the horizon-crossing time of a distinguished scale k∗ (at time N∗) that is
used as a reference.

– 39 –

• as an initial time N0 together with the horizon-crossing N∗ associated with k∗, and the
desired number of e-folds Npre from Ninit to N∗. This amounts to moving a set of initial
conditions specified at N0 to new initial conditions specified at N∗ −Npre.
This version can be used to ‘settle’ a set of field-only initial conditions onto the true
dynamical attractor. If the slow-roll approximation holds to reasonable accuracy near
the initial time then CppTransport’s estimate of the field derivatives will normally be
quite accurate. Nevertheless, there will be a period of adjustment while the numerical
solution relaxes. This can lead to slight jitter if any n-point functions have initial
conditions during this phase.
If adaptive initial conditions are in use (this is normally the recommended configuration;
see the discussion on p.68 in §5) then a customized initial condition will be computed
for each n-point function. Provided Ninit is sufficiently early, this customization will
automatically allow the initial conditions to relax onto the dynamical attractor. Manual
settling is normally required only if Ninit if very close to the initial time for any n-point
function, or if adaptive initial conditions are not being used.

For the purposes of illustration we will set initial conditions for the double quadratic model
at φ = 10MP and χ = 12.9MP and allow CppTransport to infer values for the field derivatives.
We take the initial time to be N = 0 (this is just a convention; any other value of N could be
used) and set N∗ to occur at N = 12. To build an initial conditions package corresponding
to these choices we can use:

1 const double phi_init = 10.0 * Mp;
2 const double chi_init = 12.9 * Mp;
3
4 const double N_init = 0.0;
5 const double N_pre = 12.0;
6
7 transport::initial_conditions<> ics("dquad", params, {phi_init, chi_init}, N_init, N_pre);

Remember that when specified in this form, N∗ = Ninit + Npre. If we had used the second
form, perhaps to arrange for some manual settling, the last two parameters N_init and N_pre
would have been replaced by the three parameters N_0 , N_star and N_pre , corresponding
to N0, N∗ and Npre.

Selecting a mesh of time sample points.—The remaining task is to set up a series of sample
points, both for time and wavenumber configuration. To assist in doing so, CppTransport
provides a mechanism to construct arbitrary meshes that are unions of ranges built us-
ing linear or logarithmic spacing. The building blocks of these meshes are objects of type
transport::basic_range<> . The constructor for this object has the form

transport::basic_range<>(lo, hi, N, spacing);

It constructs a range of N +1 sample points between lo and hi (inclusive) that divide the
interval [lo , hi] into N parts. The parameter spacing should be one of:

• transport::spacing::linear : the sample points are spaced linearly

• transport::spacing::log_bottom : the sample points are logarithmically spaced from the
bottom of the interval

– 40 –

• transport::spacing::log_top : the sample points are logarithmically spaced from the top
of the interval

If N = 0 the range consists of a single value equal to lo .
Any number of basic_range<> ranges can be composed to produce a composite range.

This produces an object of type aggregate_range<> . If A , B , C are ranges (which may
themselves be composite) then the following are equivalent:

1 transport::aggregate_range<> M = A + B + C;
2
3 auto M = A + B + C;
4
5 transport::aggregate_range<> M(A, B);
6 M += C;
7
8 transport::aggregate_range<> M(A);
9 M.add_subrange(B);

10 M.add_subrange(C);

It is also possible to construct an empty aggregate_range<> by passing no arguments to its
constructor. Often it assists readability to use the auto type specifier, which informs the
compiler that it should deduce an appropriate type for the given assignment.

The ability to construct arbitrary meshes makes it possible to sample certain regions
densely and others sparsely. For example, it is possible to sample densely in regions (either
of time or wavenumber configuration) that exhibit sharp features while sampling sparsely
elsewhere to keep the overall data volume manageable.

For time sampling, a sensible starting point is to sample linearly in N to get a sense
of how the correlation functions evolve. Later, the sample mesh can be refined if required.
A reasonable starting point might be 300 evenly spaced intervals between the minimum and
maximum values of N ,

1 const double N_end = 60.0;
2
3 transport::basic_range<> ts(N_init, N_end, 300, transport::spacing::linear);

Advanced usage: Arbitrary value types

The basic_range<> and aggregate_range<> objects are templated and (if needed) can
be used to construct a range of values for any numeric type. However, even if you
are using a type other than double in the integration engine, CppTransport always
measures times and wavenumbers using double .

Selecting a mesh of wavenumber samples.—Building a mesh of wavenumber samples is sim-
ilar. For the two-point function, a wavenumber configuration is fixed by the magnitude k.
A set of samples can therefore be specified by a range (possibly a composite, as above).
The wavenumber k = 1 is defined to exit the horizon at time N = N∗, as determined by
the initial conditions package. CppTransport refers to wavenumbers normalized in this way
as conventionally normalized. When producing derived products it is possible to measure
wavenumbers using a number of different normalizations, as will be explained in §4.4.2.

If H is nearly constant then a general wavenumber k will exit the horizon roughly when
N = N∗ + ln k. This is a good rule-of-thumb when attempting to build a range of k that

– 41 –

covers a given range of e-folds. (When constructing a mesh of ks it is often useful to make
use of the logarithmic spacing option in basic_range<> .) However, CppTransport does not
assume that H is constant; it calculates the horizon-exit time of each wavenumber exactly.

To begin, we will construct a range of wavenumbers that sample horizon exit times
between approximately N∗ + 3.0 and N∗ + 8.0:

1 const double kt_lo = std::exp(3.0);
2 const double kt_hi = std::exp(8.0);
3
4 transport::basic_range<> ks(kt_lo, kt_hi, 50, transport::spacing::log_bottom);

Building 2- and 3-point function integration tasks.—With all of these elements in place, we
can proceed to build integration tasks. Currently, CppTransport offers two options. While
the integration engine can compute the 3-point function for any model, this calculation is
expensive. If the 3-point function is not required (perhaps only a power-spectrum analysis
is contemplated) then it is much faster to omit it. A task that computes only the two-point
function is represented by an object of type transport::twopf_task<> :

1 transport::twopf_task<> tk2("dquad.twopf", ics, ts, ks);
2 tk2.set_adaptive_ics_efolds(5.0);
3 tk2.set_description("Compute time history of the 2-point function from k ~ e^3 to k ~ e^9");

Its constructor requires a name, an initial conditions package, a range representing the time
sample points, and a range representing the wavenumber samples. Setting a description
is optional, but provides a convenient way to document choices including the time- and
wavenumber-sampling strategy. The meaning of the set_adaptive_ics_efolds() method will
be explained in §5.1 below (see p.68).

Alternatively, if we wish to compute the 3-point function, a suitable task can be built
using

1 transport::threepf_cubic_task<> tk3("dquad.threepf", ics, ts, ks);
2 tk3.set_adaptive_ics_efolds(5.0);
3 tk3.set_description("Compute time history of the 3-point function on a cubic lattice from k ~ e^3 to k ~ e^9")

This will sample the three-point function on a cubic lattice (k1, k2, k3) built from the Carte-
sian product ks × ks × ks , after filtering out configurations that do not correspond to
a physical triangle. Note that this is only one way to construct a 3-point function task.
There are other ways to specify the wavenumber configurations to be sampled, including use
of Fergusson–Shellard (kt, α, β) parameters. It is also possible to adjust the default poli-
cies that determine which configurations are regarded as physical triangles and whether all
configurations produced by the Cartesian product should be retained for integration. These
features (and others) are described in §5.3.

To commit these tasks to the repository we use the commit() method:
1 repo.commit(tk2);
2 repo.commit(tk3);

4.4 Running tasks

It is now possible to build the executable, enabling us to experiment with creating repositories
and running integration tasks. The source code, as described above, is available from the

– 42 –

��������������������

���������������

����������

������

������

������

����������������

�����

��������

��������

����������������

��������������������������������

�������������

�������������������������

�����������

�����������

Figure 3. Disk layout of a repository. The node labelled Repository directory is the root directory
whose name is passed to each CppTransport executable.

website http://transportmethod.com as dquad_A.cpp. If the CMake build directory was
previously configured correctly then there should be no need to reconfigure. To build, it is
sufficient to execute make .

4.4.1 Running executables under MPI and creating a repository
The dquad executable can be invoked like any compiled object, by passing its name to the
shell. Doing so without other arguments will result in CppTransport printing the error message
‘Nothing to do: no repository specified’.

Repositories.—In order to carry out practical work it is necessary to specify a repository,
using the command line switch --repo or its abbreviation -r. A repository is a disk-based
database managed by CppTransport, distributed over a files in a predefined directory struc-
ture. The specified repository may already exist, but if not a suitable directory layout will be
created; see Fig. 3. Once created, repositories are relocatable and can be moved to different

– 43 –

http://transportmethod.com

filing-system locations after creation, or even to a different machine. The repository directory
is the name passed as the argument of --repo. This directory contains up to four items:

• database.sqlite. The is a SQLite database that contains summary information de-
scribing the relationship between all items in the database—initial conditions packages,
tasks, derived products and generated content. The database does not contain full in-
formation about these objects; this information is stored as JSON-format documents
elsewhere in the repository, in order that the information they contain is not hidden
should it need to be recovered (or processed electronically) without CppTransport.
In addition, database.sqlite stores information about jobs that are currently running
on the repository. This assists in automatically recovering data should there be a crash.

• repository. This is a directory containing the JSON documents that describe each
repository object in detail.

• output. Output generated by tasks is placed in this folder. For a task named TaskName,
CppTransport will generated a subdirectory also called TaskName. All content generated
by TaskName is placed in timestamped folders within this subdirectory.

• failed. If an error is encountered while generating output from a task, the log files
and other content are placed within this folder for inspection. The organization is the
same as for output.

The folders output and failed are created only when needed. A freshly-created repository
will contain only database.sqlite and repository.

The repository folder contains further subfolders. As has been explained, these house
the JSON documents for each repository record.10

• output. Records describing each group of content generated by a task are stored in
this folder in the format ContentName.json.

• packages. Contains records describing each initial conditions package. A package
named PackageName is stored as PackageName.json.

• products. Contains records describing each derived product. A product name Pro-
ductName is stored as ProductName.json.

• tasks. Stores records describing each task TaskName as TaskName.json. For integra-
tion tasks, this JSON document is accompanied by a SQLite database with filename
TaskName.kconfig-db.sqlite storing the list of 2- and 3-point wavenumber configura-
tions to be sampled, together with pre-computed information such as the corresponding
time of horizon exit.

Repositories collect groups of related data products, ensuring that their provenance is prop-
erly documented and that individual products do not become orphaned. For example, plots

10If necessary these can be edited by hand, although this practice is not recommended because it loses most
of the advantages of a managed repository.

– 44 –

http://www.json.org

do not become separated from the datasets that were used to produce them, and computa-
tions of observables do not become separated from the raw n-point functions and inflationary
initial conditions on which they depend.

At the same time, repositories are intended to be a lightweight concept. CppTransport
allows repositories to be created at will, and does not impose limitations on their use. At
one extreme, it would be possible to write all integration tasks, and all generated content,
into the same repository. This is probably not a good choice, partly because reporting on the
repository (see §4.7.1) will take a long time as the repository becomes large. At the other
extreme, every CppTransport job could create a new repository. This strategy can work well
in practice—especially if used in conjunction with the facility to attach notes to repository
records, which can be used to document an evolving series of integrations.

Launching CppTransport using MPI.—If using a CppTransport executable to create or in-
terrogate a repository, it can be launched as described above in the same way as any other
executable. But to execute a task, CppTransport expects to be run as a group of related
processes communicating within a managed MPI environment. To carry out a task requires
at least two processes, but the task manager will make use of as many as are available.

To launch a CppTransport executable under MPI, use the following command:
1 mpiexec -n 4 dquad --verbose --repo test-repo --create

Replace the argument -n 4 to mpiexec by the number of processes you wish to launch;
for running tasks it must be > 2. It is seldom worth launching more processes than there
are physical cores to run them on, except for some products that support two threads per
core. Intel calls this technology hyperthreading and it is available on certain i7 and Xeon
processors. Such processors generally identify themselves to the operating system with two
times their physical core count. Therefore, normally, it is safe to use whatever number of
cores is reported by your machine. In OS X, check Activity Monitor. In Linux the Gnome
System Monitor or equivalent performs the same job.

In a cluster environment the argument supplied to -n should match the number of cores
you request. For example, an Open Grid Scheduler-like job submission script requesting 36
cores managed under OpenMPI might include the lines

1 #$ -pe openmpi 36
2 mpiexec -n 36 ...

Warning

If you are using CppTransport on a network filing system such as NFS or Lustre (which
is often the case when running on a cluster), you should add an extra command-line
switch --network-mode to the CppTransport executable.
In order to maximize performance, CppTransport enables ‘write-ahead logging’ mode
in the underlying SQLite database manager. This gives a significant performance
improvement but is not compatible with network filing systems and must be disabled
for reliable operation.

– 45 –

4.4.2 Examining the repository wavenumber configuration databases

If the mpiexec command given above succeeded, CppTransport will have created a repository
called test-repo in your current working directory. The switch --create instructs it to write
any available tasks and derived products into the repository by calling each object registered
with add_generator() . For the example of double-quadratic inflation this is the function
write_tasks() described in §4.3. The --create option should be used only once, the first
time that task information needs to be written to the repository. If an attempt is made to
commit a second task with the same name as an existing task then CppTransport will report
an error.

If verbose output is enabled using the switch --verbose or -v then the constructors of
twopf_task<> and threepf_cubic_task<> will print brief summary information about the tasks
that have been constructed. The constructor for tk2 should print

1 dquad.twopf
2 2pf configs: 51 Smallest k: 20.1
3 Largest k: 2.98e+03 Earliest N_exit: N*+3.118
4 Latest N_exit: N*+8.408 Inflation ends: N=67.78

The information given is:

1. the number of 2-point function configurations, here equal to 51 because the basic_range<>

object ts was constructed with N = 50 and therefore contains N + 1 = 51 points

2. the smallest conventionally-normalized wavenumber sampled by the task, here k =
20.1 ≈ e3.

3. the largest conventionally-normalized wavenumber sampled by the task, here k = 2.9×
103 ≈ e8.

4. the earliest horizon exit time, relative to the distinguished timeN∗. This will correspond
to the smallest wavenumber, which is the largest physical scale. Here, that horizon exit
time is ≈ 3.118 e-folds after N∗. This is approximately what we expect from a mode
with k = e3, but shows already that the estimate Nexit ≈ N∗ + ln k is accurate only to
a few percent.

5. the latest horizon exit time, corresponding to the largest wavenumber or smallest phys-
ical scale. In this case, the error in the naïve estimate Nexit ≈ N∗ + ln k has grown to
∼ 5%. Generally these estimates will become worse as the horizon exit time becomes
farther from N∗.

6. the time when inflation ends, if CppTransport could detect it. By default, CppTransport
will search for 1000 e-folds from the initial time and attempt to find the point where
ε ≡ −Ḣ/H2 = 1. If it does not find such a point within the 1000 e-fold search window
then it will issue a warning, but this does not prevent successful calculation of the
n-point functions.

The constructor for tk3 prints similar information, with the addition of the number of
bispectrum configurations that will be sampled:

– 46 –

1 dquad.threepf
2 2pf configs: 51 3pf configs: 4017
3 Smallest k: 20.1 Largest k: 2.98e+03
4 Earliest N_exit: N*+3.118 Latest N_exit: N*+8.408
5 Inflation ends: N=67.78

For tasks that sample the 3-point function it is frequently useful to inspect the list of
wavenumber configurations that will be computed. There are two ways to do this. The
simplest, suitable for tasks that do not sample too many configurations, is to run an HTML
report on the repository. This writes details of the tasks into an easily-browsable HTML
document. The second option is slightly less simple but better suited to tasks that sample
a large number of configurations. The list of sample points is written into SQLite databases
held in the repository/tasks directory, and these can be inspected directly using a suitable
tool.

Option 1: examine configurations using an HTML report.—This option is generally preferred
if the task samples fewer than 5000 configurations. The HTML report generator does not
include a wavenumber listing for tasks with more than 5000 wavenumber configurations
because it makes the report too large: HTML documents are not the best way to examine
such a large database.

To produce a report for the repo-test repository that has just been created, execute
1 ./dquad --repo test-repo --html test-report

This will create a report in the directory test-report. In a desktop environment the report
can usually be viewed by opening the file test-report/index.html, for example by a double-
click. The report is divided into a number of tabs, most of which will be disabled at this
stage because the repository contains only integration tasks—there are no tasks of other
types, or any generated content. However, it should be possible to see details of the dquad
initial conditions package under the ‘Packages’ tab, and the dquad.twopf and dquad.threepf
tasks under the ‘Integration tasks’ tab. The report for each task will include the number
of 2- and 3-point wavenumber configurations that are to be sampled. Next to this number
is a link labelled ‘show’. Clicking this link will display an overlay listing the wavenumber
configurations as a table; see Fig. 4.

The drop-down menu in the top left can be used to adjust the number of configura-
tions displayed per page, and the position indicator in the bottom right can be used to move
through the available pages. Clicking the arrows in the table header will sort the table in
ascending or descending order on the corresponding column. The information displayed for
both configurations of the 2- and 3-point functions (‘2pf configurations’ and ‘3pf configura-
tions’) is:

• Serial. This is a unique serial number identifying the configuration.

• Wavenumber k. For configurations of the 2-point function this is the conventionally-
normalized magnitude k. For configurations of the 3-point function it is the conventionally-
normalized value of kt = k1 + k2 + k3, which is the perimeter of the triangle formed by
the momenta k1, k2, k3.

• Horizon-exit time texit. For 2pf configurations this is the time (measured in e-folds)
when kcom = aH. Here, kcom is a comoving wavenumber. Comoving wavenumbers are

– 47 –

Figure 4. Viewing the sampled 3-point function wavenumber configurations in an HTML report.

computed from conventionally-normalized wavenumbers by adjusting their normaliza-
tion so that the conventional wavenumber k = 1 satisfies kcom = a∗H∗ at time N∗.
For 3pf configurations there is no unique concept of horizon exit time because the
wavenumber associated with each side of the momentum triangle can exit at different
times. The time reported as texit is the average time in the sense kt = aH, where here
kt is comoving-normalized.
If CppTransport is unable to compute the horizon exit time for all configurations (pre-
sumably because for at least one configuration it occurs before the initial time) it will
issue an error:
dquad.twopf: extreme values of N did not bracket time of horizon exit; check whether range of N

contains horizon exit times for all configurations↪→

To fix this it is usually necessary to move the initial time earlier while keeping the
horizon exit time of the longest mode constant, or vice versa.

• Massless time tmassless. In order to apply suitable initial conditions, CppTransport com-
putes a massless time tmassless for each 2pf configuration. This is defined to be the time
when (k/a)2 = M2 where M2 is the largest eigenvalue of the mass matrix Mαβ, or the
time of horizon exit if it is earlier.

– 48 –

For 2pf configurations the quoted time is the massless time computed according to this
prescription. For 3pf configurations it is the earliest massless time associated with the
individual wavenumbers k1, k2, k3. This is used when determining where to set initial
conditions for a 3pf configuration.
If CppTransport is unable to compute the massless time for all configuration it will issue
an error similar to that for the horizon-exit time:
dquad.twopf: extreme values of N did not bracket massless point; check whether range of N

contains massless time for all configurations↪→

In addition, the table of 3pf configurations includes some extra columns:

• Shape parameters α, β. Sometimes it is useful to measure the shape of the momentum
triangle using the parameters α, β introduced by Fergusson & Shellard [53]. They are
defined by

α = 2(k1 − k2)
kt

β = 1− 2k3
kt
.

(4.1)

These values are reported for each configuration.

• Side lengths k1, k2, k3. The comoving side lengths are also reported.

Option 2: inspect the SQLite databases directly.—If the table of sample configurations is
large, or if there is a requirement to inspect subsets of the list, it is better to view the table
in a dedicated SQL database management tool. Many such tools exist. The simpler tools
are intended to manage only SQLite databases. Sqliteman is an example of this type. It is
packaged with Ubuntu, and can be installed on OS X using MacPorts or Homebrew. More
complex tools are capable of managing many different types of database, and these are often
more powerful at the expensive of a more complex user interface. The free tool DBeaver is an
example in this category. Another is DataGrip; this is a commercial product, but free licenses
are available to academic users.

The wavenumber configuration databases can be found in the directory repository/tasks
within the repository. The database for a task named TaskName is TaskName.kconfig-db.sqlite.
Opening this file in a database manager will reveal a table named twopf_kconfig for a task
sampling only the 2-point function, and two tables named twopf_kconfig and threepf_kconfig
for a task that also samples the 3-point function. These tables list the data described above,
in addition to some columns that are not displayed in the HTML table. First, each wavenum-
ber k or kt is listed twice with conventional and comoving normalizations. Second, there are
extra columns with names beginning store_ . These are used internally by CppTransport and
can be ignored.

For 3pf configurations, the table is normalized in the sense that the k1, k2, k3 side
lengths are not included directly but refer to the serial number of the corresponding entry
in the 2pf configuration table. This helps to ensure that the database remains internally
self-consistent. To display a table that lists the side lengths explicitly requires an SQL query:

– 49 –

http://sqliteman.yarpen.cz
http://dbeaver.jkiss.org
https://www.jetbrains.com/datagrip/

1 SELECT
2 threepf_kconfig.serial AS serial,
3 threepf_kconfig.kt_conventional AS kt_conventional,
4 threepf_kconfig.alpha AS alpha,
5 threepf_kconfig.beta AS beta,
6 threepf_kconfig.t_exit_kt AS t_exit_kt,
7 w1.conventional AS k1_conventional,
8 w2.conventional AS k2_conventional,
9 w3.conventional AS k3_conventional,

10 threepf_kconfig.t_exit_kt AS kt_exit_kt,
11 threepf_kconfig.t_massless AS t_massless
12 FROM threepf_kconfig
13 INNER JOIN twopf_kconfig AS w1 ON w1.serial = threepf_kconfig.wavenumber1
14 INNER JOIN twopf_kconfig AS w2 ON w2.serial = threepf_kconfig.wavenumber2
15 INNER JOIN twopf_kconfig AS w3 ON w3.serial = threepf_kconfig.wavenumber3
16 ORDER BY serial;

4.4.3 Launch and track tasks from the command line

If the set of 3pf sample configurations has been constructed correctly the next step is to ask
CppTransport to carry out the tasks. A CppTransport executable can be instructed to perform
as many tasks as are desired, in which case it will perform them sequentially. To launch it
with 4 processes, carrying out both the dquad.twopf and dquad.threepf tasks, we would use

1 mpiexec -n 4 dquad -r test-repo --task dquad.twopf --task dquad.threepf

While the job is in progress, executing the command
1 ./dquad -r test-repo --inflight

will show details of the tasks being processed:
In-flight content:
Name Task Type Initiated Duration Cores Completion
20160516T123513-1 dquad.threepf integration 2016-May-16 12:35:13 33s 4 --

For each ‘in flight’ task,11 the information shown comprises:

• The group name. CppTransport refers to the output produced by each execution of a
task as a content group. For an integration task the content group will consist of a
database containing various tables for the n-point functions and associated data prod-
ucts. For the post-processing tasks currently available—to compute n-point functions
of ζ, and to take inner products with the bispectrum—the content group will consist of
further databases containing these quantities. For output tasks the content group will
contain plots, tables or Python scripts.
Each content group is given a unique name derived from its timestamp. The format is
yyyymmddThhmmss where yyyy is replaced by the year, mm by the month, and so on. The
capital T separates the date from the current time.
If two tasks happen to be initiated close together, their time stamps may clash. In this
case CppTransport will append -N to the group name, where N is a unique number. The
repository database is designed to be safe when used by multiple processes, so name

11Only those tasks that are currently active are shown in this list. Although we specified two tasks on the
command line, CppTransport processes them sequentially and therefore only one at once will appear in the
list.

