
HEP Application Delivery on
HPC Resources

August 2016

Author:
Tim Shaffer

Supervisor(s):
Jakob Blomer, Gerardo Ganis

CERN openlab Summer Student Report 2016

CERN openlab Summer Student Report 2016

Project Specification

High-performance computing (HPC) contributes a significant and growing share of
resource to high-energy physics (HEP). Individual supercomputers such as Edison or
Titan in the U.S. or SuperMUC in Europe deliver a raw performance of the same order of
magnitude than the Worldwide LHC Computing Grid. As we have seen with codes from
ALICE and ATLAS, it is notoriously difficult to deploy high-energy physics applications
on supercomputers, even though they often run a standard Linux on Intel x86_64 CPUs.
The three main problems are:

 1. Limited or no Internet access;

 2. The lack of privileged local system rights;

 3. The concept of cluster submission or whole-node submission of jobs in contrast to
single CPU slot submission in HEP.

Generally, the delivery of applications to hardware resources in high-energy physics is
done by CernVM-FS [1]. CernVM-FS is optimized for high-throughput resources.
Nevertheless, some successful results on HPC resources where achieved using the Parrot
system[2] that allows to use CernVM-FS without special privileges. Building on these
results, the project aims to prototype a toolkit for application delivery that seamlessly
integrates with HEP experiments job submission systems, for instance with ALICE AliEn
or ATLAS PanDA. The task includes a performance study of the parrot-induced
overhead which will be used to guide performance tuning for both CernVM-FS and
Parrot on typical supercomputers. The project should further deliver a lightweight
scheduling shim that translates HEP’s job slot allocation to a whole node or cluster-based
allocation. Finally, in order to increase the turn-around of the evaluation of new
supercomputers, a set of "canary jobs" should be collected that validate HEP codes on
new resources.

[1] http://cernvm.cern.ch/portal/filesystem

[2] http://cernvm.cern.ch/portal/filesystem/parrot

CERN openlab Summer Student Report 2016

Abstract

On high performance computing (HPC) resources, users have less control over worker
nodes than in the grid. Using HPC resources for high energy physics applications
becomes more complicated because individual nodes often don't have Internet
connectivity or a filesystem configured to use as a local cache. The current solution in
CVMFS preloads the cache from a gateway node onto the shared cluster file system.
This approach works but does not scale well into large production environments. In this
project, we develop an in-memory cache for CVMFS, and assess approaches to running
jobs without special privilege on the worker nodes. We propose using Parrot and CVMFS
with RAM cache as a viable approach to HEP application delivery on HPC resources.

CERN openlab Summer Student Report 2016

Table of Contents

1 Introduction...5

2 Design of CVMFS...5

3 CVMFS in HPC..7

4 Parrot...8

5 RamCache..9

6 KvStore...9

7 Benchmarks...10

8 Microbenchmarks...12

9 Conclusions and Future Work...14

10 References...15

CERN openlab Summer Student Report 2016

1 Introduction

CernVM-FS (CVMFS) is a central component of CernVM, developed to address the
needs of large-scale, high-throughput computing for high-energy physics (HEP)
experiments. CVMFS facilitates software deployment onto heterogenous computing
resources by making experiment sofware and tools available without the need for
installation or maintenance on numerous compiler-OS platforms [1]. Since CVMFS is
freely available for use both inside and outside CERN, it is difficult to determine the
number of active users. Based on web server logs, which show accesses during CernVM
boot, there are an estimated 1.2 million virtual machine reboots per month, with about
200,000 of these being fresh boots. The worldwide userbase, including grids, clouds, and
HPC resources, is estimated at 100,000 clients. Based on feedback from users, CVMFS is
in use across the majority of the LHC experiments. By using CVMFS, researchers can
deploy a small (on the order of 100MB) image and transparently load the current
experiment software, greatly simplifying software distribution and version management.

2 Design of CVMFS

CVMFS was developed to distribute large amounts of content for HEP research at a
global scale. To handle the enormous amount of data produced by the LHC, hundreds of
thousands of machines spread across potentially thousands of worldwide sites must
obtain and update experiment software stacks via CVMFS. CERN makes use of a layered
hierarchy of distribution servers to achieve global scale [2].

Unlike a traditional local filesystem, which balances reading and writing, CVMFS
assumes that content, once published, is immutable. This approach greatly simplifies
caching and consistency issues. CVMFS internally uses CAS (content addressable
storage); data and metadata are identified by the cryptographic hashes of their contents.
Any changes will produce a different hash value, so multiple versions can coexist in the
same repository without conflict. Content changes are released as new snapshots, so
clients always have a single, consistent view of the repository. In addition, this approach
gives clients the options of using the most recent snapshot, or any previous version. In
this way, CVMFS simplifies software management and enables reprocucibility, since all
previous versions of an experiment’s software can be accessed and used at any point in
the future.

CVMFS was also designed for compatibility with existing web infrastructure, and as such
uses HTTP to transport content and metadata. Since CVMFS serves read-only content
that never expires, the existing web caching infrastructure is well-integrated with the
design of CVMFS. Sites can use commodity web servers running freely available
software to add a local cache layer. This is particularly important for computing centers,
where a proxy cache on a fast local network can greatly improve performance and
decrease load on the public servers.

5 | P a g e

CERN openlab Summer Student Report 2016

On top of an HTTP transport, CVMFS presents repository content via POSIX filesystem
interface. When a client reads a file hosted in CVMFS, a locally running program
receives the request and fetches the data over the network. Once the content is
downloaded and verified, the local CVMFS program can pass the data through the
filesystem. Client programs can operate on this filesystem interface as if the entire
CVMFS repository were locally installed. This approach makes frequent updates to HEP
software stacks manageable without rebuilding virtual machine/container images or
introducing software version inconsistencies. It also obviates the need to push large
updates to each and every client node, since the CVMFS program running on each client
can fetch new versions of individual files (or parts of large files) as needed.

A final design consideration to discuss here is ease of deployment. Since the LHC
experiments make use of computing resources at sites across the globe, it is unreasonable
to obtain administrator privileges on every machine. This rules out certain possibilities,
such as kernel modifications or virtual machine deployment. CVMFS uses FUSE
(Filesystem in USErspace), a software interface that allows non-privileged users to create
filesystems. CVMFS presents a virtual filesystem that serves data from remote CVMFS
repositories rather than local storage.

CVMFS makes use of extensive caching to improve client performance and reduce load
on servers. Repositories have very fine-grained control over how content is distributed
[3]. A single Release Manager Machine is responsible for updating a CVMFS repository,
which can then be served via web servers, content delivery networks (CDNs), caching
proxies, load balancers, etc. The read/write server, the Stratum 0 server, does not directly
serve client requests. Instead, the Stratum 0 server feeds content to the Stratum 1 servers,
a handful of geographically distributed web servers. As long as the content is duplicated
across the Stratum 1 servers, CVMFS offers a robust content delivery network. In the
event of an outage, clients can fail over to another available server.

Figure 1: The overall architecture of CVMFS

Repositories can fine-tune their distribution systems to achieve optimal performance for
their workloads. Closer to clients, it is recommended to run a cluster-wide or network-
wide proxy cache both to reduce external traffic and to decrease the time to load content.
In addition, each client maintains a local, filesystem-backed cache so that previously
accessed files can be handled without waiting for a network request. There is some

6 | P a g e

CERN openlab Summer Student Report 2016

overhead in passing filesystem requests to a FUSE module, so even directly serving files
from the local CVMFS cache is slower than direct disk access. The operating system
kernel maintains a cache of very recently accessed data and can handle cached requests
directly without consulting the FUSE module. The kernel cache allows some filesystem
operations to approach the speed of local disk operations. The overall architecture of the
FUSE module is shown in Figure 1. From the client’s perspective, the Stratum 1 servers
and cache layers make up a single CVMFS “repository”. The client is responsible for
fetching, assembling, verifying, and caching the data served by the CVMFS repository.