– 50 –

collisions will not occur even if different CppTransport jobs attempt simultaneously to
generate a content group in the same repository.

• The task name and task type. This identifies the task to which the content group
belongs.

• The job start time and duration. For long-running jobs, this enables you to keep track
of the total elapsed time.

• The number of cores used by the job.

• An estimated time of completion. For long-running jobs, CppTransport will attempt to
estimate when the job will complete on the assumption that the items it has processed
so far are typical. CppTransport keeps track of the time required to process each item of
work—for example, to integrate a single configuration of the 2- or 3-point function, or to
generate a plot. The completion time is estimated assuming the time taken to process
each remaining work item will be the current average time-per-item. This estimate
is often accurate but can be misleading if the remaining work items are atypically
expensive to compute.
The time-to-completion estimate is first generated after 5 minutes. After this, it is
updated at intervals of 10% of the total number of work items. If verbose mode is
enabled then CppTransport will simultaneously print a brief advisory message summa-
rizing progress so far. For the double quadratic example, on most modern hardware,
both 2- and 3-pf integrations will complete before CppTransport generates any progress
update.

If verbose mode is enabled, CppTransport will emit brief updates as it works through the
list of tasks. For the dquad.twopf and dquad.threepf tasks of double quadratic example its
output will be similar to:
Task manager: processing task 'dquad.twopf' (1 of 2)
Committed content group '20160516T123513' for task 'dquad.twopf' at 2016-May-16 13:35:13
Task manager: processing task 'dquad.threepf' (2 of 2)
Task manager: 2016-May-16 13:40:29
Items processed: 3229 In flight: 496 Remaining: 292
Complete: 80.4% Mean CPU/item: 0.249s Assignment: 60s
Estimated completion: 2016-May-16 13:41:46 (1m 17.2s from now)
Task manager: 2016-May-16 13:41:26
Items processed: 3826 In flight: 181 Remaining: 10
Complete: 95.2% Mean CPU/item: 0.277s Assignment: 60s
Estimated completion: 2016-May-16 13:41:44 (18.6s from now)
Task manager: 2016-May-16 13:41:36
All work items processed: 2016-May-16 13:41:36
Committed content group '20160516T123513-1' for task 'dquad.threepf' at 2016-May-16 13:42:06
Task manager: processed 2 database tasks in wallclock time 6m 53s | time now 2016-May-16 13:42:06

Notice that—in this case—the 2pf task dquad.twopf completed so quickly that the content
group from the second task dquad.threepf has the same timestamp; the timestamp itself
is measured using UTC. As explained above, to keep the names unique CppTransport has
renamed the second group 20160504T202210-1.

To confirm that output from these groups has been safely written to the repository, use
the --status switch:

– 51 –

https://en.wikipedia.org/wiki/Coordinated_Universal_Time

������������������

����������� ���� ��������

���������������� ���������������� ���������������� ����������������� �����������������

Figure 5. Directory structure for an integration content group. The tempfiles directory is present
only while this content group is in flight; it is removed when the content group is committed to the
repository.

1 ./dquad -r test-repo --status

This causes CppTransport to display a short summary of the tasks available in the repository,
and the number of content groups associated with each task. In this case the output should
be:
Available tasks:
Task Type Last activity Outputs
dquad.threepf integration 2016-May-16 12:42:06 1
dquad.twopf integration 2016-May-16 12:35:13 1

If any tasks are still in flight then --status will additionally display the same information
shown by --inflight.

4.5 What happens while an integration task is in progress

Now let us consider what happened while each integration task was in progress. At the outset,
when CppTransport comes to process each new task, it acquires a unique content group name
derived from the current time. A folder with this name is created in the output directory of
the repository, under a subdirectory corresponding to the name of the owning task.

Each content group directory has the structure shown in Fig. 5. There are three items
at the top level:

• A SQLite database named data.sqlite. This is the main data container that stores
the output produced by the job. It is just a normal SQLite database, so it can be
inspected using the database management tools described in §4.4.2.

• A directory named logs. This contains fairly verbose logs describing the activity
of each process while the job was active. Each process generates a logfile named
worker_N_yyy.log whereN is a number identifying the process—the master hasN = 0
and the workers have N > 0—and yyy is a unique suffix that is usually 000.
Often it is unnecessary to inspect the logs, but they provide useful information if an
integration task is not behaving as expected.

• A directory named tempfiles. This is used only while the task is in flight, and contains
temporary SQLite databases into which each worker writes its results. The master

– 52 –

process aggregates data from these databases into the main container data.sqlite.
This has the effect that only the master process writes to the main container.
The temporary databases are removed when their contents are merged with the main
database. Once the task is complete and the content group has been committed to the
repository, the tempfiles directory is removed.

A typical integration will involve the following sequence of steps.

1. The task manager running on the master process begins work on a new integration task.
It sends messages to the worker processes, instructing them to prepare for integration
activity associated with this task.

2. Once all workers have signalled that they are ready, the task manager issues a small
number of work items to each worker. For integration tasks these work items are
individual wavenumber configurations. The workers process these configurations and
report the time taken. The results of each integration are held in memory on each
worker.

3. The task manager on the master process attempts to balance the workload of each
worker by using the reported times to estimate capacity. It estimates the number of
configurations each worker can process in 60 seconds and then issues a corresponding
number of work items, modified if necessary to prevent any one worker consuming an
unbalanced fraction of the queue. The effect is that slower cores will be issued with
fewer work items, and faster cores will be issued with more.
As the workers process each group of work items, they report the time taken back to
the master. This information is used to update the estimate of each worker’s capacity
and to adjust future work allocations.

4. The workers process integrations as they arrive, retaining the results in memory. To
prevent memory requirements rising unboundedly, each worker is given a fixed capacity.
When the accumulated integration produces outgrow this capacity they are flushed
to a temporary database in the tempfiles directory. (This strategy is adopted for
performance reasons. It is faster to write the database to disk in one go, rather than
writing the data piecemeal at the end of each integration.)
The worker process then sends a message to the master, asking for this temporary
database to be aggregated into the main container.

5. The master process continues to issue new work and aggregate temporary databases.
For large databases and some choices of filing system (especially slow network storage)
the aggregation time may become lengthy, in which case the task manager will adjust
the number of work items it allocates to each worker in an attempt to prevent workers
waiting for new work allocations while an aggregation is in progress.

6. Eventually all work items have been processed and their results aggregated into the
main container. At this point the task manager performs an integrity check that at-
tempts to detect any missing items. It then generates a repository record for the
content group. If the integrity check was successful the group is marked as complete.

– 53 –

Only complete groups can be used to generate subsequent derived products. However,
incomplete groups are retained in the repository because their data can be re-used.
Finally, the tempfiles folder is removed.

4.6 Using checkpoints and recovery to minimize data loss

The amount of memory available to each worker can be adjusted using the command-line
option --caches. It should be followed by an argument representing the cache size as an
integer number of megabytes. The default cache size is 500 Mb.

Generally, it is advantageous to keep the cache size fairly large. A small cache size will
encourage the workers to flush their temporary databases frequently, which can generate a
large amount of disk activity. If the master process is busy with aggregations then some
workers may stall while they wait for new work items to arrive. A large cache mitigates this,
at least if the main container does not become too large, because a small number of large
aggregations tends to be faster than a large number of small aggregations.

On the other hand, the total cache memory allocated to cache should not become larger
than the physical memory available on a machine. This will usually cause some physical
memory to be swapped out to disk, potentially slowing down the progress of the job.

Advanced usage: Estimating cache requirements with paired tasks

For paired post-integration tasks it should be remembered that each task uses an
independent cache. While the data generated by post-integration tasks is usually
smaller than an integration task, the cache size should be chosen to prevent out-of-
memory problems.
With the default cache size of 500 Mb, a 4-process job could consume up to 1.5 Gb for
integration-only tasks or 3 Gb for a paired set. An 8-process job would consume up to
3.5 Gb for integration-only or 7 Gb when paired. If running on laptop- or desktop-class
hardware these numbers should be adjusted to ensure that memory requirements stay
within bounds. Similar calculations apply if running in a cluster environment.

If the cache is large then a significant amount of data can accumulate in memory before
being written to disk. In ordinary execution this does not an issue. However, if problems
occur then this situation is undesirable: in the event of a crash, all data will be lost and would
need to be expensively regenerated. The same applies to long-running tasks on a cluster,
where jobs may be terminated by the scheduler, or the machine restarted, in a way that is
beyond the control of individual users.

To mitigate these risks CppTransport offers the option to set checkpoints for each task
at fixed time intervals. At the first opportunity after a checkpoint, a worker will flush its
cache to a temporary database and ask the master process to aggregate it. If the job is
subsequently terminated—by a crash, machine restart, or other cause—then any information
stored in the main container can be recovered and used to seed another task. In this way the
CPU effort spent performing successful integrations is not wasted.

To set checkpoints, the command-line option --checkpoint is used. It should be followed
by a time interval measured as an integer number of minutes. Exactly what interval is
appropriate will depend on the typical time taken to integrate a configuration, but could
perhaps be 30 to 60 minutes. Unless each integration takes substantially longer than this,

– 54 –

the result is that no more than ∼ 1 hour of work would need to be regenerated following a
crash.

Advanced usage: Setting default checkpoints for a task

In addition to the global checkpointing interval set by --checkpoint, it is possible to set
default checkpoint intervals for each task using the set_default_checkpoint() method
of an integration task; see §5.1. Each task may set a different default checkpoint
interval.
If an explicit checkpoint interval is given on the command line, it overrides any task-
specific defaults.

Example.—We can simulate a crash by manually terminating the dquad executable. Start a
new instance of the dquad.threepf task by typing

1 mpiexec -n 2 dquad -v -r test-crash --create --checkpoint 1 --task dquad.threepf

This starts a CppTransport job using only two processes—a master and a single worker. It will
therefore proceed more slowly, giving time to interrupt it. The checkpoint interval has been
set to 1 minute, and the job output will be written into a new repository called test-crash.
Monitor progress using a separate terminal and the --inflight option. After the job has
been in progress for a few minutes use Ctrl-C to terminate it.

Even after termination, using --inflight will appear to show that the task is still
underway; by itself the repository database has no way to know that a crash has occurred:

1 $./dquad -r test-crash --inflight
2 In-flight content:
3 Name Task Type Initiated Duration Cores Completion
4 20160505T112925 dquad.threepf integration 2016-May-05 11:29:25 3m 41s 2 --

To deal with this situation we should use the command-line switch --recover to inform
the repository that the integration is no longer live, and recovery should be attempted.
CppTransport informs us about each content group it is able to recover:

1 $./dquad -v -r test-crash --recover
2 Committed content group '20160506T093816' for task 'dquad.threepf' at 2016-May-06 10:40:44
3 Warning: Content group '20160506T093816' has missing content

The recovery process may take some time. CppTransport must ensure that the database is
left in a consistent state and this can entail relatively costly comparison between the various
tables held in the database container.

Currently, recovery is a global repository operation. When --recovery is specified, Cpp-
Transport will perform recovery for all tasks that are currently registered as in-flight. If you
have multiple tasks running against the same repository and need to perform recovery, you
may wish to to wait until no more active tasks remain or manually terminate the remaining
active processes.

Seeding an integration from a recovered content group.—Normally, after successful recovery,
the next step would be to restart the task, recycling any successful results from the recovered
content group. To do this we instruct CppTransport to use the recovered group as a seed,
using the --seed switch followed by the name of the content group to use:

– 55 –

1 $ mpiexec -n 4 dquad -v -r test-crash --seed 20160506T093816 --task dquad.threepf
2 Committed content group '20160506T094106' for task 'dquad.threepf' at 2016-May-06 10:42:38
3 Task manager: processed 1 database task in wallclock time 1m 31.9s | time now 2016-May-06

10:42:38↪→

CppTransport will copy any successful work items from the seed content group, and then
organize the worker processes to compute whatever items remain outstanding. There is no
limit to how many content groups can be chained together by this process of recovery followed
by seeding.

Once the seeded integration completes, CppTransport’s --status report shows (as ex-
pected) that two content groups are now attached to the dquad.threepf task:

1 $./dquad -r test-crash --status
2 Available tasks:
3 Task Type Last activity Outputs
4 dquad.threepf integration 2016-May-06 09:42:38 2
5 dquad.twopf integration 2016-May-06 09:38:16 0

To obtain more information on these groups, use the --info switch followed by the task
name:

1 $./dquad -r test-crash --info dquad.threepf
2 dquad.threepf -- integration task
3 Created: 2016-May-06 09:38:16 Last update: 2016-May-06 09:42:38
4 Runtime version: 2016.1
5 Task type: threepf
6 Initial conditions package: dquad
7 k-config database: repository/tasks/dquad.threepf.kconfig-db.sqlite
8
9 Task description

10 Compute time history of the 3-point function on a cubic lattice from k ~ e^3 to k ~ e^9
11
12 Content group Created Last update Complete Size
13 20160506T093816 2016-May-06 09:40:42 2016-May-06 09:40:44 No 4e+02 Mb
14 20160506T094106 2016-May-06 09:41:06 2016-May-06 09:42:38 Yes 9.1e+02 Mb

The --info switch can be used with the name of any repository object. It prints similar infor-
mation to that shown by an HTML report, but can be more convenient for quick inspection
of individual records.

Here, the table at the bottom gives a short summary of the two content groups. No-
tice that the interrupted group is marked as incomplete. The reported size corresponds
to the disk space occupied by the data container data.sqlite. For the final group (here
20160506T094106) this is just under 1 Gb, showing that the generated datasets can become
large even with a modest number of bispectrum configurations and a few hundred time sample
points.

CppTransport tracks the relationship between different content groups. Inspecting the
repository record for 20160506T094106 shows that 20160506T093816 was used as a seed:

– 56 –

1 $./dquad -r test-crash --info 20160506T094106
2 20160506T094106 -- integration content
3 Created: 2016-May-06 09:41:06 Last update: 2016-May-06 09:42:38
4 Runtime version: 2016.1 Task: dquad.threepf
5 Type: threepf Locked: No
6 Tags: --
7
8 Complete: Yes
9 Workgroup: 1

10 Seeded: Yes
11 Data type: double
12 Seed group: 20160506T093816
13 Has statistics: Yes
14 Initial conditions: No
15 Size: 9.1e+02 Mb
16 Container: output/dquad.threepf/20160506T094106/data.sqlite
17
18 Metadata
19 Wallclock time: 1m 20s
20 Total time: 6m 22.3s
21 Min integration: 0.0329s
22 Max integration: 4.55s
23 Configurations: 3188
24 Failures: 0

When complex relationships exist between different content groups, it becomes difficult
to navigate the repository using --info from the command line. In such cases it is often
more convenient to generate an HTML report that summarizes the repository contents. We
used these reports in §4.4.2 to examine the wavenumber configurations sampled as part of
each integration task, but they have many other uses.

Generating a report is done as in §4.4.2,
1 ./dquad --repo test-repo --html test-report

Now open test-report/index.html in a web browser and use the ‘Integration content’ tab
to view records for each content group. For the seeded group, the record includes the name
of seed but this is also hyperlinked—clicking on its name will take you directly to its record.
Likewise, it is possible to click the task name to view its details. See Fig. 6.

4.7 How is the integration time spent?

4.7.1 Using HTML reports to analyse integration performance

It is often useful to understand what determines the total execution time for an integration
task, especially if performance is different from what would be expected. This can happen
in two ways. First, the combination of batch size, aggregation frequency and number of
processes can accidentally trigger an excessive number of stalls, where the workers spend a
long time idle because the master is too busy to issue them with work. To detect this kind
of scenario the most helpful tool is the process Gantt chart described in §4.7.2 below.

Second, the integration time per configuration can vary significantly. The total execution
time therefore depends strongly on the range of configurations included in each task. A typical
use of CppTransport would be to sparsely sample a range of configurations (k1, k2, k3) in an
exploratory step, before increasing the number of sample points to perform some specific
science analysis—for example, to predict the CMB temperature bispectrum from a specific
inflationary model. Before stepping up to a more dense set of sample configurations it is

– 57 –

Figure 6. HTML report for seeded content group. Notice that group relationships are hyperlinked,
so it is possible to click on the name of the attached seed group to view its record. The same is true
for the task names and any other repository objects.

very helpful to be aware of the way in which integration time depends on configuration. The
information needed to understand this scaling is included in an HTML report.

Worker information table.—Under the ‘Integration content’ tab, the report for each content
group includes two blue buttons near the bottom. One is labelled ‘Worker information’, and
clicking it will toggle a table listing each worker process that has contributed to the content
group; see Fig. 7. The table identifies each worker by a pair of coordinates (w, n), where w is
the workgroup number and n is the worker number. When a new content group is created its
workers are assigned workgroup number 0. If this group is subsequently used to seed another
group then the workers in the second group are assigned workgroup number 1, and so on.
The worker number identifies a unique worker within the workgroup.

For each worker, the table lists:

• the hostname of the machine on which this worker was running. This can help identify
problematic machines, especially in a cluster environment.

• the type of backend in use. In current versions of CppTransport, as explained in §3.2,
this will be the MPI implementation.

• the steppers used for integration of the background and perturabtions, and the toler-
ances applied in each case. The tolerances are given in the format (abserr, relerr).

– 58 –

Figure 7. Worker information table displayed as part of a content group record.

• the number of configurations processed by the worker, both in total and as a percentage
of the task.

• the operating system on which CppTransport was running.

Integration report.—The second blue button is labelled ‘Integration report’. Clicking it
toggles a set of summary plots.

• For any kind of integration task the report includes a bar chart showing the number
of configurations processed by each worker, and a histogram showing the distribution
of integration times within the task. For the 3-point function of the double quadratic
model this distribution is shown in Fig. 8; it is roughly a power law. This is fairly
typical for CppTransport tasks that sample a range of different configurations: most
configurations integrate relatively quickly (here . 0.1 s), but there is a heavy tail of
rare configurations that take much longer (here, a few × 100 s). These expensive con-
figurations are usually those that probe the squeezed limit of the 3-point function.

• For tasks that sample the 3-point function, CppTransport includes extra plots showing
configuration dependence of the integration time (Fig. 9). In smooth models where the
bispectrum does not exhibit features, and assuming use of adaptive initial conditions
(§5.1), the strongest dependence is usually on the squeezing parameter k3/kt, where k3
is taken to be the shortest side of the momentum triangle. This is clearly visible in the
top two plots of Fig. 8. In the kt plot (top-left panel) there are a range of integration
times for each kt, with the range widening as kt increases. However, the colour-bar
shows that configurations generating the longest integration times have small k3/kt.
The k3/kt plot (top-right panel) gives the same conclusion in a different form. The
dependence on k3/kt is an approximate power law where the squeezing is significant.

– 59 –

10-2 10-1 100 101 102

integration time in seconds

10-4

10-3

10-2

10-1

100

101

fre
qu

en
cy

Figure 8. Distribution of integration times for the three-point function in the double quadratic model
constructed in §4.3.

4.7.2 Generating a Gantt chart of worker activity

The integration report shows how the intrinsic computation cost scales with configuration,
and helps identify regions where it is cheap or expensive to add configurations. These scal-
ings are set partly by the nature of the problem, partly by detailed microphysical interactions
determined by each specific model, and partly by the integration scheme employed by Cpp-
Transport and its use of ‘transport’ or evolution equations.

These intrinsic scalings are one factor contribuitng to the overall numerical efficiency
achieved by CppTransport. The remainder is determined by how effectively the master process
is able to feed tasks to its workers. CppTransport tries to adjust its scheduling strategy to
respond to environmental pressures. It is frequently successful but under some circumstances
the master process may become overwhelmed, meaning that new batches of work are not
allocated to workers in a timely fashion. This leads to workers idling while they wait for new
work, described as a ‘stall’. For this reason it can be useful to check what the workers are
doing, and in particular whether progress is being inhibited by stalls.

To detect stalls, the most useful tool is the process Gantt chart. Specifying the op-
tion --gantt on the command line will cause CppTransport to produce a Gantt-like timeline
showing the activity of each worker. Bars are colour-coded according to the type of activity,
and a legend is included identifying each colour. The --gantt option should be followed by a
filename, and the output format will be determined by its extension. Any format supported
by the Matplotlib backend can be used, of which the most useful choices are usually SVG
(.svg extension), PDF (.pdf), or PNG (.png) if a bitmap format is desired. Alternatively,

– 60 –

101 102 103 104

configuration scale kt

10-2

10-1

100

101

102

in
te

gr
at

io
n

tim
e

in
 s

ec
on

ds

10-2

10-1

k
3
/
k
t

10-3 10-2 10-1 100

shape parameter k3/kt

10-2

10-1

100

101

102

in
te

gr
at

io
n

tim
e

in
 s

ec
on

ds

102

103

k
t

0.4 0.3 0.2 0.1 0.0
shape parameter α

10-2

10-1

100

101

102

in
te

gr
at

io
n

tim
e

in
 s

ec
on

ds

102

103

k
t

Figure 9. Dependence of integration time on the parameters kt (top left), k3/kt = (1 − β)/2 (top
right) and α (bottom left) in the double quadratic model of §4.3; for definitions, see Eq. (4.1).

specifying a .py extension will produce a Python script to generate the Gantt chart, but
without executing it. This is useful if further customization is required. For example, by
producing a Python script it is possible to manually increase the figure width if the timeline
is too compressed for easy reading. An example chart for the dquad.threepf task is shown
in Fig. 10.