3 CVMFS in HPC

 High-performance computing (HPC) resources present some additional obstacles to the
deployment of HEP applications. These include restrictions on network access, limited
control of the execution environment, and a different job scheduling scheme.

Since CVMFS typically requires internet access as well as some local storage for the
cache, a modified approach is necessary. The currently recommended setup requires a
shared filesystem for the worker nodes [4]. The logon node, which has internet access,
can preload the necessary content onto the shared cluster filesystem. Worker nodes can
then treat the shared filesystem as another cache directory and retrieve content without
connecting to the internet. When spinning up workers in a cluster, however, there is a risk
of drowning the shared filesystem. During startup or heavy use, a shared cluster
filesystem might not be able to directly handle the large number of synchronized
metadata operations (millions per node within a few seconds) such as path lookups
generated during cluster operation. Clients must make use of local caches to resolve most
operations locally rather than risk overwhelming the shared infrastructure.

The existing local cache stores data and metadata objects in a cache directory by their
hash IDs. As new objects are retrieved, they are verified and written into the cache
directory. Subsequent accesses are served directly from the local cache. If the local cache
is configured with a size limit, CVMFS can periodically remove unused objects from the
cache to fit the cache size. Thus to use CVMFS, it is necessary to configure a cache
directory with read and write access. For HPC resources, however, this is not always
feasible. Worker nodes may not have writable scratch space available for use as a cache
for CVMFS.

HPC clusters may also give users limited privileges on the workers nodes. Jobs may not
make system-wide changes, such as modifying the kernel or the root filesystem. In
addition, FUSE is often not available on the worker nodes. Most HEP applications stacks
are written with the assumption that CVMFS repositories will be available under /cvmfs,
so FUSE may not be a viable solution in HPC environments.

7 | P a g e

CERN openlab Summer Student Report 2016

4 Parrot

Parrot is a tool developed at the University of Notre Dame for attaching existing
programs to remote I/O systems through a filesystem interface. The predecessor to
CVMFS, GROW-FS, was developed as part of Parrot to deliver simulation software for
the (now concluded) Collider Detector at Fermilab (CDF) experiment [2]. CERN later
began developing CVMFS to address performance and scalability issues in the original
GROW-FS. Today, Parrot supports CVMFS as a remote service.

Figure 2: The overall architecture of Parrot

Rather than interacting with the Virtual Filesystem Switch within the kernel as FUSE
does, Parrot makes use of the ptrace interface [5]. Profiling and debugging programs such
as gdb use ptrace to monitor and interact with other programs as they run. The ptrace
interface allows a tracer process to attach to a running process and intercept syscalls,
signals, and other system-level events. Parrot uses this functionality to intercept and
rewrite I/O requests such that remote services appear to be installed in the filesystem. As
shown in Figure 2, Parrot can serve as a central connector for multiple remote services.
This is a good fit for scientific applications, as Parrot allows access to remote services
without requiring every program to link against and configure every service. ptrace does
not require kernel modifications, root access, setuid helpers, etc. ptrace allows much
more general changes to a process's view of the system (rearranging the filesystem,
changes to uid/gid, etc.) and does not require any special privileges, but Parrot intercepts

8 | P a g e

CERN openlab Summer Student Report 2016

all syscalls, not only filesystem-related interactions. Thus processes suffer additional
overhead on non-filesystem operations, compared to processes accessing a FUSE mount.

5 RamCache

As part of this work, we refactored the existing local cache infrastructure to support
alternative caching implementations in CVMFS. In the future, additional caches can
easily be added. The existing cache implementation is now available as the POSIX cache,
and CVMFS includes a new cache implementation, the RAM cache.