If more detail is required then CppTransport can produce an activity journal in JSON
format using the --journal command-line argument. It accepts a single parameter that is
interpreted as the filename of the output journal. To use the journal for practical analysis it
will probably be necessary to write a custom code that parses each record and generates a
suitable output.

Avoiding stalls.—CppTransport makes default choices that usually prevent significant stalls.
Stalls are more likely in the following circumstances:

• if the repository is located on a slow filing system. Besides allocating work to each
worker process, the master process is responsible for aggregating their results into the

– 61 –

main data container data.sqlite. The time taken for each aggregation is dominated
by the time required for a bulk INSERT of rows from each temporary container into the
main database.
Depending how many configurations are being computed, and how many time sample
points are being retained, the main database may become very large. CppTransport has
been optimized so that INSERT performance is roughly independent of the database
size, but its performance may begin to degrade if the database becomes extremely
large (bigger than several tens of Gb). On a fast internal SSD CppTransport typically
achieves ∼ 2× 105 INSERT s per second. On a conventional hard disc, either internal or
attached via a fast interface such as USB or Thunderbolt, it achieves ∼ 5×104 INSERT s
per second. Network filing systems are often somewhat slower. If you are forced into
this situation then it is preferable to use the fastest available disk (eg. a Lustre-type
system rather than NFS) in order to prevent aggregations from becoming too slow.
With a slower filing system it can be a good strategy to set a checkpoint interval (or
adjust the cache capacity) so that aggregations are distributed over the lifetime of the
job. This means that master can be carrying out productive activity while the workers
are busy with calculations. The downside of this approach is that a worker may finish
its current allocation while the master is performing aggregation. If this will happens
it will stall until the master is free to allocate new work.
To mitigate this effect, CppTransport monitors how long is spent performing aggrega-
tions and adjusts the amount of work it offers to each worker. Initially it will attempt
to allocate 60 s of work, but if aggregations are taking a long time it will try to allocate
up to ten times the current mean aggregation time. This reduces the probability that
a worker will finish its current allocation while the master is performing aggregation.12

However, conversely, it increases the risk that the allocation becomes unbalanced in
the sense that some workers run out of work items while other workers still have a long
queue.
Alternative strategies. Aggregation times are typically not long enough to be problem-
atic. When writing to a hard disk CppTransport can typically aggregate a ∼ 5 Gb main
database in just a few minutes. Problems are likely to occur only in extreme scenarios,
where a database grows to many tens of Gb while simultaneously being used over NFS.

• if a large number of workers are used with a slow filing system. Using many workers
will generate a large number of aggregation requests, and if the filing system is too slow
these can overwhelm the master process. There are possible mitigations:

– if you are not using a network filing system, ensure that you are not passing the
command-line option --network-mode. If used this disables SQLite’s write-ahead
log mode that confers a significant performance advantage.

– ensure that you are not defining the CPPTRANSPORT_STRICT_CONSISTENCY macro during
compilation. If used, this roughly doubles aggregation times. See §4.8.2.

12In practice it may allocate less work in order to balance the number of work items assigned to each worker
process.

– 62 –

12:54:00.000000

12:55:00.000000

12:56:00.000000

12:57:00.000000

12:58:00.000000

12:59:00.000000

Master

Worker 1

Worker 2

Worker 3

Aggregation
MPI activity
Database activity
2pf task
3pf task
ζ 2pf task
ζ 3pf task
fNL task
Output task
Push integration
Push postintegration
Push output

Figure 10. Gantt chart generated by CppTransport’s --gantt option, showing worker activity for
the task dquad.threepf and --checkpoint 1. The diamonds indicate where each worker flushed its
cache to a temporary database. Dark grey bars on the master timeline show where the master process
was aggregating temporary databases. (In many cases the time spent aggregating was too short to
register on the plot. This test was performed on a machine with an SSD; on a machine with a hard
disk, aggregation times are usually a few times longer.) The aquamarine bar on the far right-hand
side shows database activity associated with checking integrity and performing routine maintenance.

– experiment with different buffer sizes or checkpoint intervals, which will change
how aggregation events are distributed over the lifetime of the job. In some sce-
narios it is faster to perform a small number of large aggregations near the end.
In other scenarios it can be faster to perform frequent aggregations throughout
the job, because this makes use of time when the master process would otherwise
be idle.

4.8 Using the SQLite data container

In §§6–7 we will consider post-integration tasks and show how they can be used to generate
observables from the raw n-point functions produced by an integration task. In many cases
the facilities offered by these tasks will be quite adequate to carry out a standard analysis of
an inflationary model. However, in some circumstances, a nonstandard observable may be
needed. In this case it is necessary to extract data for the raw n-point functions. Another
reason for needing this data is simply that you may wish to produce your own customized
plots.

4.8.1 Table definitions

This data can be retrieved from the main SQLite container data.sqlite associated with
each content group. As explained above, this is done using SQL queries—yielding a powerful
method to easily extract appropriate subsets of the data, formatted in any convenient way.

The SQLite container for any integration task contains the following tables and columns:

– 63 –

1. time_samples — contains the list of time sample points.
serial unique serial number for this sample point
time numerical value of time, measured in N , using the user-defined conven-

tions established by the initial conditions package.

2. twopf_samples — contains the list of sample points for the 2-point function
serial unique serial number for this sample configuration
conventional conventionally-normalized wavenumber k corresponding to this configu-

ration
comoving comoving-normalized wavenumber k corresponding to this configuration
t_exit time of horizon exit for this wavenumber in the sense k = aH

t_massless mass-point for this wavenumber in the sense (k/a)2 = M2, where M2 is
the largest eigenvalue of the mass matrix

3. backg — contains the time evolution of the background fields
unique_id unique identifier labelling this row
tserial reference to serial number time_samples.serial identifying the time sam-

ple point for this row
page the value of each background field is stored in the column coordN , where

N is a 0-based integer labelling the fields in the same order that they
were declared in the model description file. However, SQLite allows only a
limited number of columns per table. To accommodate this CppTransport
will store the roughly the first 2000 entries with page equal to 0 and then
start a new row with page equal to 1, and so on. The same strategy is
used for all data tables

coordN . . . values of the background fields in the order declared in the model descrip-
tion file. All fields come first as a block, followed by their N derivatives
as a second block.

4. twopf_re — contains real part of field-space 2-point function

– 64 –

unique_id unique identifier labelling this row. Not used unless strict
data consistency checks are enabled by defining the macro
CPPTRANSPORT_STRICT_CONSISTENCY during compilation. See §4.8.2.

tserial reference to serial number time_samples.serial identifying the time sam-
ple point for this row

kserial reference to serial number twopf_samples.serial identifying the
wavenumber sample point for this row

page page number, defined as for backg.page ; see eleN below
eleN . . . dimensionless components of the real part of the field-space 2-point

function, packed in a ‘right-most’ ordering defined as follows. Set
〈δXa(k1)δXb(k2)〉 = (2π)3δ(k1 + k2)Σab, where a, b range over the fields
and their canonical momenta (which for the purposes of the 2-point func-
tion are the same as the derivatives with respect to N). Then N =
D×#a+ #b, if D is the dimension of phase space (two times the number
of fields) and # is the map that assigns a numerical value to a species in
following order: fields first, in the order defined in the model description
file, followed by momenta, in the same order as the fields.
The quantity stored is Re(k3Σab), where k = |k1| = |k2| is the com-
mon magnitude of the momenta. This is independent of the comoving
normalization, making the results easy to remap into whatever units are
convenient.

5. tensor_twopf — contains the tensor 2-point function
unique_id unique identifier labelling this row. Not used unless strict

data consistency checks are enabled by defining the macro
CPPTRANSPORT_STRICT_CONSISTENCY during compilation. See §4.8.2.

tserial reference to serial number time_samples.serial identifying the time sam-
ple point for this row

kserial reference to serial number twopf_samples.serial identifying the
wavenumber sample point for this row

page page number, defined as for backg.page ; see eleN below
eleN . . . dimensionless components of the real part of the tensor two-point function

for an individual helicity state γs (where s = +,×) and their derivatives
πs = dγs/dN , in the following order: N = 0 is γsγs, N = 1 is γsπs, N = 2
is πsγs and N = 3 is πsπs.
If 〈γs(k1γs′(k2)〉 = (2π)3δ(k1 + k2)Σss′ , where s and s′ label helicities,
then the quantity stored is Re(k3Σss′).

6. integration_statistics — contains integration metadata

– 65 –

kserial reference to serial number twopf_samples.serial or
threepf_samples.serial (depending whether the data is for a 2pf
or 3pf task) to which this row corresponds

workgroup workgroup number for the worker that processed this configuration
worker worker number for the worker that processed this configuration
integration_time time required to perform integration, in nanoseconds
batch_time time required to transfer the integration data into storage, in nanoseconds
steps number of steps taken by the integrator. Can be used to check whether

the integrator is performing an excessive amount of work, which normally
indicates that a different algorithm might give better performance

refinements number of times the density of the time-sample mesh needed to be in-
creased. Not used in the current version of CppTransport.

In addition, tasks sampling the 3-point function include the following extra tables:
7. threepf_samples — contains the list of sample points for the 3-point function

serial unique serial number for this sample configuration
wavenumber1 reference to twopf_samples.serial identifying the k1 mode for this con-

figuration
wavenumber2 reference to twopf_samples.serial identifying the k2 mode for this con-

figuration
wavenumber3 reference to twopf_samples.serial identifying the k3 mode for this con-

figuration
kt_conventional conventionally-normalized value of kt for this configuration
kt_comoving comoving-normalized value of kt for this configuration
alpha value of α for this configuration
beta value of β for this configuration
t_exit_kt horizon-exit time for this configuration, in the sense kt/3 = aH

t_massless massless point for this configuration, given by the earliest of the massless
points for k1, k2, k3

8. twopf_im — contains the imaginary part of the field-space 2-point function
The schema and storage conventions for this table are the same as for the real part of the
2-point function, twopf_re .

9. threepf_momentum
threepf_deriv — contains the real part of the field-space 3-point function
These tables share the same schema. The difference is that threepf_momentum stores correlation
functions defined using the canonical momenta (rescaled by a3), whereas threepf_deriv stores
correlation functions defined using derivatives with respect to N . These have a nontrivial
relationship that is not easy to reconstruct without access to model-dependent information,
and specifically the A, B and C tensors defined by Dias et al. []. To mitigate difficulties with
reconstructing one or other of these sets of correlation functions CppTransport stores both, at
the expense of roughly doubling the storage requirements for each 3-point function task.
If the correlation functions produced by CppTransport are to be used as input for a separate-
universe type calculation, or are to be compared with the corresponding outputs, then it is the

– 66 –

correlation functions involving derivatives that are required.
unique_id unique identifier labelling this row. Not used unless strict

data consistency checks are enabled by defining the macro
CPPTRANSPORT_STRICT_CONSISTENCY during compilation. See §4.8.2.

tserial reference to serial number time_samples.serial identifying the time sam-
ple point for this row

kserial reference to serial number twopf_samples.serial identifying the
wavenumber sample point for this row

page page number, defined as for backg.page ; see eleN below
eleN . . . dimensionless components of the real part of the field-space 3-point

function, packed in a ‘right-most’ ordering as for the 2-point func-
tion. That is, if 〈δXa(k1)δXb(k2)Xc(k3)〉 = (2π)3δ(

∑
i ki)αabc, then

N = D2 ×#a+D ×#b+ #c.
The quantity stored is the shape function Re(k2

1k
2
2k

2
3α

abc). As for the other
data tables, this object is independent of the comoving normalization and
can be easily remapped into any choice of wavenumber normalization.

4.8.2 Strict consistency checking

In rare circumstances it may be useful to enforce strict consistency checks within the database.
These checks ensure that there is only entry for each time- and wavenumber-configuration
combination, and also ensure that the serial numbers recorded in each data table (such
as backg , twopf_re and so on) refer to valid entries in the sample tables time_samples ,
twopf_samples and threepf_samples . The price paid for such checks is substantially reduced
INSERT performance during aggregation, by at least a factor of two but sometimes more.

To enable strict database checks, edit the main header file transport.h to define the
macro CPPTRANSPORT_STRICT_CONSISTENCY , or define it by hand before including any CppTrans-
port headers. When enabled, this forces CppTransport to use the unique_id fields in each data
table. These contain a unique integer encoding the time-sample, wavenumber-sample and
page number for the row. The extra time cost arises because for each INSERT SQLite must
check the existing database to ensure there are no conflicts. In a worst-case scenario this
means that INSERT performance could degrade in proportion to the size of the main database,
although typically this is not realized because CppTransport takes special measures to avoid
it. Nevertheless, if these checks are performed then some degradation must be expected as
the size of the database grows.

Normally it is best to leave strict checks disabled unless you need them for some special
purpose. For example, this situation might arise if you want uniqueness to be enforced
via PRIMARY KEY constraints after the database has been constructed; SQLite does not allow
primary keys to be added later. Alternatively you could consider post-processing the database
to add your own unique identifiers and creating a UNIQUE index.

5 Options for integration tasks

5.1 General options

This section documents the options that can be used when customizing integration tasks.
Typically options are set using member functions provided by each task object, such as the

– 67 –

twopf_task and threepf_cubic_task objects used in §4.3.

• set_name(std::string)

Sets the task name to the supplied string

• set_description(std::string)

Sets an (optional) description field. Reports for this task (either obtained at the com-
mand line by the --info switch, or using the HTML report generator) include this
description field where it is present.

• bool get_adaptive_ics()

set_adaptive_ics(bool)

Get or set the current adaptive initial conditions state.
CppTransport sets initial conditions for each n-point function by working in the uni-
versal, massless approximation. This will be valid provided the initial time is set
substantially earlier than the massless point for each wavenumber participating in the
correlation function, as defined on p.48 in §4.4.2. The massless time is not later than
the horizon exit time for the corresponding wavenumber, but can be earlier if there is
a massive mode in the spectrum.
Generally, increasing the number of e-folds of massless evolution will improve Cpp-
Transport’s estimate of the correlation functions at horizon exit. The accuracy is these
estimates is the principal factor determining accuracy of the evolution in the super-
horizon regime. Unfortunately, subhorizon evolution is very expensive. In this phase
the individual wavefunctions oscillate with exponentially increasing frequency as we
move deeper into the subhorizon epoch. The correlation functions themselves do not
oscillate, and therefore to ensure accuracy the stepper must adjust its step size so
that counterbalancing oscillatory contributions cancel to an acceptable precision. The
maximum acceptable step size decreases rapidly on subhorizon scales.
In normal circumstances this means we wish to have just enough e-folds of massless
evolution, but not more. Usually it is sufficient to have between 3 and 5 e-folds of
massless evolution, with 4 a good default choice. To make this possible CppTransport
supports two ways to set initial conditions for each n-point function—uniform and
adaptive. With uniform initial conditions CppTransport will compute an initial condition
for each n-point function at the initial time specified in the initial conditions package
(§4.3) and evolve it from there. The advantage is that each correlation function gets
the same initial time, so it is possible to compare their values at any subsequent point.
The disadvantage is that this initial time may give some n-point functions a very large
number of e-folds of massless evolution. Often this makes the corresponding integrations
impracticably expensive.
The alternative is adaptive initial conditions. Using adaptive initial conditions, Cpp-
Transport will compute a customized initial condition a fixed number of e-folds before
the massless point for the correlation function in question. (As explained on p.66, the
massless point for a bispectrum configuration is defined to be the earliest massless point
among all participating wavenumbers.) This choice is often dramatically faster than
using uniform initial conditions. In many cases it is the only feasible way to perform

– 68 –

the calculation. The disadvantage is that not all correlation functions will have sample
data available at early times, because sampling begins at different times for different
configurations. CppTransport will only keep sample points for which all configurations
have data available.
Adaptive initial conditions are the recommended setting for all CppTransport tasks.
However, because they impose more stringent requirements on the initial conditions
they are not enabled by default. This can be done by passing the value true to
set_adaptive_ics() , in which case the number of massless e-folds will default to 4, or
by calling set_adaptive_ics_efolds() with an alternative value.
If the initial time specified as part of the initial conditions package does not allow
this number of e-folds prior to the earliest massless point, then the task will throw a
transport::runtime_exception exception.

• double get_adaptive_ics_efolds()

set_adaptive_ics_efolds(double N)

Get or set the number of e-folds of massless evolution used by adapative initial condi-
tions.

• double get_astar_normalization()

set_astar_normalization(double)

For concrete calculations CppTransport must convert conventionally-normalized wavenum-
bers to comoving-normalized ones. This involves a choice of scale factor a∗ at the dis-
tinguished time N∗ when the conventionally-normalized scale k = 1 leaves the horizon.
Normally it is not necessary to be aware of what choice is made for a∗, because as
explained in §4.8 the database stores dimensionless correlation functions. The nor-
malization of these correlation functions does not depend on a∗ and therefore they are
simple to remap into whatever wavenumber normalization is convenient for the problem
at hand.
By default CppTransport sets a∗ = exp(0) = 1. The current implementation of the
transport integrator uses dimensionless correlation functions, and therefore the nu-
merical solutions are independent of its value. As a result this setting can mostly be
ignored, unless you want a specific normalization for the purpose of producing plots or
tables.

• bool get_collect_initial_conditions()

set_collect_initial_conditions(bool)

Get or set the current collection state for initial conditions.
To assist comparison of the results produced by CppTransport with other methods of
computing n-point functions, it is possible to have CppTransport write extra table sinto
the SQLite container that gives the field-values at horizon exit for each configuration.
For tasks computing the 2-point function only, CppTransport will write a table called
horizon_exit_values that records the field values at horizon exit for the corresponding
wavenumber. For tasks computing the 3-point function CppTransport writes two tables:
for each configuration, horizon_exit_values records field values at horizon-exit for the

– 69 –

wavenumber which exits earliest. In addition kt_horizon_exit_values contains the field
values at horizon-exit for the average scale kt/3.
Note that these are not the initial conditions used by CppTransport internally.

• boost::optional<unsigned int> get_default_checkpoint()

set_default_checkpoint(unsigned int)

unset_default_checkpoint()

Get or set the current default checkpoint interval.
A default checkpoint interval can be set on a per-task basis. If no --checkpoint switch
is given on the command line then the default checkpoint interval is applied, otherwise
the value supplied to --checkpoint is used. The current checkpoint interval can be
cleared using unset_default_checkpoint() .
If there is no currently-set default interval then get_default_checkpoint() returns an
empty boost::optional (see here). Otherwise, it returns a boost::optional containing
the current checkpoint interval in minutes.

5.2 Two-point function tasks

Two-point function tasks need few specific options, and those that exist are supplied through
the constructor. Its general form is
twopf_task(

std::string name,
initial_conditions ics,
range time_samples,
range k_samples,
bool adaptive_ics=false

)

This constructs a task with the given name and initial conditions, and the specified time-
and wavenumber sample points. The range objects can be instances of either basic_range or
aggregate_range (§4.3). If the boolean adaptive_ics is supplied then it determines whether
adaptive initial conditions are automatically enabled. If true the task will default to using
4 massless e-folds, but this can be changed by calling set_adaptive_ics_efolds() .

5.3 Three-point function tasks

CppTransport provides two different interfaces for specifying three-point function tasks. The
differences relate to the way in which the sample configurations are specified.

5.3.1 Cubic (k1, k2, k3) mesh

One possibility is to build a set of bispectrum configurations from the Cartesian product ks
× ks × ks built out of some range of wavenumbers ks . This option was used to build the
task dquad.threepf used as an example in §4.

To generate a task in this way one should use the threepf_cubic_task constructor. Its
signature is

– 70 –

http://www.boost.org/doc/libs/1_60_0/libs/optional/doc/html/index.html

threepf_cubic_task(
std::string name,
initial_conditions ics,
range time_samples,
range ks,
bool adaptive_ics=false,
StoragePolicy storage_policy = DefaultStoragePolicy,
TrianglePolicy triangle_policy = DefaultTrianglePolicy

)

The last three parameters are optional, and if omitted their default values will be used. The
range ks is used to construct a Cartesian mesh of wavenumbers as explained above, and the
remaining parameters share their meaning with the constructor for two-point function tasks
described in §5.2. For details of the StoragePolicy and TrianglePolicy concepts see §5.3.3
and §5.3.4 respectively.

There is no need to specify a set of wavenumbers at which to sample the 2-point func-
tion. Samples will automatically be recorded at points corresponding to each wavenumber
appearing on an external leg of the 3-point function. In this case that means the 2-point
function will be sampled at the wavenumbers in ks .

5.3.2 Fergusson–Shellard (kt, α, β) mesh

Sampling from a wavenumber cube ks 3 is convenient for some purposes but awkward for
others. In particular, if the intention is to sample a series of wavenumber configurations
probing the squeezed limit of the bispectrum then there may be more efficient ways to
proceed. A good choice is to work with parameters that directly specify the configuration
shape. For this purpose CppTransport uses the (α, β) parameters introduced by Fergusson &
Shellard [53]; see Eq. (4.1).

To build a task from a grid of kt, α and β combinations one should use the threepf_alphabeta_task
constructor:
threepf_alphabeta_task(

std::string name,
initial_conditions ics,
range time_samples,
range kts,
range alpha,
range betas,
bool adaptive_ics=false,
StoragePolicy storage_policy = DefaultStoragePolicy,
TrianglePolicy triangle_policy = DefaultTrianglePolicy

)

As for threepf_cubic_task the last three parameters are optional. The sample configurations
are built from restricting the Cartesian product of the (kt, α, β) parameters kts × alphas
× betas to valid triangle configurations.

As for cubic tasks, the sample points for the 2-point function are not specified separately.
CppTransport will compute the wavenumbers appearing on each external leg of the 3-point
function and use these to build a list of sample points for the 2-point function. For tasks
specified using combinations of (kt, α, β) this means that the sample points can be irregularly
spaced if the sampled set of bispectrum configurations is sparse.

– 71 –

5.3.3 Specifying a storage policy

Sometimes the grids ks × ks × ks or kts × alphas × betas will include combinations
that are not needed for the task at hand. Rather than wastefully compute these, CppTransport
allows them to be omitted by specifying a storage policy.

If supplied, a storage policy should be an instance of a callable object that accepts a ref-
erence to a transport::threepf_kconfig object and returns a valid transport::storage_outcome :

transport::storage_outcome (StoragePolicy)(const transport::threepf_kconfig& config)

The transport::threepf_kconfig data structure specifies the configuration that is to be in-
spected. Its fields are public data members:

• serial
The proposed unique serial number for this configuration.

• k1_serial , k2_serial , k3_serial
The serial numbers for the wavenumbers k1, k2, k3 associated with each external leg.

• k1_conventional , k2_conventional , k3_conventional
The conventionally-normalized wavenumbers associated with each external leg.

• k1_comoving , k1_comoving , k3_comoving
The comoving-normalized wavenumbers associated with each external leg.

• kt_conventional , kt_comoving
The conventional- and comoving-normalized kt associated with this configuration.

• alpha , beta
The α and β values associated with this configuration.

The configuration presented for inspection is guaranteed to be a valid triangle as determined
by the active TrianglePolicy (§5.3.4). The callable should inspect the and determine whether
it should be accepted or rejected. The default storage policy will accept all configurations.

To accept this configuration the policy should return transport::storage_outcome::accept .
To reject, it should return either:

• transport::storage_outcome::reject_remove
When constructing this configuration, it may have been necessary to assign unique
serial numbers to new configurations for the two-point function. This will happen if
at least one leg of the bispectrum corresponds to a wavenumber that has not yet been
allocated a unique number.
If reject_remove is specified then CppTransport will reject the configuration and deal-
locate any serial numbers that were speculatively assigned to ‘new’ two-point function
configurations.

• transport::storage_outcome::reject_retain
Alternatively, reject_retain allows these serial numbers to be retained.
A typical use case for this functionality occurs when you wish to subsample a cubic
grid. Suppose the range ks contains a set {k1, k2, . . . , km} of wavenumbers, ordered

– 72 –

so that ki < kj if i < j. Therefore km corresponds to the shortest physical scale that
will be sampled. The set of isosceles triangles containing this mode is given by the
configurations (km, ki, ki) for all i, and a suitable storage policy picking out this subset
might be

1 struct StoragePolicy
2 {
3 transport::storage_outcome operator()(const transport::threepf_kconfig& data)
4 {
5 if(data.k1_serial == m) return(transport::storage_outcome::accept);
6 else return(transport::storage_outcome::reject_retain);
7 }
8 };

Each configuration will be presented to StoragePolicy for inspection in the order de-
termined by the Cartesian product ks 3, so by returning reject_retain we can ensure
that the serial numbers assigned to the 2-point function configurations will match the
ordering in ks .

5.3.4 Specifying a triangle policy

CppTransport also allows specification of a triangle policy. This is used to determine which
members of the grids ks × ks × ks and kts × alphas × betas are considered valid
triangles.

CppTransport’s default triangle policy imposes two conditions: first, it requires k1 +k2 +
k3 > 2 max{k1, k2, k3}. This is the geometrical condition that the sides {k1, k2, k3} can form
a triangle and is equivalent to demanding that the sum of the two shortest sides is longer
than the longest side. If this is not satisfied then the ‘triangle’ cannot be closed.

Second, it imposes the condition k1 > k2 > k3. This is intended to prevent unnecessary
repeat calculations. If we are interested only in connected correlation functions then we are
free to reorder the fields inside any equal-time correlation function 〈δXa(k1)δXb(k2)Xc(k3)〉
because the failure of any pair of Xs to commute will produce contact terms. Because
CppTransport solves the correlation functions for all index combinations (a, b, c), this reorder-
ing property implies that it is only necessary to compute those configurations satisfying
k1 > k2 > k3. The remaining configurations can be determined by permuting the index
labels.

For some purposes, however, it is convenient to drop this restriction or to adopt a
different ordering. One use case is to produce bispectrum shape plots in the (α, β) plane.
The restriction k1 > k2 > k3 implies that CppTransport will produce correlation functions
that cover only 1/3! = 1/6 of the allowed (α, β) space, and in principle the remaining regions
can be determined by suitable transformations of the region that is computed. However, this
transformation will map a rectangular mesh in the computed region to a non-rectangular
mesh in the other regions. Many plotting libraries require a uniform rectangular mesh of
points in order to produce surface or 3-dimensional plots, making these non-rectangular
transformed meshes unacceptable. In this case, instead of splining the transformed regions
and resampling them on a rectangular mesh, it can be simpler to absorb the factor of 6
computation cost and have CppTransport compute these points directly.

– 73 –

A triangle policy is an instance of a callable object that determines whether a given
configuration forms a triangle. The ‘cubic’ and ‘αβ’ constructors require different types of
policy:

• for a ‘cubic’ constructor, the triangle policy should accept 6 arguments and return a
bool indicating whether the configuration is valid:

bool (TrianglePolicy)(unsigned i, unsigned j, unsigned k, double k1, double k2, double k3)

The arguments i , j , k refer to the index of the k1, k2, k3 values (respectively)
within the original range ks . The arguments k1 , k2 , k3 give these (conventionally-
normalized) wavenumber values directly.
The default CppTransport policy rejects triangles according to the following criteria:13

1 // impose ordering k1 > k2 > k3
2 if(i < j) return false;
3 if(j < k) return false;
4
5 // impose triangle
6 double max = std::max(std::max(k1, k2), k3);
7 return(k1 + k2 + k3 - 2.0*max >= 0.0);

• for an ‘αβ’ task, the triangle policy should accept just two arguments corresponding to
the values of α and β,

bool (TrianglePolicy)(double alpha, double beta)

The default policy rejects triangles as follows:

1 // beta should lie between 0 and 1
2 if(beta < 0.0) return false;
3 if(beta > 1.0) return false;
4
5 // alpha should lie between 1-beta and beta-1
6 if(beta - 1.0 - alpha > 0.0) return false;
7 if(alpha - (1.0 - beta) > 0.0) return false;
8
9 // impose k1 > k2 > k3

10 if(alpha < 0) return false;
11 if(beta - (1.0 + alpha)/3.0 < 0.0) return false;

In addition, it requires that none of the ‘squeezing’ measures 1 − β, |1 + α − β| and
|1− α+ β| becomes too small. By default the cutoff is taken to be 10−8.

6 Adding postintegration tasks

Although integration tasks are always the first step in using CppTransport, for most purposes
the n-point functions they produce need to be reprocessed into observables. At a minimum
we normally require predictions for the correlation functions of the primordial curvature

13In reality the policies do not perform literal < or > comparisons because of possible issues with floating
point arithmetic. These subtleties are ignored here, and the policy is presented as if it were implemented
purely using its mathematical definition. The same applies to the default policy for ‘αβ’ tasks.

– 74 –

perturbation ζ. It is ζ that eventually determines the statistics of the observed density
perturbation—although it may happen (where an adiabatic limit is not acheived by the
end of inflation) that these observable statistics also depend on post-inflationary physics
that is not handled by CppTransport. In such cases the ζ correlation functions produced by
the CppTransport platform should be used as initial conditions for a Boltzmann solver (or
equivalent) that is capable of following their evolution through the subsequent radiation- and
matter-dominated phases.

6.1 ζ tasks for the two- and three-point functions

Post-processing or ‘postintegration’ tasks accept output from integration tasks (or other
postintegration tasks) and convert it into some other form. To produce ζ correlation functions
we need to specify post-processing tasks that can perform the gauge transformation from field
space into ζ.

Returning to the example of double-quadratic inflation, we can ‘connect’ suitable two-
and three-point function tasks for ζ to the existing integration tasks tk2 and tk3 . It is only
necessary to add the following lines at the end of the write_tasks() function:

1 transport::zeta_twopf_task<> ztk2("dquad.twopf-zeta", tk2);
2 ztk2.set_description("Convert the output from dquad.twopf into a zeta 2-point function");
3
4 transport::zeta_threepf_task<> ztk3("dquad.threepf-zeta", tk3);
5 ztk3.set_description("Convert the output from dquad.threepf into zeta 2- and 3-point functions");
6
7 repo.commit(ztk2);
8 repo.commit(ztk3);

The constructor for zeta_twopf_task accepts a name and an instance of a twopf_task , whereas
the constructor for zeta_threepf_task accepts a name and an instance of a generic threepf_task .
The 3-point function task may have been constructed using either threepf_cubic_task or
threepf_alphabeta_task . It is not possible to use a twopf_task with zeta_threepf_task or a
threepf_task with zeta_twopf_task .

After constructing ztk2 and ztk3 they are committed to the repository database using
repo.commit() , as for any repository object. The original commit() calls for tk2 and tk3
can be removed because CppTransport will realize that these integration tasks must be stored
in the repository database in order for ztk2 and ztk3 to make sense.

Build the dquad executable as before and invoke it with an instruction to execute the
new dquad.threepf-zeta task:

1 mpiexec -n 4 dquad -v -r test-zeta --create --task dquad.threepf-zeta

As usual, the -n argument of mpiexec should be adjusted to use a suitable number of
processes on your machine. CppTransport will print short updates as it carries out each task:
Task manager: processing task 'dquad.threepf' (1 of 2)
Committed content group '20160516T130625' for task 'dquad.threepf' at 2016-May-16 14:12:44
Task manager: processing task 'dquad.threepf-zeta' (2 of 2)
Committed content group '20160516T131244' for task 'dquad.threepf-zeta' at 2016-May-16 14:13:50
Task manager: processed 2 database tasks in wallclock time 7m 24.5s | time now 2016-May-16 14:13:50

Although we only asked for the dquad.threepf-zeta task, CppTransport has scheduled ex-
ecution of both dquad.threepf and dquad.threepf-zeta. This happens because it is aware

– 75 –

that dquad.threepf-zeta needs content from dquad.threepf before it can be processed. If
no content groups are available for dquad.threepf then it is added to the list of tasks to be
processed. The same applies for any chain of dependent tasks; if a task specified on the com-
mand line depends on output from some other task for which no content groups are available,
CppTransport will automatically schedule execution of these tasks.

If we now re-run the same command (removing the unnecessary option --create), Cpp-
Transport will notice that content for dquad.threepf is already available and assume that it
should be used to feed the new execution of dquad.threepf-zeta:

1 $ mpiexec -n 4 dquad -v -r test-zeta --create --task dquad.threepf-zeta
2 Committed content group '20160516T131956' for task 'dquad.threepf-zeta' at 2016-May-16 14:21:02
3 Task manager: processed 1 database task in wallclock time 1m 6.97s | time now 2016-May-16

14:21:02↪→

Checking the number of content groups attached to each task using --status shows that
dquad.threepf-zeta now has 2 groups, while dquad.threepf has only one:

1 $./dquad -r test-zeta/ --status
2 Available tasks:
3 Task Type Last activity Outputs
4 dquad.threepf integration 2016-May-16 13:12:44 1
5 dquad.threepf-zeta postintegration 2016-May-16 13:21:02 2
6 dquad.twopf integration 2016-May-16 13:06:25 0
7 dquad.twopf-zeta postintegration 2016-May-16 13:06:25 0

6.2 Applying tags to control which content groups are used

When several suitable content groups are available to feed into a postintegration task, Cpp-
Transport must decide which one should be used. By default it will use the most recently-
generated group, but this not always the appropriate choice. For example, we might have
several content groups attached to the task dquad.threepf, perhaps generated using differ-
ent steppers or different numerical tolerances. To control which content groups are used by
postintegration tasks CppTransport allows tags to be attached to each group. These are short,
descriptive strings that label some property of the group. (Of course, these labels may be
useful in their own right in addition to their ability to control selection of content groups.)

Using the --tag switch, tags can be attached to content groups at the time of generation.
Alternatively they may be applied later using --add-tag (see §8.1.2). For example, suppose
we generate two content groups for the same integration task, one using the Dormand–Prince
4th/5th-order stepper and another using the Fehlberg 7th/8th-order stepper. This could be
done by compiling two different executables using different model description files, or by
editing the model description file and rebuilding. Using --tag, we can tag each of these
content groups appropriately:

1 $ mpiexec -n 4 dquad -v -r test-tags --create --task dquad.threepf --tag stepper-dopri5
2 $ mpiexec -n 4 dquad -v -r test-tags --task dquad.threepf --tag stepper-fehlberg78

It can be checked that the tags have been correctly applied by using --info with the content
group name, or by generating an HTML report and viewing the group records. We could
have specified multiple tags, if necessary, by repeating the --tag argument for each one.
There is no limit to the number of tags that can be applied.

– 76 –

To compare the results from each stepper we need to obtain ζ predictions from each
content group by feeding them to dquad.threepf-zeta. This can be done by specifying the
appropriate tag (or group of tags) when we launch the dquad.threepf-zeta job:

1 $ mpiexec -n 4 dquad -v -r test-tags --tag stepper-dopri5 --task dquad.threepf-zeta

This time, the option --tag has two meanings: first, as for an integration task, the resulting
content group will be tagged with whatever labels we specify, here ‘stepper-dopri5’. Second,
when searching for content groups to use as a source, CppTransport will restrict attention to
those with matching tags. If multiple tags are specified then CppTransport will attempt to
match them all, and if no suitable content groups are found then the task will fail with an
error:14

1 $ mpiexec -n 4 dquad -v -r test-tags --tag no-matching-tag --task dquad.threepf-zeta
2 Repository error: no matching content groups for task 'dquad.threepf'

This process can be repeated. For example, in §7 we will see how to build derived prod-
ucts and generate them using output tasks. Each output task draws its data from a collection
of integration and postintegration tasks such as dquad.threepf and dquad.threepf-zeta. By
specifying a collection of tags while executing the output task we can cause it to select input
data that satisfy specific labels such as stepper-dopri5 or stepper-fehlberg78.

Selecting a content group by name.—Alternatively, it is possible to select a content group by
name. To do this, specify the name as a tag. The resulting content groups will themselves
be tagged with the original group name, meaning that in principle it is possible to use this
feature to follow chains of groups back to an original integration content group. In practice,
however, this kind of dependency tracking is best performed using HTML reports. These
can generate dependency diagrams that summarize the interrelation between content groups
more efficiently than a large number of tags.

The option to specify content groups by name remains useful when it is necessary to
force a particular group to be used.

6.3 Paired ζ tasks

It sometimes happens that the output from an integration task is of limited interest by
itself. For example, if our interest is to determine the observational viability of a particular
inflationary model then we only require predictions for ζ, at least if a suitable adiabatic limit
is reached during the inflationary phase. In these circumstances the content group generated
by an integration task will be used only for post-processing by other postintegration tasks.
This is such a common occurrence that CppTransport provides a short-cut enabling a pair of
coupled integration/postintegration tasks to be processed simultaneously. Tasks coupled in
this way are said to be paired.

To pair the postintegration tasks ztk2 and ztk3 with their parent integration tasks,
use the set_paired() method. The C++ code used to generate these tasks could be replaced
by

14If a task has no content groups, but tags are specified on the command line, then CppTransport will
schedule execution of the corresponding task. The generated content group will be labelled with the given
tags. But if content groups are present, simply without matching tags, then CppTransport will issue an error.
The presumption is that tags have been specified with an intention to pick out a content group with specific
properties.

– 77 –

1 transport::zeta_twopf_task<> ztk2("dquad.twopf-zeta", tk2);
2 ztk2.set_description("Convert the output from dquad.twof into a zeta 2-point function");
3 ztk2.set_paired(true);
4
5 transport::zeta_threepf_task<> ztk3("dquad.threepf-zeta", tk3);
6 ztk3.set_description("Convert the output from dquad.threepf into zeta 2- and 3-point functions");
7 ztk3.set_paired(true);
8
9 repo.commit(ztk2);

10 repo.commit(ztk3);

Once tasks have been paired in this way:

• asking CppTransport to execute the integration task will generate a content group for
it, as usual. This content group can be used in the same way as any other.

• asking CppTransport to execute the postintegration task will commence simultaneous
processing of the integration/postintegration pair. The postintegration task will not
look for an existing content group attached to the integration task, as described above;
a new integration content group is generated every time. To mark that this content
group is paired with a postintegration group, CppTransport will add the suffix ‘-paired’
to its name.
Notice that this means it isn’t possible to select a pre-existing content group to use
with a paired postintegration task.

During simultaneous processing, the gauge transformation from field-space to ζ will be calcu-
lated on-the-fly, without writing all the integration data out to a database and then reading it
back again as with unpaired post-processing. This means that paired tasks normally execute
more quickly than unpaired tasks.

Task options.—It is possible to specify independent checkpoint intervals for the tasks in an
integration/postintegration pair, but in the event of failure the data stored in each container
will be synchronized. In practice this means that data in one container that has no coun-
terpart in the other will be discarded, and therefore there is no real use case for unequal
checkpoint intervals.

6.4 Using ζ SQLite data containers

§4.8 described the database containers used to hold data products from an integration task.
The data products from postintegration tasks are handled very similarly. In particular, each
content group will have the same physical layout shown in Fig. 5. All n-point functions and
supporting metadata are aggregated into a main container data.sqlite, and logs are left in
the directory logs.

6.4.1 ζ two-point function tasks
The SQLite container for a task generating the ζ two-point function will container the fol-
lowing tables:

1. time_samples — contains the list of time sample points.
This table duplicates, and is inherited from, the one described in §4.8 (see p.64).

2. twopf_samples — contains the list of sample points for the 2-point function
This table duplicates, and is inherited from, the one described in §4.8 (see p.64).

– 78 –

3. zeta_twopf — contains the real part of the ζ 2-point function
unique_id unique identifier labelling this row. Not used unless strict

data consistency checks are enabled by defining the macro
CPPTRANSPORT_STRICT_CONSISTENCY during compilation. See §4.8.2.

tserial reference to serial number times_samples.serial identifying the time
sample point for this row

kserial reference to serial number twopf_samples.serial identifying the
wavenumber sample point for this row

twopf dimensionless value of the real part of the ζ 2-point function,
〈ζ(k1)ζ(k3)〉 = (2π)3δ(k1 + k2)Pζ .
The value stored is Re(k3Pζ).

4. gauge_xfm1 — contains the linear gauge transformation Na
The required Fourier-space gauge transformation has the form

ζ(k) = Na(k)δXa(k) + 1
2

∫ d3q

(2π)3
d3r

(2π)3 δ(k− q − r)Nab(q, r)δXa(q)δXb(r) + · · · , (6.1)

where δXa, δXb (and so on) label fluctuations over the full phase space of fields and their
derivatives with respect to N , and the omitted terms represented by ‘· · · ’ are higher order
X. Expressions for the transformation coefficients Na and Nab may be extracted from Dias et
al. [54]. In the notation of that reference, the expressions used by CppTransport correspond to
ζsimple

1 and ζsimple
2 , making Na independent of k in practice.

The ζ post-processing tasks write these transformation coefficients into the data containers.
Specifically, the table gauge_xfm1 is associated with production of the ζ power spectrum, for
which only Na is required. Although the expression used for Na in current versions is momen-
tum independent, CppTransport does not assume this will always be the case and records the
gauge transformation for each momentum configuration.

unique_id unique identifier labelling this row. Not used unless strict
data consistency checks are enabled by defining the macro
CPPTRANSPORT_STRICT_CONSISTENCY during compilation. See §4.8.2.

tserial reference to serial number times_samples.serial identifying the time sam-
ple point for this row

kserial reference to serial number twopf_samples.serial identifying the wavenum-
ber sample point for this row

page page number, defined as for backg.page in §4.8; see p.64
eleM . . . components of Na for this momentum configuration, packed with M = #a.

Here, as in §4.8, ‘#’ is the map that takes a species label to its numeric
equivalent defined by the order of declaration in the model description file.
All fields come first, followed by all field derivatives in the same order.
Notice that the gauge transformation (6.1) is taken to be written in terms
of derivatives, as in Ref. [54], and not canonical momenta.
Notice that because ζ is dimensionless but the δXa have dimensions of
mass, Na has dimensions of inverse mass. It therefore scales with the value
assigned to the Planck scale MP.

6.4.2 ζ three-point function tasks
In addition to the generic tables described above, postintegration tasks that generate the ζ
three-point function also write the following tables to the data container:

– 79 –

1. threepf_samples — contains the list of sample points for the 3-point function
This table duplicates, and is inherited from, the one decribed in §4.8 (see p.66).

2. threepf — contains the real part of the ζ 3-point function
unique_id unique identifier labelling this row. Not used unless strict

data consistency checks are enabled by defining the macro
CPPTRANSPORT_STRICT_CONSISTENCY during compilation. See §4.8.2.

tserial reference to serial number times_samples.serial identifying the time sam-
ple point for this row

kserial reference to serial number twopf_samples.serial identifying the wavenum-
ber sample point for this row

threepf dimensionless value of the real part of the ζ 3-point function. If this is
taken to satisfy 〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δ(k1 +k2 +k3)Bζ then the stored
quantity is the dimensionless shape function k2

1k
2
2k

2
3Bζ .

redbsp dimensionless reduced bispectrum, defined by

6
5fNL(k1, k2, k3) = Bζ(k1, k2, k3)

Pζ(k1)Pζ(k2) + Pζ(k1)Pζ(k3) + Pζ(k2)Pζ(k3) . (6.2)

3. gauge_xfm2_123
gauge_xfm2_213
gauge_xfm2_312 — contains the quadratic gauge transformation Nab
For each bispectrum configuration there are three possible assignments for Nab. CppTransport
writes them all to the data container, in three separate tables with the mapping:

gauge_xfm_123 Nab(k2,k3)
gauge_xfm_213 Nab(k1,k3)
gauge_xfm_312 Nab(k1,k2)

The columns in each table are:
unique_id unique identifier labelling this row. Not used unless strict

data consistency checks are enabled by defining the macro
CPPTRANSPORT_STRICT_CONSISTENCY during compilation. See §4.8.2.

tserial reference to serial number times_samples.serial identifying the time sam-
ple point for this row

kserial reference to serial number twopf_samples.serial identifying the wavenum-
ber sample point for this row

page page number, defined as for backg.page in §4.8; see p.64
eleM . . . components of Nab for this momentum configuration and momentum as-

signment, packed with the right-most ordering M = D × #a + #b. As
for the linear gauge transformation, the expressions assume (6.1) is written
in terms of derivatives with respect to e-folding N rather than canonical
momenta.

On superhorizon scales all the gauge transformation coefficients become independent of mo-
menta.

– 80 –

6.5 Inner-product tasks to compute fNL-like amplitudes

Production of ζ correlation functions is not the only kind of post-processing that could
be considered. In principle it is possible to implement CppTransport postintegration tasks to
compute almost any observable of interest, but at present only one option is offered—an inner
product between the numerically-computed bispectrum and one of the standard bispectrum
shapes.

To generate such inner products we use an fNL_task . CppTransport uses this name
because, under certain circumstances, the amplitudes they produce may be related to the
fNL amplitudes reported by surveys of the cosmic microwave background anisotropies or the
large-scale galaxy distribution. However, this interpretation should be treated with caution.
As will be explained below, there is no necessary relation between these inner products and
the quantities observed by some particular instrument, and to obtain truly accurate results
requires a more careful calculation. For an example, see Ref. [55].

To compute an inner product we must provide a source of 3-point function data by
attaching a zeta_threepf_task . However, CppTransport places restrictions on the source 3-
point functions for which it can compute inner products. In particular:

• currently, inner products are supported only for 3-point function tasks built from a
linear grid (whether of cubic or αβ type).

• the grid should be complete—no configurations should be dropped by the storage policy.

The inner product between two bispectra is defined to be a sum over the corresponding
dimensionless shape functions. Given a bispectrum B(k1, k2, k3), its shape function is S ≡
(k1k2k3)2B(k1, k2, k3) and the inner product between two bispectra B1, B2 satisfies [56, 57]

〈〈B1, B2〉〉 ≡
∑

triangles
S1(k1, k2, k3)S2(k1, k2, k3). (6.3)

Sometimes the configurations in this sum are weighted to approximate the sensitivity of a
particular instrument, but CppTransport chooses to weight all configurations equally. With
this choice the formal sum over triangles can be understood as an integral

〈〈B1, B2〉〉 ≡
∫

dk1 dk2 dk3 S1(k1, k2, k3)S2(k1, k2, k3). (6.4)

For the reasons explained above this choice is not unique, and even when we have settled
on a weighting for the integrand the definition must be completed by specifying UV and IR
limits. The numerical value of a typical inner product 〈〈B1, B2〉〉 (and any conclusions that
are drawn from it) will depend on the choices that are made. However, this arbitrariness is
not really a cause for concern, because the purpose of the inner product is not mathematical
but physical. Present-day experiments achieve only low signal-to-noise in measurements of
any individual bispectrum configuration. Results with high signal-to-noise can be obtained
only by supposing a relationship between the amplitude of different groups of configurations
and averaging to obtain to cumulative contribution of the entire group. Our choice of inner
product is useful if it happens that the averaging involved in Eq. (6.3) can be regarded as a
proxy for the averaging over configurations performed by a realistic experiment.

– 81 –

6.5.1 The standard templates
CppTransport knows about a number of standard ‘templates’, or suppositions for the rela-
tionship between the amplitude of nearby bispectrum configurations. These are:

• The local template. This is defined by

Blocal
ζ = 2

(
Pζ(k1)Pζ(k2) + Pζ(k1)Pζ(k3) + Pζ(K2)Pζ(k3)

)
. (6.5)

• The equilateral template. This satisfies [58]

Bequi
ζ = 6

(
−Pζ(k1)Pζ(k2)− Pζ(k1)Pζ(k3)− Pζ(k2)Pζ(k3)

− 2
[
Pζ(k1)Pζ(k2Pζ(k3)

]2/3

+
[
Pζ(k1)P 2

ζ (k2)
]1/3

Pζ(k3) + 5 cyclic permutations
) (6.6)

• The orthogonal template. This satisfies [59]

Bortho
ζ = 6

(
−3Pζ(k1)Pζ(k2)− 3Pζ(k1)Pζ(k3)− 3Pζ(k2)Pζ(k3)

− 8
[
Pζ(k1)Pζ(k2Pζ(k3)

]2/3

+ 3
[
Pζ(k1)P 2

ζ (k2)
]1/3

Pζ(k3) + 5 cyclic permutations
) (6.7)

For any template Bi
ζ CppTransport defines an associated amplitude parameter f iNL,

f iNL = 5
3
〈〈B,Bi

ζ〉〉
〈〈Bi

ζ , B
i
ζ〉〉

(no sum on i) (6.8)

When the inner products in (6.8) are a good estimate for the response of the quadratic
estimator used for practical parameter estimation in a given experiment, the corresponding
f iNL should be a good estimate for the amplitudes f local

NL , f equi
NL , fortho

NL (and so on) measured
by that experiment, assuming the true primordial bispectrum is B. On the other hand,
if the inner product 〈〈·, ·〉〉 is not a good estimate for the response of a practical estimator
then f iNL computed in this way may have little or nothing to do with the response of a
real experiment. In particular, this can happen if B is too far from scale-invariant. The 3-
dimensional inner product (6.3) will weight configurations near the upper limit kmax like k3

max,
whereas a realistic CMB estimator working in ` space would weight such configurations like
`2max. This difference in dimensionality can mean that 〈〈·, ·〉〉 overestimates the signal-to-noise
contributed by the high-k configurations.

6.5.2 Building an inner-product task
To compute an inner product and associated fNL-parameter for the double quadratic model
we will need a new 3-point function task build from a linear grid. The output from this
task should be attached to a ζ task, and the output from that should be attached to the
inner-product task.

To specify the template the constructor for fNL_task<> requires a third argument. The
possible values technically belong to CppTransport’s visualization toolkit rather than the
underlying base platform, and therefore live in the vis_toolkit namespace rather than the
transport namespace.

– 82 –

• vis_toolkit::bispectrum_template::local – local template

• vis_toolkit::bispectrum_template::equilateral – equilateral template

• vis_toolkit::bispectrum_template::orthogonal – orthogonal template

1 transport::basic_range<> ks_linearspaced(kt_lo, kt_hi, 50, transport::spacing::linear);
2
3 transport::threepf_cubic_task<> tk3_linear("dquad.threepf-linear", ics, ts, ks_linearspaced);
4 tk3_linear.set_adaptive_ics_efolds(4.0);
5 tk3_linear.set_description("Compute time history of the 3-point function on a linear grid");
6
7 transport::zeta_threepf_task<> ztk3_linear("dquad.threepf-linear-zeta", tk3_linear);
8 ztk3_linear.set_description("Convert the output from dquad.threepf-linear into zeta"

" 2 and 3-point functions");↪→
9

10 transport::fNL_task<> fNL_local("dquad.fNL-local", ztk3_linear,
transport::bispectrum_template::local);↪→

11 fNL_local.set_description("Compute inner product of double-quadratic bispectrum"
" with local template");↪→

12
13 repo.commit(fNL_local);

The resulting executable can be built in the usual way, and launched using mpiexec . We need
only specify the final task dquad.fNL-local, because CppTransport will realise that content
groups for dquad.threepf-linear and dquad.threepf-linear-zeta are required in order to
generate suitable input.

With linear spacing in k we generate many more configurations, roughly 12,000. Al-
though each configuration integrates fairly quickly, the total number means these tasks will
take a few minutes to process:

1 $ mpiexec -n 4 dquad -v -r test-fNL --create --task dquad.fNL-local --gantt gantt-fNL.pdf
2 Task manager: processing task 'dquad.threepf-linear' (1 of 3)
3 Task manager: 2016-May-16 14:32:36
4 Items processed: 9073 In flight: 634 Remaining: 2344
5 Complete: 75.3% Mean CPU/item: 0.0985s Assignment: 60s
6 Estimated completion: 2016-May-16 14:34:26 (1m 50.7s from now)
7 Task manager: 2016-May-16 14:32:47
8 Items processed: 9707 In flight: 1196 Remaining: 1148
9 Complete: 80.5% Mean CPU/item: 0.0975s Assignment: 60s

10 Estimated completion: 2016-May-16 14:34:11 (1m 24.2s from now)
11 Task manager: 2016-May-16 14:33:50
12 Items processed: 10971 In flight: 868 Remaining: 212
13 Complete: 91% Mean CPU/item: 0.0969s Assignment: 60s
14 Estimated completion: 2016-May-16 14:34:30 (40.4s from now)
15 Task manager: 2016-May-16 14:34:08
16 All work items processed: 2016-May-16 14:34:08
17 Committed content group '20160516T132659' for task 'dquad.threepf-linear' at 2016-May-16 14:35:01
18 Task manager: processing task 'dquad.threepf-linear-zeta' (2 of 3)
19 Committed content group '20160516T133501' for task 'dquad.threepf-linear-zeta' at 2016-May-16

14:39:12↪→
20 Task manager: processing task 'dquad.fNL-local' (3 of 3)
21 Committed content group '20160516T133912' for task 'dquad.fNL-local' at 2016-May-16 14:39:13
22 Task manager: processed 3 database tasks in wallclock time 12m 14.7s | time now 2016-May-16

14:39:13↪→

On a slow filing system you may find that CppTransport’s periodic progress updates show
an adjustment of the target work assignment. For this task the final data container reaches
∼ 3.5 Gb, and aggregation may take a few seconds per temporary database on an SSD, or

– 83 –

12:41:00.000000

12:42:00.000000

12:43:00.000000

12:44:00.000000

12:45:00.000000

12:46:00.000000

12:47:00.000000

12:48:00.000000

12:49:00.000000

12:50:00.000000

12:51:00.000000

Master

Worker 1

Worker 2

Worker 3

Aggregation
MPI activity
Database activity
2pf task
3pf task
ζ 2pf task
ζ 3pf task
fNL task
Output task
Push integration
Push postintegration
Push output

17:08:00.000000

17:13:00.000000

17:18:00.000000

17:23:00.000000

Master

Worker 1

Worker 2

Worker 3

Aggregation
MPI activity
Database activity
2pf task
3pf task
ζ 2pf task
ζ 3pf task
fNL task
Output task
Push integration
Push postintegration
Push output

Figure 11. Process Gantt charts for the inner-product task dquad.fNL-local. Top chart: using
a machine with solid-state storage. Bottom chart: using a machine with an external USB3 hard
disk. Notice that aggregation is more time consuming using disks. Aggregation was performed using
SQLite’s write-ahead logging mode.

more if writing to a conventional disk. As explained above, when aggregation times are
non-negligible CppTransport schedules larger batches of work in an attempt to avoid wasteful
stalls. That process Gantt chart for this job is shown in Fig. 11.

6.5.3 Example: Using the SQLite data container to produce a plot

In §7 we will see how to generate a derived product that plots the time history of f local
NL in

this model. As for other types of data-generating task, however, it is also possible to extract
raw data from the SQLite database and use that directly.

Each inner-product task will write the following tables into its container:
1. time_samples – contains the list of time sample points. This table duplicates, and is inherited

from, the one described in §4.8 (see p.64).

– 84 –

2. fNL_local
fNL_equi
fNL_ortho — contain the inner products needed to compute f iNL
Typically only one of these tables will be present, as appropriate. Each table contains the
columns:

tserial reference to serial number time_samples.serial identifying the time sample
point for this row

BB contains the inner product 〈〈B,B〉〉, where B is the numerical bispectrum
produced by the ζ task used as a source

BT contains the inner product 〈〈B, T 〉〉, where B is as above and T is the ap-
propriate template

TT contains the inner product 〈〈T, T 〉〉

As an example, consider what would be required to compute f iNL from this database and
plot it. The first step is to construct an SQL query that computes the required combination
of the columns BT and TT . We also need a column representing the time sample point. A
simple way to achieve this is

1 SELECT
2 tserial AS tserial,
3 (5 / 3) * BT / TT AS fNL
4 FROM fNL_local;

This is an example of the way in which short SQL queries can be used to perform simple
data analysis without the need to write programs. For example, if we wished it would be
possible to add a new column representing the (square of the) correlation ‘cosine’ between B
and T ,

cos2(B, T) = 〈〈B, T 〉〉2

〈〈B,B〉〉〈〈T, T 〉〉
. (6.9)

To do this we would change the query:
1 SELECT
2 tserial AS tserial,
3 (5 / 3) * BT / TT AS fNL,
4 BT * BT / (BB * TT) AS cos_square
5 FROM fNL_local;

We would usually prefer to plot e-foldings N on the x-axis rather than the time serial number.
This requires us to join the fNL_local and time_samples tables, by splicing together rows
from each table to form a bigger table with more columns. This is accomplished by the SQL
INNER JOIN clause:

1 SELECT
2 time_samples.time AS time,
3 (5 / 3) * fNL_local.BT / fNL_local.TT AS fNL,
4 fNL_local.BT * fNL_local.BT / (fNL_local.BB * fNL_local.TT) AS cos_square
5 FROM fNL_local
6 INNER JOIN time_samples ON fNL_local.tserial = time_samples.serial
7 ORDER BY time;

Most database managers will allow the results of this query to be saved in any suitable
format. ‘Comma Separated Value’ or CSV is usually a good choice that has widespread
support among third party tools. Once the data has been exported we can plot it as we

– 85 –

15 20 25 30 35 40 45 50 55 60
e-folds N

2.0

1.5

1.0

0.5

0.0

0.5
f local

NL

Figure 12. Evolution of the inner-product amplitude f local
NL in the double-quadratic inflation model.

wish, by using a suitable tool such as Gnuplot. Alternatively, the following Python script
will produce a simple plot from a CSV file.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4 import csv
5
6 with open('fNL_local.csv') as f:
7 time = []
8 fNL_local = []
9

10 reader = csv.DictReader(f)
11 for row in reader:
12 time.append(float(row['time']))
13 fNL_local.append(float(row['fNL']))
14
15 time_data = np.array(time)
16 fNL_local_data = np.array(fNL_local)
17
18 plt.figure()
19 plt.plot(time_data, fNL_local_data, label='$f_{\mathrm{NL}}^{\mathrm{local}}$')
20
21 plt.xlabel(r'e-folds N')
22 plt.legend(frameon=False)
23 plt.savefig('fNL_local.pdf')

The resulting plot is shown in Fig. 12.

– 86 –

http://www.gnuplot.info

7 Generating derived products using output tasks

We are now in a position to consider the final step in performing an analysis with CppTransport—
using its visualization toolkit to produce derived products. CppTransport can convert its raw
n-point functions into a large number of derived quantities, some of which are observables.
In many cases these quantities will be sufficient to undertake a simple model analysis, or
comparison with summary observables such as the power spectrum amplitude or spectral
index. For more advanced uses it may be preferable or necessary to export raw data from
the database and process it using a dedicated pipeline.

The current implementation of the visualization toolkit can produce good quality two-
dimensional line and scatter plots with minimal manual intervention. Outputs are built from
a series of building blocks:

• derived lines are simple functions of time or configuration that can be extracted from
the output of one or more tasks. Examples might be the values of raw correlation
functions, the spectral index of the power spectrum, or the tensor-to-scalar ratio—all
as functions of time or configuration. Many such quantities can be constructed using
just one task but others require two, such as the tensor-to-scalar ratio. (The tensor
amplitude is computed by a twopf_task or threepf_task , while the ζ amplitude is
computed by the zeta_* versions of these.)

• derived products are groups of derived lines, presented either as a table or as a plot. A
single derived product can include lines that draw data from many different integration
or postintegration tasks. However, only groups of lines that share a common type of
x-axis can be aggregated into a single derived product.

• output tasks are collections of derived products. When an output task is executed,
CppTransport produces fresh copies of each derived product it contains. The standard
rules described in §6.2 are used to select which content groups are used as data sources.

CppTransport supports two types of derived line: time series, which capture the evolution
of some quantity as a function of e-foldings N , and wavenumber series, which capture the
dependence on some aspect of the wavenumber configuration. This could be the scale k or kt,
but also shape parameters such as α or β, or the squeezing ratios ki/kt. It can automatically
take derivatives of wavenumber series in order to measure spectral indices.

7.1 Selecting which data to plot using SQL query objects

To build a derived line requires selecting among the time and wavenumber samples stored
by CppTransport during integration, or subsequently generated by a postintegration task.
Because CppTransport’s internal data storage services are built on top of SQL databases, a
natural and efficient means to perform this selection is to use SQL expressions as building
blocks.

CppTransport provides three classes that encapsulate SQL expressions suitable for se-
lecting a group of time of configuration sample points. SQL_time_query is used to select
time samples, and SQL_twopf_query or SQL_threepf_query are used to select suitable configu-
rations from the sample points for 2- or 3-point function wavenumber configurations. To use
them, supply a suitable SQL expression based on the columns of the tables time_samples ,

– 87 –

twopf_samples and threepf_samples , as appropriate. Each of these accepts a single argument,
which is the SQL expression to use.

Selecting times.—For example, to build a trivial query that selects all configurations we
require an expression that is always true, such as 1=1 . For example:

1 SQL_time_query all_times("1=1");
2 SQL_twopf_query all_twopfs("1=1");
3 SQL_threepf_query all_threepfs("1=1");

Alternatively, to select the latest time recorded in the database we could use
1 tserial IN (SELECT MAX(tserial) FROM time_samples)

The function MAX is provided by SQL. There is also a MIN function that can be used to
select the earliest time available in the database, or we can combine these to get two sample
points—both the earliest and latest times,

1 tserial IN (SELECT MAX(tserial) FROM time_samples UNION SELECT MIN(tserial) FROM time_samples)

To pick a specific time, it is possible to look up the corresponding serial number (using an
HTML report as described in §4.4.2 for wavenumber configurations, but checking the time
sample points instead) and specify it directly. Alternatively you can specify a range of times
using a query such as time > 10 AND time < 30 .

Selecting wavenumber configurations.—To select wavenumber configurations is equally easy.
For 2-point function configurations we could select a range of wavenumbers using an expres-
sion such as

1 conventional > 10 AND conventional < 50

The available column names are those that apply to the corresponding SQL table, as described
in §4.8. This means that we could also select configurations based on their horizon-exit time
via the column t_exit or their massless point t_massless . So, for example, we could select
all wavenumbers k that leave the horizon in some specified e-folding interval using

1 t_exit > 0.0 AND t_exit < 10.0

The same facilities are available for 3-point function configurations, for which it is possible to
select on the columns kt_conventional , kt_comoving , alpha , beta , t_exit_kt or t_massless .
If you wish to select on a squeezing ratio such as k3/kt then this has to be done by rewriting
the expression in terms of α and β, eg. the SQL expression

1 (1-beta)/2 < 1E-3

will select all configurations with squeezing ratio k3/kt < 10−3.

7.2 Example: plotting the evolution of the background fields

To see how these queries are used in practice, consider building a plot showing the time
evolution of the background fields and their derivatives. To keep our function write_tasks()

from becoming excessively long, we break it into two parts: one that builds the sample points
and initial conditions, and another that builds tasks and derived products. Later, we will
add further tasks and products; these can go in separate functions. Our prototypes are now

– 88 –

1 void write_tasks(transport::repository<>& repo, transport::dquad_mpi<>* model);
2
3 void write_zeta_products(transport::repository<>& repo, transport::initial_conditions<>& ics,

transport::range<>& ts, transport::range<>& ks);↪→

The function write_tasks() becomes
1 void write_tasks(transport::repository<>& repo, transport::dquad_mpi<>* model)
2 {
3 const double Mp = 1.0;
4 const double Mphi = 9E-5 * Mp;
5 const double Mchi = 1E-5 * Mp;
6
7 transport::parameters<> params(Mp, { Mphi, Mchi }, model);
8
9 const double phi_init = 10.0 * Mp;

10 const double chi_init = 12.9 * Mp;
11
12 const double N_init = 0.0;
13 const double N_pre = 12.0;
14 const double N_end = 60.0;
15
16 transport::initial_conditions<> ics("dquad", params, { phi_init, chi_init }, N_init, N_pre);
17
18 transport::basic_range<> ts(N_init, N_end, 300, transport::spacing::linear);
19
20 const double kt_lo = std::exp(3.0);
21 const double kt_hi = std::exp(8.0);
22
23 transport::basic_range<> ks_logspaced(kt_lo, kt_hi, 50, transport::spacing::log_bottom);
24 transport::basic_range<> ks_linearspaced(kt_lo, kt_hi, 50, transport::spacing::linear);
25
26 write_zeta_products(repo, ics, ts, ks_logspaced);
27 }

and the new function write_zeta_products() is

– 89 –

1 void write_zeta_products(transport::repository<>& repo, transport::initial_conditions<>& ics,
transport::range<>& ts, transport::range<>& ks)↪→

2 {
3 constexpr unsigned int num_fields = 2;
4
5 transport::threepf_cubic_task<> tk3("dquad.threepf", ics, ts, ks);
6 tk3.set_adaptive_ics_efolds(54.0);
7 tk3.set_description("Compute time history of the 3-point function on a cubic lattice"

" from k ~ e^3 to k ~ e^9");↪→
8
9 transport::zeta_threepf_task<> ztk3("dquad.threepf-zeta", tk3);

10 ztk3.set_description("Convert the output from dquad.threepf into zeta 2-"
" and 3-point functions");↪→

11
12 vis_toolkit::SQL_time_query all_times("1=1");
13
14 vis_toolkit::background_time_series<> bg_fields(tk3,

vis_toolkit::index_selector<1>(num_fields).all(), all_times);↪→
15
16 vis_toolkit::time_series_plot<> bg_plot("dquad.product.bg_plot", "background.pdf");
17 bg_plot.set_legend_position(vis_toolkit::legend_pos::bottom_left);
18 bg_plot += bg_fields;
19
20 transport::output_task<> out_tk("dquad.output.zeta");
21 out_tk += bg_plot;
22
23 repo.commit(out_tk);
24 }

The steps involved here are:

1. We set up a threepf_cubic_task and couple it to a zeta_threepf_task as described above.
These tasks will collaborate to produce the raw n-point functions in the model.

2. We set up an SQL_time_query containing the trivial SQL query 1=1 . This will select
all sample times stored in the database, so we will see the evolution of the background
fields over the entire integration.
However, remember that with adaptive initial conditions, CppTransport will not begin
storing samples until all n-point functions are available. This means that the first time
stored in the database will be some time later than the initial time Ninit = 0 specified
in the initial conditions package ics .

3. We set up a time-series line for the background fields using the vis_toolkit::background_time_series<>

class. Its constructor has signature

1 background_time_series(integration_task tk, index_selector<1> selector, SQL_time_query
query)↪→

The first argument identifies the integration task that will supply the data. The second
argument is a new type of object, an index_selector<> . This determines which fields to
plot. The final argument is an SQL_time_query . As explained above, this will determine
which time sample points to include. Our choice all_times will use them all.
The constructor for the index_selector accepts a single argument, corresponding to the
number of fields in the model. It takes a template argument between angle brackets,
here <1> , to indicate the number of indices being selected from. For example: the

– 90 –

background fields have one index, the two-point function Σab has two indices, and the
three-point function αabc has three indices.
By default all components are selected, but to be explicit we have used the all()

method to indicate that they should all be included. This will give us a plot showing
the field expectation values φ(N), χ(N) and also their derivatives pφ ≡ dφ/dN and
pχ = dχ/dN .

4. Once the derived line has been created we build a plot to contain it. This is the
object time_series_plot<> . Its constructor takes two arguments: a derived product
name (which should be unique) and a filename. The format of the output file is inferred
by Matplotlib from the extension of the filename. Any format that can be written by
Matplotlib may be used, and typically PDF (.pdf) or SVG (.svg) are good for plots.
As an alternative it is possible to specify a filename with extension .py. This causes
CppTransport to write a Python script that will produce the plot, but it does not execute
it—the script is the derived product. This gives an opportunity to apply custom
formatting or to apply adjustments that CppTransport cannot make automatically.

5. By default, the plot includes a legend that is placed in the upper right-hand corner. In
this case it will overlay the lines, so we elect to move it to the bottom left-hand corner
using the set_legend_position() method.

6. The data line bg_fields is added to the plot by writing bg_plot += bg_fields . If we had
more than one line to add we could include them all in a summation on the right-hand
side.

7. Finally, we build an output task called dquad.output.zeta. We add the plot to the task
by writing out_tk += bg_plot . The output task is committed to the database. Notice
that there is no need to commit the derived products on which the task depends, or the
tasks on which those derived products depend, because CppTransport will automatically
commit these dependencies if they are required.

To test, build the executable and launch the task dquad.output.zeta using
1 $ mpiexec -n 4 dquad -v -r test-output --create --task dquad.output.zeta

As usual, CppTransport will schedule execution of any tasks needed to produce content groups
that feed later tasks in the chain:
Task manager: processing task 'dquad.threepf' (1 of 2)
Committed content group '20160516T135141' for task 'dquad.threepf' at 2016-May-16 15:00:18
Task manager: processing task 'dquad.output.zeta' (2 of 2)
Committed content group '20160516T140133' for task 'dquad.output.zeta' at 2016-May-16 15:01:43
Task manager: processed 2 database tasks in wallclock time 10m 1.8s | time now 2016-May-16 15:01:43

Fig. 13 shows the generated plot, using the seaborn plot style. We will discuss its features
below and explain how it can be customized.

CppTransport employs a similar directory structure to that used for integration and
postintegration tasks. Generated content is placed in the output folder of the repository,
under a subfolder with name corresponding to the output task. Inside this folder, each
content group is placed in a directory with name given by the content group name. Each

– 91 –

15 20 25 30 35 40 45 50 55 60
e-folds N

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

φ

χ

pφ

pχ

Figure 13. Time evolution of background fields φ, χ and their derivatives pφ, pχ generated by the
produce dquad.product.bg_plot.

derived product is generated inside this directory, with the filename specified when the derived
product was set up. There is also the usual logs folder that contains detailed logging from
the master and worker processes while the task was in progress.

Reporting on output content groups.—Asking CppTransport to report on dquad.output.zeta
shows the derived products that are generated as part of the task, and lists each associated
content group:

1 $./dquad -r test-output/ --info dquad.output.zeta
2 dquad.output.zeta -- output task
3 Created: 2016-May-16 13:51:40 Last update: 2016-May-16 14:01:43
4 Runtime version: 2016.1
5
6 Derived product Type Matches tags Filename
7 dquad.product.bg-plot 2d plot -- background.pdf
8
9 Content group Created Last update

10 20160516T140133 2016-May-16 14:01:33 2016-May-16 14:01:43

If we instead report on the content group generated by this task, CppTransport will summarize
the content groups that were used to feed data into its derived products:

– 92 –

1 $./dquad -r test-output/ --info 20160516T140133
2 20160516T140133 -- derived content
3 Created: 2016-May-16 14:01:33 Last update: 2016-May-16 14:01:43
4 Runtime version: 2016.1 Task: dquad.output.zeta
5 Locked: No Tags: --
6
7 Summary of content groups used
8 Content group Task Type Last update
9 20160516T135141 dquad.threepf integration 2016-May-16 14:00:18

The table aggregates all dependencies, but sometimes it is more useful to see indivudally
how each derived product depends on other content groups. CppTransport can provide this
information as a provenance report, obtained by using the command-line option --provenance
rather than --info.

The same information is embedded in an HTML report, and often these are the easiest
way to navigate the network of dependencies. Content groups generated by output tasks are
listed under the ‘Output content’ tab, and where possible the report includes any generated
plots. This is often a good way to view the products generated by an output task, especially
if there are more than a few. See Fig. 14. The report for each derived product includes a
table of dependencies similar to that provided by the --provenance option. Also, if Graphviz is
installed, it will produce a dependency diagram showing the interrelation of initial conditions
packages, tasks and content groups that yielded the data for this product. An example for
the background fields plot is shown in Fig. 15.

7.3 Derived products: plots and tables

The current implementation of the visualization toolkit supports four principal types of
derived product:

• The products time_series_plot<> and wavenumber_series_plot<> are two-dimensional
graphs suitable for plotting time-series and wavenumber-series data, respectively.

• The products time_series_table<> and wavenumber_series_table<> are suitable for tab-
ulating time- and wavenumber-series data.

The constructors for these derived products have a standard signature consisting of two
arguments: a unique name, and an output filename. We have already seen this in action for
the time_series_plot<> used to plot background field data above.

7.3.1 Standard options
Each derived product can be customized by applying options. The set_* methods can be
chained together for more economical expression.

• bool get_log_x()

set_log_y(bool f)

Determine whether logarithmic x-axis values are used, if this makes sense for the prod-
uct. Off by default.

• bool get_log_y()

set_log_y(bool f)

Determine whether logarithmic y-axis values are used, if this makes sense for the prod-
uct. Enabled by default for plots.

– 93 –

Figure 14. The HTML report for content groups generated by output tasks will include the output
where possible. Click the ‘Data provenance’ button to display a hyperlinked list of content groups
showing the data sources for each product. The ‘Dependency diagram’ shows how the data sources
depend on each other, on particular integration and postintegration tasks, and ultimately on a set of
initial conditions packages.

• bool get_abs_y()

set_abs_y(bool f)

Determine whether absolute y-values are used. Enabled by default for plots.
If a logarithmic y-axis is in use, CppTransport will detect whether absolute values are

– 94 –

Figure 15. Dependency diagram for the background field plot dquad.products.bg_plot. In this
case the chain of dependencies is very straightforward, but more complex cases are possible. Initial
conditions packages are coloured green, tasks are coloured yellow, content groups are red and derived
products are blue.

needed for lines that have negative values.

• bool get_use_LaTeX()

set_use_LaTeX()

Determine whether LATEX-format labels are used in preference to plain text. Notice
that this has nothing to do with whether LATEX is involved in typesetting. Enabled by
default for plots.

7.3.2 Plot-specific options

In addition, there are a number of options that are specific to plots, ie. the objects time_series_plot<>

and wavenumber_series_plot<> . As usual, the set_* methods can be chained.

Axis handling.—The following options influence axes:

• bool get_reverse_x()

set_reverse_x(bool)

Determine whether x-axis is reversed. Off by default.

• bool get_reverse_y()

set_reverse_y(bool)

Determine whether y-axis is reversed. Off by default.

Labelling.—The following options determine labelling:

• bool get_x_label()

set_x_label(bool)

Determine whether a label is added to the x-axis. Enabled by default.

– 95 –

• std::string get_x_label_text()

set_x_label_text(std::string)

clear_x_label_text()

Set or clear text for x-axis label, if it is in use. Does not imply labelling is enabled.
If labelling is enabled but no text is explicitly supplied, CppTransport will use a default
label. In this case, get_x_label_text() will return an empty string.

• bool get_y_label()

set_y_label(bool)

Determine whether a label is added to the y-axis. Off by default.
On the example of Fig. 13 we could switch on labelling on the y-axis by adding

1 bg_fields.set_y_label(true);

before adding the bg_fields lines to bg_plot . It is not necessary to specify a label;
CppTransport will apply default labels based on quantities represented by each axis. If
we wish, however, it is possible to specify a label using the set_y_label_text method
described below. This sets the label for the first axis only.

• std::string get_y_label_text()

set_y_label_text(std::string)

clear_y_label_text() Set or clear text for y-axis label, if it is in use. Does not imply
labelling is enabled.
If labelling is enabled but no text is explicitly supplied, CppTransport will use a default
label. In this case, get_y_label_text() will return an empty string.

• bool get_title()

set_title(bool)

Determine whether a title is added to the plot. Off by default.

• std::string get_title_text()

set_title_text(std::string)

clear_title_text()

Set or clear text for plot title, if it is in use. Does not imply titling is enabled.
If no title text has been supplied, get_title_text() will return an empty string.

• bool get_legend()

set_legend(bool)

Determine whether a legend is included on the plot. Enabled by default.

• vis_toolkit::legend_pos get_legend_position()

set_legend_position(vis_toolkit::legend_pos)

Determine position of legend, if one is enabled. By default the legend is position in the
top right corder of the plot

– 96 –

The allowed values are:
vis_toolkit::legend_pos::top_left legend in top left corner
vis_toolkit::legend_pos::top_right legend in top right corner
vis_toolkit::legend_pos::bottom_left legend in bottom left corner
vis_toolkit::legend_pos::bottom_right legend in bottom right corner
vis_toolkit::legend_pos::right legend position to right of plot
vis_toolkit::legend_pos::centre_right legend in right side of plot, vertically cen-

tred
vis_toolkit::legend_pos::centre_left legend in left side of plot, vertically cen-

tred
vis_toolkit::legend_pos::upper_centre legend in top of plot, horizontally centred
vis_toolkit::legend_pos::lower_centre legend in bottom of plot, horizontally cen-

tred
vis_toolkit::legend_pos::centre legend in centre of plot

• bool get_typeset_with_LaTeX()

set_typeset_with_LaTeX(bool)

Determine whether Matplotlib is asked to offload typesetting responsibilities to LATEX.
This produces higher quality results but is slower, and requires a LATEX toolchain to
be installed on the current user’s PATH . LATEX is needed for some typesetting choices
because Matplotlib’s built-in typesetting engine does not support the full range of LATEX
commands.
Disabled by default. Notice that this setting is independent of whether LATEX-format
labels have been enabled using set_use_LaTeX() .

• bool get_dash_second_axis()

set_dash_second_axis(bool)

Determine whether lines associated with a second vertical axis are distinguished by
being dashed. CppTransport understands that different derived products have different
units and scales, and where necessary it will add a second axis to handle lines with two
different intrinsic scales. An example is the plot of background fields already produced
in Fig. 13. Here, although the axes are not labelled in the default configuration, the
left-hand vertical axis refers to the value of the fields φ, χ and the right-hand axis refers
to the value of their derivatives.
To disable dashing on our example plot Fig. 13 we should add

1 bg_fields.set_dash_second_axis(false);

before adding bg_fields to the plot bg_plot .
Enabled by default.

7.3.3 Table-specific options

For the table objects time_series_table<> and wavenumber_series_table<> there is an option
to select the table format:

– 97 –

• vis_toolkit::table_format get_format()

set_format(vis_toolkit::table_format f)

Determine the format of the table. The allowed options are:
vis_toolkit::table_format::justified aligned in columns, padded with spaces
vis_toolkit::table_format::csv comma-separated value
vis_toolkit::table_format::tsv tab-separated value

The default format is determined from the filename extension. If this is .csv or .tsv
then the format is set to CSV or TSV respectively. The other allowed formats are .txt,
.data and .dat. These use justified output.

7.4 Available derived lines

In this section we document the different derived lines provided by the visualization toolkit.
Each line is represented by a suitable object whose constructor typically requires:

• one or more task objects that specify the data sources for the line

• for lines representing tensor objects such as the two-point function Σab or the three-point
function αabc, an index selector that specifies which components should be plotted

• for both time-series and wavenumber-series objects, two SQL query expressions—one
for time configurations, and another for wavenumber configurations.

– for time series, the time query determines the range of points sampled on the x-
axis. If the wavenumber-configuration query generates multiple points then these
are used to produce different lines on the plot.

– for wavenumber series the situation is reversed. The wavenumber configuration
query determines the points sampled on the x-axis, and if the time query generates
multiple points then these are plotted as multiple lines.

7.4.1 Standard options

In addition, each line has a number of standard options. These settings are available for all
derived lines, although not every line will make use of each option.

• vis_toolkit::dot_type get_dot_meaning()

set_dot_meaning(vis_toolkit::dot_type)

Determines whether the phase space is taken to be built from the fields and their
derivatives with respect to N , or the fields and their canonical momenta.
The allowed values for vis_toolkit::dot_type are:

vis_toolkit::dot_type::derivatives use derivatives
vis_toolkit::dot_type::momenta use momenta

This setting affects only derived products containing field space correlation functions.

• vis_toolkit::klabel_type get_klabel_meaning()

set_klabel_meaning(vis_toolkit::klabel_type)

Determines whether conventional or comoving momenta are used.

– 98 –

The allowed values for vis_toolkit::klabel_type are:
vis_toolkit::klabel_type::conventional use conventional normalization
vis_toolkit::klabel_type::comoving use comoving normalization

The comoving normalization is the one set by the value of a∗; see p.69.

• vis_toolkit::axis_value get_current_x_axis_value()

set_current_x_axis_value(vis_toolkit::axis_value)

Determines how the x-axis is constructed.
CppTransport can use several different quantities for the x-axis scale:

vis_toolkit::axis_value::efolds use e-folds N
vis_toolkit::axis_value::k use wavenumber k (or kt for 3-point func-

tion data)
vis_toolkit::axis_value::efolds_exit use e-folds between N∗ and horizon exit of

wavenumber k (or kt/3 for 3-point func-
tion data)

vis_toolkit::axis_value::alpha use the shape parameter α
vis_toolkit::axis_value::beta use the shape parameter β
vis_toolkit::axis_value::squeeze_k1

vis_toolkit::axis_value::squeeze_k2

vis_toolkit::axis_value::squeeze_k3 use the squeezing ratio ki/kt
Not all derived lines support all x-axis types. Time series lines support only efolds ,
and wavenumber series associated with configurations of the 2-point function support
only k and efolds_exit . Wavenumber series associated with configurations of the 3-
point function support all types except efolds . CppTransport will raise an exception if
you attempt to select an unsupported x-axis value.
Derived products can contain only lines with the same x-axis type. If you attempt
to add lines with different types to the same product then CppTransport will raise an
exception.

• clear_label_text()

set_label_text(std::string latex, std::string non_latex)

Set or clear a customized label for this line.
Two labels are required: one in LATEX format and one in plain text format. The LATEX-
format label is used if LATEX labels have been enabled by set_use_LaTeX() (see §7.3.1).
Otherwise, the plain text label is used.
Labels are used as column headings (if the derived product is a table) or displayed on
the legend (if the derived product is a plot). If no label is set then CppTransport will
use a suitable default.

• bool get_label_tags()

set_label_tags(bool)

Determine whether identifying ‘tags’ are added to each label. For time series, the tag
identifies the wavenumber configuration corresponding to each line (if relevant). For
wavenumber series it identifies the time sample point.

– 99 –

Tags are useful where a single derived line generates multiple physical lines and you
wish to distinguish them.

7.4.2 Options for 2-point correlation functions

The lines representing 2-point correlation functions are:

• twopf_time_series

• twopf_wavenumber_series

• tensor_time_series

• tensor_wavenmber_series

• zeta_twopf_time_series

• zeta_twopf_wavenumber_series

These lines have additional options:

• set_dimensionless(bool)

Determine whether the dimensionful or dimensionless correlation function is plotted.
The dimensionless correlation function P is defined in terms of the dimensionful corre-
lation function Σ via

P = k3

2π2 Σ. (7.1)

Enabled by default.

The field-space two-point function lines twopf_time_series and twopf_wavenumber_series have
an additional option that allows them to be switched between real and imaginary values,
where available.

• vis_toolkit::twopf_type get_type()

set_type(vis_toolkit::twopf_type)

Determine whether real or imaginary values are used.
The allowed values of vis_toolkit::twopf_type are:

vis_toolkit::twopf_type::real use real values
vis_toolkit::twopf_type::imaginary use imaginary values

Real values are used by default. Notice that only datasets generated by three-point
function tasks include imaginary values for the 2-point function.

7.4.3 Options for 3-point correlation functions

The lines representing 3-point correlation functions are:

• threepf_time_series

• threepf_wavenumber_series

• zeta_threepf_time_series

– 100 –

• zeta_threepf_wavenumber_series

These lines have additional options:

• set_dimensionless(bool)

Determine whether the dimensionful or dimensionless correlation function is plotted.
The dimensionless correlation function Sabc is sometimes called the shape function. It
is defined in terms of the dimensionful 3-point function α by

S = (k1k2k3)2α. (7.2)

Enabled by default.

• bool get_use_kt_label()

set_use_kt_label(bool)

If tags are being attached to labels (see p.99), determine whether the kt value is used
as part of the label. Enabled by default.

• bool get_use_alpha_label()

set_use_alpha_label(bool)

If tags are being attached to labels (see p.99), determine whether the α shape parameter
is used as part of the label. Disabled by default.

• bool get_use_beta_label()

set_use_beta_label(bool)

If tags are being attached to labels (see p.99), determine whether the β shape parameter
is used as part of the label. Disabled by default.

If your configurations vary only with scale kt then the default tag will be correct. However,
if you are varying more than one parameter, or keeping kt constant while varying α or β,
you should considering changing which quantities are used to generate the tag.

In addition, the ‘reduced bispectrum’ (6.2) is defined by a ratio of 2- and 3-point corre-
lation functions. It is represented by the lines

• zeta_reduced_bispectrum_time_series

• zeta_reduced_bispectrum_wavenumber_series

They have the same options given above except for set_dimensionless() .

7.4.4 Time series
This section lists the available time series lines and the signature of their constructors.
As a shorthand, the namespace vis_toolkit is omitted for the names of the lines them-
selves, and for types appearing in their constructors such as vis_toolkit::SQL_time_query and
vis_toolkit::index_selector<> . We also use the following abbreviations for task types:

integration_task any integration task
threepf_task any 3-point function integration task
zeta_task any ζ postintegration task
zeta_threepf_task a ζ 3-point function task
fNL_task any fNL postintegration task

– 101 –

Each time series requires an vis_toolkit::SQL_time_query to select the time sample points.
Each sample is taken at fixed wavenumber configuration, selected by a vis_toolkit::SQL_twopf_query
or vis_toolkit::SQL_threepf_query that must also be supplied. Where this query picks out
multiple configurations, they are included as separate columns in a table or lines in a plot.

• background_time_series<>

Time evolution of the background fields and their derivatives.

1 background_time_series(
2 integration_task,
3 index_selector<1>,
4 SQL_time_query
5)

• twopf_time_series<>

Time evolution of the field-space two-point correlation function Σab (or its dimensionless
counterpart).

1 twopf_time_series(
2 integration_task,
3 index_selector<2>,
4 SQL_time_query,
5 SQL_twopf_query
6)

• threepf_time_series<>

Time evolution of the field-space three-point correlation function αabc (or its dimen-
sionless counterpart).

1 threepf_time_series(
2 threepf_task,
3 index_selector<3>,
4 SQL_time_query,
5 SQL_twopf_query
6)

• tensor_time_series<>

Time evolution of the tensor two-point correlation function Σss′ (or its dimensionless
counterpart).

1 tensor_time_series(
2 integration_task,
3 index_selector<2>,
4 SQL_time_query,
5 SQL_twopf_query
6)

• r_time_series<>

Time evolution of the tensor-to-scalar ratio r.

– 102 –

1 r_time_series(
2 zeta_task,
3 SQL_time_query,
4 SQL_twopf_query
5)

• zeta_twopf_time_series<>

Time evolution of the ζ two-point correlation function Σζ (or its dimensionless coun-
terpart).

1 zeta_twopf_time_series(
2 zeta_task,
3 SQL_time_query,
4 SQL_twopf_query
5)

• zeta_threepf_time_series<>

Time evolution of the ζ three-point correlation function αζ (or its dimensionless coun-
terpart).

1 zeta_threepf_time_series(
2 zeta_threepf_task,
3 SQL_time_query,
4 SQL_twopf_query
5)

• zeta_reduced_bispectrum_time_series<>

Time evolution of the ζ reduced bispectrum, defined by Eq. (6.2).

1 zeta_reduced_bispectrum_time_series(
2 zeta_threepf_task,
3 SQL_time_query,
4 SQL_twopf_query
5)

• fNL_time_series<>

Time evolution of an inner product amplitude f iNL; see Eq. (6.8).

1 fNL_time_series(
2 fNL_task,
3 SQL_time_query
4)

• background_line<>

Time evolution of a background quantity. Currently-implemented options are H, ε and
aH.

1 background_line(
2 integration_task,
3 SQL_time_query,
4 background_quantity
5)

– 103 –

The allowed values of vis_toolkit::background_quantity are:
vis_toolkit::background_quantity::epsilon compute ε = −Ḣ/H2

vis_toolkit::background_quantity::Hubble compute Hubble parameter H
vis_toolkit::background_quantity::aH compute comoving Hubble scale aH

• u2_line<>

Time evolution of components of the tensor uab.

1 u2_line(
2 integration_task,
3 index_selector<2>,
4 SQL_time_query,
5 SQL_twopf_query
6)

• u3_line<>

Time evolution of components of the tensor uabc.

1 u3_line(
2 threepf_task,
3 index_selector<2>,
4 SQL_time_query,
5 SQL_threepf_query
6)

Notice that because uabc is a function of a bispectrum configuration it can be computed
only for 3-point function integrations.

• largest_u2_line<>

Time evolution of the largest component of the momentum–field block of uab, which is
numerically equivalent to the field-space mass matrix in Hubble units Mαβ/H

2. The
other components of uab have fixed magnitudes or depend only on ε, and so are excluded.

1 largest_u2_line(
2 integration_task,
3 index_selector<2>,
4 SQL_time_query,
5 SQL_twopf_query
6)

• largest_u3_line<>

Time evolution of the largest component of uabc. Unlike uab, all components are in-
cluded.

1 largest_u3_line(
2 threepf_task,
3 index_selector<3>,
4 SQL_time_query,
5 SQL_threepf_query
6)

– 104 –

7.4.5 Wavenumber series

For each quantity that is wavenumber-configuration dependent there is a corresponding
wavenumber series. We describe these using the same conventions used for time series
in §7.4.4.

Like the corresponding time series, each wavenumber series requires a vis_toolkit::SQL_time_query
and one or other of vis_toolkit::SQL_twopf_query or vis_toolkit::SQL_threepf_query . For
wavenumber series, the twopf- or threepf-query is used to select the sample points that will
appear on the x-axis and the time query selects the particular time at which we wish to
sample. If multiple times are included, they generate separate columns in a table or lines on
a plot.

Spectral indices.—All wavenumber series have an extra option to compute the spectral index,
using the current x-axis type; the definition is

n = d ln y
d ln x. (7.3)

If y can be approximated as a slowly varying power law, then n can be regarded as an
estimate for the power-law index y ∼ xn. For example, if x is a wavenumber and y is a
power spectrum, then n computed in this way is the usual spectral index. Alternatively, if y
is a reduced bispectrum and x is a squeezing ratio ki/kt then n gives the local approximate
power law fNL(k1, k2, k3) ∼ (ki/kt)n.

The calculation of spectral indices is enabled using set_spectral_index(bool) .

Warning

When computing spectral indices associated with variation of the bispectrum configu-
ration, as above, it is important to be careful about which quantities vary and which
are held fixed.
For example, to measure the spectral index associated with variations of the squeezing
ki/kt at fixed scale, we should keep kt fixed. The SQL query expression that selects
those configurations to include should enforce this constraint.
Likewise, to measure the spectral index associated with variations of scale kt we should
usually keep the squeezing parameters ki/kt fixed.

Warning

In the current version of CppTransport, spectral indices generated using this option
should be treated with caution. The calculation is performed by fitting a spline to
y(x) and differentiating this spline.
In general this gives acceptable results, but there are some pitfalls. First, the spline
and its derivative can lose accuracy near the edges of the fitted region. This tends to
introduce some spurious jitter into the spectral index. Second, with a large number
of sample points the spline tends to be overfit. CppTransport tries to compensate for
this by using a p-spline (a ‘penalized’ spline that tries to smoothly interpolate between
sample points, rather than strictly passing through each point), but it is not always
successful.

– 105 –

For these reasons it is wise to check the spectral index calculation using other methods
before relying on the result.

• twopf_wavenumber_series<>

k-dependence of the field-space two-point correlation function Σab (or its dimensionless
counterpart).

1 twopf_wavenumber_series(
2 integration_task,
3 index_selector<2>,
4 SQL_time_query,
5 SQL_twopf_query
6)

• threepf_wavenumber_series<>

Configuration-dependence of the field-space three-point correlation function αabc (or its
dimensionless counterpart).

1 threepf_wavenumber_series(
2 threepf_task,
3 index_selector<3>,
4 SQL_time_query,
5 SQL_twopf_query
6)

• tensor_wavenumber_series<>

k-dependence of the tensor two-point correlation function Σss′ (or its dimensionless
counterpart).

1 tensor_wavenumber_series(
2 integration_task,
3 index_selector<2>,
4 SQL_time_query,
5 SQL_twopf_query
6)

• r_wavenumber_series<>

k-dependence of the tensor-to-scalar ratio r.

1 r_time_series(
2 zeta_task,
3 SQL_time_query,
4 SQL_twopf_query
5)

• zeta_twopf_wavenumber_series<>

k-dependence of the ζ two-point correlation function Σζ (or its dimensionless counter-
part).

– 106 –

1 zeta_twopf_wavenumber_series(
2 zeta_task,
3 SQL_time_query,
4 SQL_twopf_query
5)

• zeta_threepf_wavenumber_series<>

Configuration-dependence of the ζ three-point correlation function αζ (or its dimen-
sionless counterpart).

1 zeta_threepf_wavenumber_series(
2 zeta_threepf_task,
3 SQL_time_query,
4 SQL_twopf_query
5)

• zeta_reduced_bispectrum_wavenumber_series<>

Configuration-dependence of the ζ reduced bispectrum, defined by Eq. (6.2).

1 zeta_reduced_bispectrum_time_series(
2 zeta_threepf_task,
3 SQL_time_query,
4 SQL_twopf_query
5)

7.4.6 Integration cost analysis

Finally, a special set of derived lines exist that do not represent data or observables, but
rather provide metadata about the performance of the integration. These can be used to
provide more targeted versions of the scatter plots generated by HTML reports and dis-
cussed in §4.7.1. (See Fig. 9.) These automatically-generated plots include all configura-
tions, whereas the derived lines offer more control through the use of SQL query expressions
to restrict the configuration that are included.

• cost_wavenumber<>

Supply the per-configuration integration cost, where this information is available.

1 cost_wavenumber(
2 twopf_task,
3 SQL_twopf_query,
4 cost_metric
5)
6
7 cost_wavenumber(
8 threepf_task,
9 SQL_threepf_task,

10 cost_metric
11)

The allowed values of vis_toolkit::cost_metric are
vis_toolkit::cost_metric::time measure integration time
vis_toolkit::cost_metric::steps measure number of steps taken by stepper

– 107 –

7.5 Enabling or disabling indices using an index_selector<>

In §§7.2–7.4 it was explained that for derived lines generated by objects with multiple indices,
a index_selector<> object must be supplied to select which indices should be included.

Constructing a selector requires specifying a template argument that fixes the number of
indices. The constructor accepts a single argument giving the number of fields. For example,
to build a selector for a 2-index object such as the field-space correlation function Σab, we
could use

1 vis_toolkit::index_selector<2> sel(num_fields);

where num_fields should be suitably defined. (It could be extracted from the get_N_fields()

method of a transport::model object, which returns the number of fields used in the model.)
Index selectors enable all components by default. Once constructed, a selector provides

methods all() and none() that explicitly enable or disable all components. It is also possible
to enable or disable individual components by supplying a tuple of numbers representing the
component in question. As in the mapping used for index assignment in SQLite containers,
fields are assigned increasing integers beginning at 0 and with ordering inherited from the
model description file. The field derivatives or momenta follow the fields, in the same order.

For example, in the double quadratic model the fields are φ and χ, with φ being declared
before χ in the description file (see §3.5). To plot only the components Σφφ and Σχχ we could
use the selector

1 vis_toolkit::index_selector<2>().none().set_on({0,0}).set_on({1,1})

On the other hand, to plot components except the momentum cross-terms Σpφpχ and Σpχpφ

we could use
1 vis_toolkit::index_selector<2>().all().set_off({2,3}).set_off({3,2})

7.6 Examples: double quadratic inflation

To illustrate the use of these derived quantites, consider generating plots for a set of standard
observables in the double-quadratic model. We will use the following standard queries to
select time- and wavenumber-configuration samples:

1 // time query -- all sample points
2 vis_toolkit::SQL_time_query all_times("1=1");
3
4 // time query -- last time
5 vis_toolkit::SQL_time_query last_time("serial IN (SELECT MAX(serial) FROM time_samples)");
6
7 // twopf query -- all configuraitons
8 vis_toolkit::SQL_twopf_query all_twopfs("1=1");
9

10 // threepf query -- all equilateral configurations
11 vis_toolkit::SQL_threepf_query all_equilateral("ABS(alpha) < 1E-5 AND ABS(beta-1.0/3.0) < 1E-5");
12
13 // threepf query -- isosceles triangles
14 vis_toolkit::SQL_threepf_query all_isosceles("ABS(alpha) < 1E-5");
15
16 // threepf query -- largest and smallest equilateral triangles
17 vis_toolkit::SQL_threepf_query large_small_equilateral("ABS(alpha) < 1E-5 AND ABS(beta-1.0/3.0) <

1E-5 AND wavenumber1 IN (SELECT MAX(serial) FROM twopf_samples UNION SELECT MIN(serial) FROM
twopf_samples)");

↪→
↪→

– 108 –

101 102 103 104

wavenumber k

10-8

10-7

Pζ N= 60

Figure 16. ζ 2-point function

7.6.1 ζ power spectrum

1 // 2. Zeta power spectrum
2
3 vis_toolkit::zeta_twopf_wavenumber_series<> zeta_twopf(ztk3, last_time, all_twopfs);
4 zeta_twopf.set_dimensionless(true);
5
6 vis_toolkit::wavenumber_series_plot<> zeta_twopf_plot("dquad.product.zeta-twopf.plot",

"twopf-plot.pdf");↪→
7 zeta_twopf_plot.set_log_x(true);
8 zeta_twopf_plot += zeta_twopf;

This produces the plot of Fig. 16.

7.6.2 Spectral index for ζ power spectrum

1 // 3. Zeta power spectrum spectral index
2
3 vis_toolkit::zeta_twopf_wavenumber_series<> zeta_twopf_index(ztk3, last_time, all_twopfs);
4 zeta_twopf_index.set_dimensionless(true);
5 zeta_twopf_index.set_spectral_index(true);
6
7 vis_toolkit::wavenumber_series_plot<>

zeta_twopf_index_plot("dquad.product.zeta-twopf.index-plot", "twopf-index-plot.pdf");↪→
8 zeta_twopf_index_plot.set_log_x(true);
9 zeta_twopf_index_plot += zeta_twopf_index;

– 109 –

101 102 103 104

wavenumber k

10-1

100

Pζ N= 60

Figure 17. Spectral index of ζ two-point function

This produces the plot of Fig. 17. Notice the jitter near the ends of the line; see the discussion
of spectral index calculations in §7.4.5. The results could be improved by extending the range
of wavenumbers being sampled, to move these edge effects away from the region of interest.

7.6.3 Reduced bispectrum on equilateral configurations

1 // 4. Reduced bispectrum on equilateral configurations
2
3 vis_toolkit::zeta_reduced_bispectrum_wavenumber_series<> zeta_redbsp_equi(ztk3, last_time,

all_equilateral);↪→
4 zeta_redbsp_equi.set_current_x_axis_value(vis_toolkit::axis_value::k);
5
6 vis_toolkit::wavenumber_series_plot<>

zeta_redbsp_equi_plot("dquad.product.zeta-redbsp.equi-plot", "equi-plot.pdf");↪→
7 zeta_redbsp_equi_plot.set_log_x(true);
8 zeta_redbsp_equi_plot += zeta_redbsp_equi;

This produces the plot of Fig. 18. Notice the slight oscillations caused by settling of the
heavy field into its minimum.

7.6.4 Spectral index of reduced bispectrum on equilateral configurations

– 110 –

101 102 103 104

wavenumber k

10-2

10-1

fNL(k1, k2, k3) N= 60

Figure 18. Reduced bispectrum on equilateral configurations of varying scale kt

1 // 5. Spectral index of reduced bispectrum on equilateral configurations
2
3 vis_toolkit::zeta_reduced_bispectrum_wavenumber_series<> zeta_redbsp_equi_index(ztk3, last_time,

all_equilateral);↪→
4 zeta_redbsp_equi_index.set_spectral_index(true).set_current_x_axis_value(vis_toolkit::axis_value::k);
5
6 vis_toolkit::wavenumber_series_plot<>

zeta_redbsp_equi_index_plot("dquad.product.zeta-redbsp.equi-index-plot", "equi-index.pdf");↪→
7 zeta_redbsp_equi_index_plot.set_log_x(true);
8 zeta_redbsp_equi_index_plot += zeta_redbsp_equi_index;

This produces the plot of Fig. 19. The oscillatory structure is much more visible than it is in
the amplitude. In general, obtaining accurate spectral indices requires higher accuracy in the
integration. This can be achieved by increasing the number of e-folds of massless evolution,
and by decreasing the absolute and relative tolerances if needed.

7.6.5 Squeezing dependence of reduced bispectrum: isosceles triangles

– 111 –

101 102 103 104

wavenumber k

10-2

10-1

fNL(k1, k2, k3) N= 60

Figure 19. Spectral index (with kt) of reduced bispectrum on equilateral configurations

1 // 6. Reduced bispectrum as a function of squeezing on isosceles triangles
2
3 vis_toolkit::zeta_reduced_bispectrum_wavenumber_series<> zeta_redbsp_squeeze(ztk3, last_time,

all_isosceles);↪→
4 zeta_redbsp_squeeze.set_current_x_axis_value(vis_toolkit::axis_value::squeeze_k3);
5
6 vis_toolkit::wavenumber_series_plot<>

zeta_redbsp_squeeze_plot("dquad.product.zeta_redbsp.squeeze-plot", "squeeze-plot.pdf");↪→
7 zeta_redbsp_squeeze_plot.set_log_x(true);
8 zeta_redbsp_squeeze_plot += zeta_redbsp_squeeze;

This produces the plot of Fig. 20. The general trend is clear, but there are obvious jumps in
amplitude from configuration to configuration. This happens because the plot is constructed
from a cubic mesh. Although only the squeezing ratio k3/kt is plotted on the x-axis, the
configurations are also varying in kt. To get a smooth line—for example, suitable for com-
puting a spectral index—it would be necessary to switch to an αβ-type mesh that would
allow sampling from different values of k3/kt at fixed kt.

7.6.6 Time evolution of 3pf correlation functions

The most commonly used data products are functions of wavenumber (or other configuration
variables) at fixed time. Often this fixed time will be the end of inflation, although it may
be earlier if the system converges to an adiabatic limit characterized by conservation of ζ (as
it does for the double quadratic model).

– 112 –

10-3 10-2 10-1 100

k3/kt

10-2

10-1

fNL(k1, k2, k3) N= 60

Figure 20. Variation of reduced bispectrum with squeezing k3/kt

However, it is also useful to plot the time evolution of individual quantities. This is
especially useful to check for any anomalies in the integration that might make the final data
products inaccurate. As a sanity check, it is useful to plot the evolution of the raw 3-point
functions for at least a few scales.

1 // 7. Time evolution of some sample 3-point correlation functions
2
3 vis_toolkit::threepf_time_series<> threepf_time(tk3,

vis_toolkit::index_selector<3>(num_fields).none().set_on({ 0, 0, 0 }).set_on({ 1, 1, 1 }),↪→
4 all_times, large_small_equilateral);
5
6 vis_toolkit::time_series_plot<> threepf_time_plot("dquad.product.threepf-time",

"threepf-time.pdf");↪→
7 threepf_time_plot += threepf_time;

The resulting plot is shown in Fig. 21. Notice the use of ‘tags’ giving the kt value, which
distinguish between the different lines generated by the wavenumber configuration query; see
the discussion of label tagging in §7.4.1.

Such plots are an especially useful diagnostic tool where they include the subhorizon
evolution, here visible as a steeply falling straight line at the left-hand edge of the plot for
the lines with kt = 8.94 × 103. In this region the individual wavefunctions oscillate rapidly
but the correlation function is smooth, as was explained in the discussion of adaptive initial
conditions in §5.1. In the absence of special features, the subhorizon evolution should be
a smooth decaying power law. Any noise in these lines, or the appearance of oscillations,

– 113 –

15 20 25 30 35 40 45 50 55 60
e-folds N

10-75

10-70

10-65

10-60

10-55

10-50

10-45

10-40

10-35

10-30

10-25

10-20

10-15

10-10 (k1k2k3)
2φφφ kt = 60. 3

(k1k2k3)
2χχχ kt = 60. 3

(k1k2k3)
2φφφ kt = 8. 94× 103

(k1k2k3)
2χχχ kt = 8. 94× 103

Figure 21. Time evolution of the 3-point functions 〈φφφ〉 and 〈χχχ〉 for the largest and smallest
values of kt

tends to indicate loss of accuracy during the integration. The normal response should be to
tighten the numerical tolerances (§3.3), increase the number of e-folds of massless evolution
(§4.3 and p.68), or both.

7.6.7 fNL amplitude

Finally, consider setting up a plot of the amplitudes generated by inner-products with the
equilateral, orthogonal and local templates. We can collect these in a separate function; see
Fig. 22. The resulting plot is shown in Fig. 23 and can be compared with the hand-generated
version Fig. 12.

8 Managing repositories

8.1 Managing records

§6.2 explained the system of ‘tags’ used to control which content groups are selected as data
sources for postintegration or output tags. Tags can be set immediately, when each content
group is generated, but it is also possible to adjust them after the group has been entered in
the repository.

In addition to tags, CppTransport provides a facility to attach longer ‘notes’ to each
group. These consist of free-format text and can be used for any purpose. For example, they

– 114 –

1 void write_fNL_products(transport::repository<>& repo, transport::initial_conditions<>& ics,
2 transport::range<>& ts, transport::range<>& ks)
3 {
4 transport::threepf_cubic_task<> tk("dquad.threepf-linear", ics, ts, ks);
5 tk.set_adaptive_ics_efolds(5.0);
6 tk.set_description("Compute time history of the 3-point function on a linear grid");
7
8 transport::zeta_threepf_task<> ztk("dquad.threepf-linear-zeta", tk);
9 ztk.set_description(

"Convert the output from dquad.threepf-linear into zeta 2 and 3-point functions");↪→
10
11 transport::fNL_task<> fNL_local("dquad.fNL-local", ztk,

vis_toolkit::bispectrum_template::local);↪→
12 fNL_local.set_description(

"Compute inner product of double-quadratic bispectrum with local template");↪→
13
14 transport::fNL_task<> fNL_equi("dquad.fNL-equi", ztk,

vis_toolkit::bispectrum_template::equilateral);↪→
15 fNL_equi.set_description(

"Compute inner product of double-quadratic bispectrum with equilateral template");↪→
16
17 transport::fNL_task<> fNL_ortho("dquad.fNL-ortho", ztk,

vis_toolkit::bispectrum_template::orthogonal);↪→
18 fNL_ortho.set_description(

"Compute inner product of double-quadratic bispectrum with orthogonal template");↪→
19
20 vis_toolkit::SQL_time_query all_times("1=1");
21
22 vis_toolkit::fNL_time_series<> local(fNL_local, all_times);
23 vis_toolkit::fNL_time_series<> equi(fNL_equi, all_times);
24 vis_toolkit::fNL_time_series<> ortho(fNL_ortho, all_times);
25
26 vis_toolkit::time_series_plot<> fNL_plot("dquad.product.fNL_plot", "fNL_plot.pdf");
27 fNL_plot.set_log_y(false).set_abs_y(false);
28 fNL_plot += local + equi + ortho;
29
30 transport::output_task<> out_tk("dquad.output.fNL");
31 out_tk += fNL_plot;
32
33 repo.commit(out_tk);
34 }

Figure 22. Function to generate fNL tasks and derived products

could be used to add persistent working notes to an ongoing project, to highlight features
when circulating data to collaborators, or to provide enriched documentation for archival
purposes.

Finally, it is sometimes desirable to remove unneeded content groups from a repository.
Notice, however, that CppTransport does not offer an option to remove or edit the details of
initial conditions packages, tasks, or derived products. This is an intentional design choice.
These details form part of the documentation associated with each content group, and if they
were to be changed then some of this documentation would be lost or become ambiguous. If
it is necessary to make adjustments to any of these definitions, it is preferable to add a new
definition with a different name or to write into a new repository.

– 115 –

15 20 25 30 35 40 45 50 55 60
e-folds N

4

3

2

1

0

1

2
f local

NL

f equi
NL

f ortho
NL

Figure 23. Time evolution of inner-product amplitudes f local
NL , f equi

NL and fortho
NL . As above, we caution

that these quantities must be interpreted with care and are not necessarily related to the constraints
reported from experiment.

8.1.1 Specifying which objects to modify

CppTransport allows modifications to be applied to many different repository records simulta-
neously. To specify records use the --object command-line argument, followed by the name
of a content group. It is possible to use multiple --object arguments to specify multiple
records.

Alternatively, to name provided to --object can be enclosed in braces { · · · } . Cpp-
Transport will interpret the name between the braces as a regular expression and attempt to
match it to any available content groups. For example, to match any content group produced
in 2016 we could write --object {2016.*}.

8.1.2 Adding and removing tags

Adding tags is accomplished using the --add-tag command-line switch, followed by the name
of a tag. If that tag contains spaces then it should be wrapped in quotation marks. The
given tag is added to all content groups that match an argument provided to --object. To
remove a tag from all such groups use --delete-tag.

– 116 –

8.1.3 Adding and removing notes

To add notes, use --add-note followed by the text to be added. If it contains spaces, it
should be wrapped in quotation marks. The note is added to all content groups matching
an argument provided to --object.

To remove a note, obtain a list of notes attached to the content group of your choice
using --info. Then use --delete-note followed by the number of the note to be removed.

Warning

Notice that the given note is removed from every content group that matches an
argument provided to --option. If the note you intend to delete is not in the same
position in every content group then you will need to carry out the removal in batches.

8.1.4 Deleting content groups

To delete an unwanted content group use --delete. CppTransport will not allow you to delete
content groups that were used as data sources for other groups that remain in the repository,
because this would disrupt its ability to provide a provenance for those groups.

8.1.5 Lock and unlock groups

Finally, groups can be locked to prevent modifications. To do this use the --lock switch.
Locked groups cannot be altered or deleted until they are unlocked using --unlock.

8.2 Summary of command-line options

This section summarizes the command-line options recognized by CppTransport executables.

Housekeeping functions:

• --help
Display brief usage information and a list of all available options.

• --version
Show version of CppTransport used to build the model headers, and the version of
the runtime system. These need not be the same, although CppTransport requires the
runtime system to be at least as recent as the version used to build the headers.

• --license
Display licensing information.

• --models
Show list of models understood by this executable.

• --no-colour or --no-color
Do not produce colourized output. Normally CppTransport will detect whether the
terminal in which it is running can support colour. However, if you are redirecting
CppTransport’s output to a file then you may wish to manually suppress the use of
colour.

– 117 –

• --include, or abbreviate to -I
Adds the following path to the list of paths searched for resources. Currently, the only
resources needed by CppTransport are those used by the HTML report generator.

Configuration options:

• --verbose, or abbreviate to -v
Display extra status and update messages.

• --repo, or abbreviate to -r
Should be followed by a path identifying the repository to be used. If the repository
does not exist then new, blank repository is created.

• --caches
--batch-cache
--datapipe-cache
Followed by a cache size in Mb. Sets the corresponding cache size (or both caches,
if the option --caches is used). The batching cache is used to temporarily hold the
data products from integration in memory before flushing them to disk; see §4.5. The
datapipe cache stores data used to generate derived products. This normally requires
database access, which can be time consuming on a slow filing system. Storing data in
memory can give a significant performance boost if the same data is re-used.

• --network-mode
Disable use of the SQLite write-ahead log. Must be used if the repository is stored on
a network filing system such as NFS or Lustre, but should otherwise be omitted.

Job specification:

• --create
Write records held by this executable into the repository (§4.4.2).

• --task
Followed by the name of task. Adds the named task to the list of work.

• --tag
Specify a tag to be attached to any content groups generated by this CppTransport job.
For postintegration or output tasks, filters the available content groups to those that
share the specified tag. Can be repeated multiple times to specify more than one tag.

• --checkpoint
Set the checkpoint interval, measured in minutes. Overrides any default checkpoints
set by individual tasks.

• --seed
Seed jobs using the specified content group.

Repository actions:

– 118 –

• --object
Select objects to be modified. Regular expressions can be used between curly braces
{ · · · } .

• --lock
Lock repository records (preventing modification or deletion) for content groups match-
ing the object specification list.

• --unlock
Unlock repository records matching the object specification list.

• --add-tag
Add the specified tag to content groups matching the object specification list. Can be
repeated multiple times to add more than one tag.

• --delete-tag
Remove the specified tag from content groups matching the object specification list.
Can be repeated to delete multiple tags.

• --add-note
Add the specified note (which should be quoted if it contains spaces) to any content
groups matching the object specification list. Can be repeated to add multiple notes.

• --delete-note
Specifies a note to remove by number (check the repository record using --info to
obtain a list of notes). Can be applied to multiple content groups, but will remove the
same numbered note from each list.

• --delete
Remove content groups matching the object specification list, provided no other content
groups depend on them.
Notice that operations can be chained. For example, --unlock and --delete can be
specified at the same time, in which case unlocking is performed before deletion. The
same applies to other operations such as adding or removing tags and notes. If --lock
is specified then the record is locked only after all other operations have been processed.

Repository reporting and status:

• --record
Perform recovery on the repository; see §4.6.

• --status
Print brief report showing repository status. Includes available tasks and the number
of content groups attached to each task, in addition to the details of any in-flight jobs.

• --inflight
Similar to --status, but shows details of in-flight jobs only.

– 119 –

• --info
Report on a specified repository record. Matches any objects whose names begin with
the specified string, so it is not necessary to write the name out exactly. Alternatively,
a regular expression can be provided by wrapping it in curly braces { · · · } .

• --provenance
Report on the provenance of a specified output content group. The provenance report
shows all content groups that contributed to each derived product generated as part of
the group. Name matching is as for --info.

• --html
Write a HTML-format report on the contents of the repository to the specified folder.

Plotting options:

• --plot-style, or abbreviate to -p
Select a plotting style. See the discussion in §2.5.

• --mpl-backend
Force CppTransport to use a specified Matplotlib backend. See the discussion in §2.5.

Journaling options:

• --gantt
Write a process Gantt chart, showing the activities of each process in a multiprocess
MPI job, to the specified file. Any output format supported by Matplotlib may be used,
selected by its extension. Alternatively the extension .py may be specified to obtain
the Python script suitable for generating the plot.

• --journal
Write a (very detailed) JSON-format journal showing the MPI communication between
workers. Mostly of value when debugging.

9 Acknowledgments

It is a pleasure to acknowledge a longstanding collaboration with Mafalda Dias, Jonathan
Frazer and David Mulryne.

Development of CppTransport has been supported by an ERC grant:

• Precision tests of the inflationary scenario, funded by the European Research Council
under the European Union’s Seventh Framework Programme (FP/2007–2013) and ERC
Grant Agreement No. 308082.

In addition, some development of CppTransport has been supported by other funding sources.
Portions of the work described in this document have been supported by:

• The UK Science and Technology Facilities Council via grants ST/I000976/1 and ST/L000652/1,
which funded the science programme at the University of Sussex Astronomy Centre
from April 2011–March 2014 and April 2014–March 2017, respectively.

– 120 –

• The Leverhulme Trust via a Philip Leverhulme Prize.

• The National Science Foundation Grant No. PHYS-1066293 and the hospitality of the
Aspen Center for Physics.

• The hospitality of the Higgs Centre for Theoretical Physics at the University of Edin-
burgh, and the Centre for Astronomy & Particle Physics at the University of Notting-
ham.

A Third-party software used by CppTransport

The CppTransport sources incorporate portions of the following open source projects:

• The GinacPrint common subexpression elimination algorithm made available by Doug
Baker.

http://www.ginac.de/pipermail/ginac-list/2010-May/001631.html

License: GPL-2
This is incorporated in the source files

translator/backends/infrastructure/language_concepts/cse.cpp
translator/backends/infrastructure/language_concepts/cse.h

The CppTransport translator and runtime system are linked to the following libraries. The
build process assumes they are available on the system, but does not automatically install
them.

The CppTransport sources do not include source code (or derivatives of the source code)
from these libraries; they only link to them as external resources.

• GiNaC (used by translator)
http://www.ginac.de
License: GPL-2

• The Boost libraries (used by translator and runtime system)
http://www.boost.org
License: Boost Software License

• SQLite (used by runtime system)
https://www.sqlite.org
License: Public Domain (https://www.sqlite.org/copyright.html)

• OpenSSL (used by runtime system)
https://www.openssl.org
License: OpenSSL License (https://www.openssl.org/source/license.html)

– 121 –

http://www.ginac.de/pipermail/ginac-list/2010-May/001631.html
http://www.ginac.de
http://www.boost.org
https://www.sqlite.org
https://www.sqlite.org/copyright.html
https://www.openssl.org
https://www.openssl.org/source/license.html

In addition, the CppTransport build process automatically downloads and installs the fol-
lowing libraries. They are statically linked to executables constructed by (1) running the
translator and (2) building the resulting code using the provided runtime system.

The CppTransport sources do not include source code (or derivatives of the source code)
from these libraries. Compiled executables using the provided runtime system link to them
only as external resources.

• SPLINTER
https://github.com/bgrimstad/splinter
License: Mozilla public license (see thirdparty/License/SPLINTER.txt)

• JsonCPP
https://github.com/open-source-parsers/jsoncpp
License: MIT License (see thirdparty/License/JsonCpp.txt)

CppTransport also depends on the Eigen library using the version bundled as part of SPLIN-
TER.

• Eigen
http://eigen.tuxfamily.org/index.php?title=Main_Page
License: Mozilla public license (for details, see files installed by the SPLINTER build
process)

Also, the CppTransport platform bundles parts of the following open source projects. These
parts are included in the Git repository for CppTransport or the installation tarball in the
thirdparty/ directory.

The CppTransport sources do not include source code (or derivatives of the source code)
from this projects. It depends on them only as external resources that are used by HTML
reports.

• jQuery
https://jquery.com/download/
License: MIT License (see thirdparty/License/jQuery.txt)

• Twitter Bootstrap
http://getbootstrap.com
License: MIT License (see thirdparty/License/Bootstrap.txt)

• bootstrap-tab-history
http://mnarayan01.github.io/bootstrap-tab-history/
License: Apache License (see thirdparty/License/bootstrap-tab-history.txt)

• DataTables
https://datatables.net
License: MIT License (see thirdparty/License/DataTables.txt)

• Prism.js
http://prismjs.com
License: MIT license (see thirdparty/License/prism.txt)

– 122 –

https://github.com/bgrimstad/splinter
https://github.com/open-source-parsers/jsoncpp
http://eigen.tuxfamily.org/index.php?title=Main_Page
https://jquery.com/download/
http://getbootstrap.com
http://mnarayan01.github.io/bootstrap-tab-history/
https://datatables.net
http://prismjs.com

References

[1] A. H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness
Problems, Phys.Rev. D23 (1981) 347–356.

[2] A. A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity,
Phys.Lett. B91 (1980) 99–102.

[3] A. Albrecht and P. J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively
Induced Symmetry Breaking, Phys.Rev.Lett. 48 (1982) 1220–1223.

[4] S. Hawking and I. Moss, Supercooled Phase Transitions in the Very Early Universe, Phys.Lett.
B110 (1982) 35.

[5] A. D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon,
Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys.Lett. B108 (1982)
389–393.

[6] A. D. Linde, Chaotic Inflation, Phys.Lett. B129 (1983) 177–181.
[7] M. Dias, R. H. Ribeiro, and D. Seery, The δN formula is the dynamical renormalization group,

1210.7800.
[8] A. J. Tolley and M. Wyman, The Gelaton Scenario: Equilateral non-Gaussianity from

multi-field dynamics, Phys. Rev. D81 (2010) 043502, [0910.1853].
[9] X. Chen and Y. Wang, Large non-Gaussianities with Intermediate Shapes from Quasi-Single

Field Inflation, Phys. Rev. D81 (2010) 063511, [0909.0496].
[10] X. Chen and Y. Wang, Quasi-Single Field Inflation and Non-Gaussianities, JCAP 1004 (2010)

027, [0911.3380].
[11] X. Chen and Y. Wang, Quasi-Single Field Inflation with Large Mass, JCAP 1209 (2012) 021,

[1205.0160].
[12] Z. Kenton and D. J. Mulryne, The squeezed limit of the bispectrum in multi-field inflation,

JCAP 1510 (2015), no. 10 018, [1507.08629].
[13] A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko, A. Kryukov, V. Savrin,

S. Shichanin, and A. Semenov, CompHEP: A Package for evaluation of Feynman diagrams and
integration over multiparticle phase space, hep-ph/9908288.

[14] CompHEP Collaboration, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Ilyin, A. Kryukov,
V. Edneral, V. Savrin, A. Semenov, and A. Sherstnev, CompHEP 4.4: Automatic computations
from Lagrangians to events, Nucl. Instrum. Meth. A534 (2004) 250–259, [hep-ph/0403113].

[15] A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, batchs, and generation
of matrix elements for other packages, hep-ph/0412191.

[16] A. Belyaev, N. D. Christensen, and A. Pukhov, CalcHEP 3.4 for collider physics within and
beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729–1769, [1207.6082].

[17] T. Hahn and M. Perez-Victoria, Automatized one loop calculations in four-dimensions and
D-dimensions, Comput. Phys. Commun. 118 (1999) 153–165, [hep-ph/9807565].

[18] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys.
Commun. 140 (2001) 418–431, [hep-ph/0012260].

[19] T. Hahn and M. Rauch, News from FormCalc and LoopTools, Nucl. Phys. Proc. Suppl. 157
(2006) 236–240, [hep-ph/0601248]. [,236(2006)].

[20] S. Agrawal, T. Hahn, and E. Mirabella, FormCalc 7, J. Phys. Conf. Ser. 368 (2012) 012054,

– 123 –

http://xxx.lanl.gov/abs/1210.7800
http://xxx.lanl.gov/abs/0910.1853
http://xxx.lanl.gov/abs/0909.0496
http://xxx.lanl.gov/abs/0911.3380
http://xxx.lanl.gov/abs/1205.0160
http://xxx.lanl.gov/abs/1507.08629
http://xxx.lanl.gov/abs/hep-ph/9908288
http://xxx.lanl.gov/abs/hep-ph/0403113
http://xxx.lanl.gov/abs/hep-ph/0412191
http://xxx.lanl.gov/abs/1207.6082
http://xxx.lanl.gov/abs/hep-ph/9807565
http://xxx.lanl.gov/abs/hep-ph/0012260
http://xxx.lanl.gov/abs/hep-ph/0601248

[1112.0124].
[21] A. Kanaki and C. G. Papadopoulos, HELAC: A Package to compute electroweak helicity

amplitudes, Comput. Phys. Commun. 132 (2000) 306–315, [hep-ph/0002082].
[22] A. Cafarella, C. G. Papadopoulos, and M. Worek, Helac-Phegas: A Generator for all parton

level processes, Comput. Phys. Commun. 180 (2009) 1941–1955, [0710.2427].
[23] F. Maltoni and T. Stelzer, MadEvent: Automatic event generation with MadGraph, JHEP 02

(2003) 027, [hep-ph/0208156].
[24] J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D. L.

Rainwater, and T. Stelzer, MadGraph/MadEvent v4: The New Web Generation, JHEP 09
(2007) 028, [0706.2334].

[25] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, MadGraph 5 : Going Beyond,
JHEP 06 (2011) 128, [1106.0522].

[26] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer,
P. Torrielli, and M. Zaro, The automated computation of tree-level and next-to-leading order
differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014)
079, [1405.0301].

[27] T. Gleisberg, S. Hoeche, F. Krauss, A. Schalicke, S. Schumann, and J.-C. Winter, SHERPA 1.
alpha: A Proof of concept version, JHEP 02 (2004) 056, [hep-ph/0311263].

[28] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, and J. Winter,
Event generation with SHERPA 1.1, JHEP 02 (2009) 007, [0811.4622].

[29] M. Moretti, T. Ohl, and J. Reuter, O’Mega: An Optimizing matrix element generator,
hep-ph/0102195.

[30] W. Kilian, T. Ohl, and J. Reuter, WHIZARD: Simulating Multi-Particle Processes at LHC and
ILC, Eur. Phys. J. C71 (2011) 1742, [0708.4233].

[31] M. A. Dobbs et al., Les Houches guidebook to Monte Carlo generators for hadron collider
physics, in Physics at TeV colliders. Proceedings, Workshop, Les Houches, France, May
26-June 3, 2003, pp. 411–459, 2004. hep-ph/0403045.

[32] C. Ringeval, P. Brax, C. van de Bruck, and A.-C. Davis, Boundary inflation and the WMAP
data, Phys.Rev. D73 (2006) 064035, [astro-ph/0509727].

[33] J. Martin and C. Ringeval, Inflation after WMAP3: Confronting the Slow-Roll and Exact
Power Spectra to CMB Data, JCAP 0608 (2006) 009, [astro-ph/0605367].

[34] C. Ringeval, The exact numerical treatment of inflationary models, Lect.Notes Phys. 738
(2008) 243–273, [astro-ph/0703486].

[35] M. J. Mortonson, H. V. Peiris, and R. Easther, Bayesian Analysis of Inflation: Parameter
Estimation for Single Field Models, Phys.Rev. D83 (2011) 043505, [1007.4205].

[36] R. Easther and H. V. Peiris, Bayesian Analysis of Inflation II: Model Selection and Constraints
on Reheating, Phys.Rev. D85 (2012) 103533, [1112.0326].

[37] J. Norena, C. Wagner, L. Verde, H. V. Peiris, and R. Easther, Bayesian Analysis of Inflation
III: Slow Roll Reconstruction Using Model Selection, Phys.Rev. D86 (2012) 023505,
[1202.0304].

[38] L. C. Price, J. Frazer, J. Xu, H. V. Peiris, and R. Easther, MultiModeCode: An efficient
numerical solver for multifield inflation, JCAP 03 (2015) 005, [1410.0685].

[39] I. Huston and K. A. Malik, Numerical calculation of second order perturbations, JCAP 0909

– 124 –

http://xxx.lanl.gov/abs/1112.0124
http://xxx.lanl.gov/abs/hep-ph/0002082
http://xxx.lanl.gov/abs/0710.2427
http://xxx.lanl.gov/abs/hep-ph/0208156
http://xxx.lanl.gov/abs/0706.2334
http://xxx.lanl.gov/abs/1106.0522
http://xxx.lanl.gov/abs/1405.0301
http://xxx.lanl.gov/abs/hep-ph/0311263
http://xxx.lanl.gov/abs/0811.4622
http://xxx.lanl.gov/abs/hep-ph/0102195
http://xxx.lanl.gov/abs/0708.4233
http://xxx.lanl.gov/abs/hep-ph/0403045
http://xxx.lanl.gov/abs/astro-ph/0509727
http://xxx.lanl.gov/abs/astro-ph/0605367
http://xxx.lanl.gov/abs/astro-ph/0703486
http://xxx.lanl.gov/abs/1007.4205
http://xxx.lanl.gov/abs/1112.0326
http://xxx.lanl.gov/abs/1202.0304
http://xxx.lanl.gov/abs/1410.0685

(2009) 019, [0907.2917].
[40] I. Huston and K. A. Malik, Second Order Perturbations During Inflation Beyond Slow-roll,

JCAP 1110 (2011) 029, [1103.0912].
[41] I. Huston and A. J. Christopherson, Calculating Non-adiabatic Pressure Perturbations during

Multi-field Inflation, Phys.Rev. D85 (2012) 063507, [1111.6919].
[42] D. K. Hazra, L. Sriramkumar, and J. Martin, On the discriminating power of fNL, 1201.0926.
[43] V. Sreenath, D. K. Hazra, and L. Sriramkumar, On the scalar consistency relation away from

slow roll, JCAP 1502 (2015), no. 02 029, [1410.0252].
[44] M. Dias, J. Frazer, D. Mulryne, and D. Seery, “Numerical evaluation of the bispectrum in

multiple-field inflation.” To appear, 2016.
[45] K. Ahnert and M. Mulansky, Odeint – Solving Ordinary Differential Equations in C++, in

American Institute of Physics Conference Series (T. E. Simos, G. Psihoyios, C. Tsitouras, and
Z. Anastassi, eds.), vol. 1389 of American Institute of Physics Conference Series,
pp. 1586–1589, Sept., 2011. 1110.3397.

[46] G. I. Rigopoulos, E. P. S. Shellard, and B. J. W. van Tent, Non-linear perturbations in
multiple-field inflation, Phys.Rev. D73 (2006) 083521, [astro-ph/0504508].

[47] G. Rigopoulos, E. Shellard, and B. van Tent, Quantitative bispectra from multifield inflation,
Phys.Rev. D76 (2007) 083512, [astro-ph/0511041].

[48] F. Vernizzi and D. Wands, Non-gaussianities in two-field inflation, JCAP 0605 (2006) 019,
[astro-ph/0603799].

[49] D. J. Mulryne, D. Seery, and D. Wesley, Moment transport equations for non-Gaussianity,
JCAP 1001 (2010) 024, [0909.2256].

[50] D. J. Mulryne, D. Seery, and D. Wesley, Moment transport equations for the primordial
curvature perturbation, JCAP 1104 (2011) 030, [1008.3159].

[51] X. Gao, D. Langlois, and S. Mizuno, Influence of heavy modes on perturbations in multiple field
inflation, JCAP 1210 (2012) 040, [1205.5275].

[52] J. Elliston, D. J. Mulryne, D. Seery, and R. Tavakol, Evolution of fNL to the adiabatic limit,
JCAP 1111 (2011) 005, [1106.2153].

[53] J. R. Fergusson and E. P. S. Shellard, Primordial non-Gaussianity and the CMB bispectrum,
Phys. Rev. D76 (2007) 083523, [astro-ph/0612713].

[54] M. Dias, J. Elliston, J. Frazer, D. Mulryne, and D. Seery, The curvature perturbation at second
order, JCAP 1502 (2015), no. 02 040, [1410.3491].

[55] C. T. Byrnes, D. Regan, D. Seery, and E. R. M. Tarrant, The hemispherical asymmetry from a
scale-dependent inflationary bispectrum, 1511.03129.

[56] D. Babich, P. Creminelli, and M. Zaldarriaga, The Shape of non-Gaussianities, JCAP 0408
(2004) 009, [astro-ph/0405356].

[57] J. R. Fergusson, M. Liguori, and E. P. S. Shellard, General CMB and Primordial Bispectrum
Estimation I: Mode Expansion, Map-Making and Measures of fNL, Phys. Rev. D82 (2010)
023502, [0912.5516].

[58] P. Creminelli, A. Nicolis, L. Senatore, M. Tegmark, and M. Zaldarriaga, Limits on
non-gaussianities from wmap data, JCAP 0605 (2006) 004, [astro-ph/0509029].

[59] L. Senatore, K. M. Smith, and M. Zaldarriaga, Non-Gaussianities in Single Field Inflation and
their Optimal Limits from the WMAP 5-year Data, JCAP 1001 (2010) 028, [0905.3746].

– 125 –

http://xxx.lanl.gov/abs/0907.2917
http://xxx.lanl.gov/abs/1103.0912
http://xxx.lanl.gov/abs/1111.6919
http://xxx.lanl.gov/abs/1201.0926
http://xxx.lanl.gov/abs/1410.0252
http://xxx.lanl.gov/abs/1110.3397
http://xxx.lanl.gov/abs/astro-ph/0504508
http://xxx.lanl.gov/abs/astro-ph/0511041
http://xxx.lanl.gov/abs/astro-ph/0603799
http://xxx.lanl.gov/abs/0909.2256
http://xxx.lanl.gov/abs/1008.3159
http://xxx.lanl.gov/abs/1205.5275
http://xxx.lanl.gov/abs/1106.2153
http://xxx.lanl.gov/abs/astro-ph/0612713
http://xxx.lanl.gov/abs/1410.3491
http://xxx.lanl.gov/abs/1511.03129
http://xxx.lanl.gov/abs/astro-ph/0405356
http://xxx.lanl.gov/abs/0912.5516
http://xxx.lanl.gov/abs/astro-ph/0509029
http://xxx.lanl.gov/abs/0905.3746

	Introduction
	Automated calculation of inflationary correlation functions
	The CppTransport platform
	Summary of features
	Notation and conventions

	Installation
	Minimum requirements
	Downloading the CppTransport platform
	Building the translator and installing the runtime system
	Installing dependencies on OS X
	Installing dependencies on Ubuntu 16.04

	Building the translator
	Configuring your environment

	The translator: generating custom code for a specific model
	Adding model metadata
	Specifying a template
	Choosing a stepper
	Adding author metadata
	Specifying field content and Lagrangian parameters
	Specifying the Lagrangian
	Running the translator and producing output
	Using the code generation options

	Building and running an integration task
	Coupling a model to the runtime system
	Translate and build using a CMake script
	Adding an integration task
	Running tasks
	Running executables under MPI and creating a repository
	Examining the repository wavenumber configuration databases
	Launch and track tasks from the command line

	What happens while an integration task is in progress
	Using checkpoints and recovery to minimize data loss
	How is the integration time spent?
	Using HTML reports to analyse integration performance
	Generating a Gantt chart of worker activity

	Using the SQLite data container
	Table definitions
	Strict consistency checking

	Options for integration tasks
	General options
	Two-point function tasks
	Three-point function tasks
	Cubic (k1, k2, k3) mesh
	Fergusson–Shellard (kt, ,) mesh
	Specifying a storage policy
	Specifying a triangle policy

	Adding postintegration tasks
	 tasks for the two- and three-point functions
	Applying tags to control which content groups are used
	Paired tasks
	Using SQLite data containers
	 two-point function tasks
	 three-point function tasks

	Inner-product tasks to compute fNL-like amplitudes
	The standard templates
	Building an inner-product task
	Example: Using the SQLite data container to produce a plot

	Generating derived products using output tasks
	Selecting which data to plot using SQL query objects
	Example: plotting the evolution of the background fields
	Derived products: plots and tables
	Standard options
	Plot-specific options
	Table-specific options

	Available derived lines
	Standard options
	Options for 2-point correlation functions
	Options for 3-point correlation functions
	Time series
	Wavenumber series
	Integration cost analysis

	Enabling or disabling indices using an c++indexselector<>
	Examples: double quadratic inflation
	 power spectrum
	Spectral index for power spectrum
	Reduced bispectrum on equilateral configurations
	Spectral index of reduced bispectrum on equilateral configurations
	Squeezing dependence of reduced bispectrum: isosceles triangles
	Time evolution of 3pf correlation functions
	fNL amplitude

	Managing repositories
	Managing records
	Specifying which objects to modify
	Adding and removing tags
	Adding and removing notes
	Deleting content groups
	Lock and unlock groups

	Summary of command-line options

	Acknowledgments
	Third-party software used by CppTransport