To ensure that a cache entry is not evicted mid-operation, cache accesses are mediated by
handles. To begin using an existing cache entry, the caller must open the entry to obtain a
handle. Subsequent operations make use of this handle to identify the cache entry, and
when the entry is no longer needed, the handle must be closed. Only entries with no
outstanding handles are subject to eviction from the cache. To add new cache entries,
callers write their content into a memory region allocated for the transaction, and then
atomically commit the entry to the cache. If a commit would exceed the configured cache
size, the cache manager tries to free sufficient space by evicting entries. Entries with open
handles are not considered, but other entries are evicted in LRU (Least Recently Used)
order. CVMFS caches also support the notion of pinned and volatile entries. Pinned
entries are never evicted and only explicitly removed from the cache. The primary use
case for pinned entries is file catalogs. To ensure that metadata operations can be handled
locally, the catalog(s) for a repository are always kept in-cache. Data needed to start
analysis but not needed thereafter, such as conditions data, can be marked volatile to
indicate that it should be evicted from the cache before regular entries are evicted. The
RamCache provides a file descriptor-like interface and transactional semantics, but the
actual data storage is handled by a key/value store implementation. This separation is
present so that a cache manager can make use of other (or multiple) storage backends.

6 KvStore

The newly implemented RamCache for CVMFS depends on a thread-safe key/value store
to manage the actual object data. CVMFS objects are identified by the cryptographic
hashes of their contents. Thus a simple key/value store is well suited to storing CVMFS
data and metadata objects. The KvStore implementation written for RamCache adds
reference counting to protect entries from deletion. By default, the key/value store uses
the malloc() implementation provided by libc to allocate memory. An alternative arena-
based allocator is also available. This allocator acquires a sequence of large blocks of
memory (arenas) from the operating system and tries to fill each as completely as
possible. For some usage patterns, these memory allocators may exhibit suboptimal
performance due to fragmentation. Another allocator that supports compaction is, at the
time of writing, being developed and integrated into the KvStore.

9 | P a g e

CERN openlab Summer Student Report 2016

7 Benchmarks

To assess the performance and viability of the new cache system in CVMFS, we
performed measurements on some of the standard experiment benchmarks. These
benchmarks are based on simulation jobs for several of the LHC experiments (ATLAS,
ALICE, and CMS are used here). The benchmarks load and initialize their full
experiment software stacks, and generate some small data. To measure performance on
larger jobs, we added another benchmark that simulates a larger number of events from
the CMS benchmark. Measurements were taken on a dedicated CernVM test machine.

The four benchmarks were measured with every combination of cache implementations
(POSIX, RAM-malloc, RAM-arena), filesystem interface (FUSE, Parrot), and kernel
caching behavior (enabled, disabled). As preliminary measurements, we took 7 or more
samples for each of these 36 benchmark configurations and computed means and
standard deviaitions of job running times.

Figure 3: Benchmark running times on FUSE with kernel caching disabled

Figure 3 gives a comparison of cache implementations under FUSE with kernel caching
disabled. The results under Parrot are quite similar. The performance of all three cache
configurations is comparable. Additional measurements would be necessary to discern
any performance difference.

The two shorter benchmarks, ALICE and ATLAS, do relatively little simulation work, so
these measurements are more representative of startup times. With further optimization,
we hope that the RAM cache could outperform the POSIX cache, but these preliminary

10 | P a g e

CERN openlab Summer Student Report 2016

measurements suggest that the new cache implementation can match current overall
performance.

Especially for shorter tasks, the kernel cache has a much larger performance impact.
When the FUSE module or Parrot connector handle filesystem requests, there is
significant cost in context switches, IPC, etc. If kernel caching is enabled, the kernel can
handle some of the requests without involving the userspace components at all.

Figure 4: Benchmark running times on FUSE with kernel caching enabled

In Figure 4, we observe that the running times for the ALICE and ATLAS benchmarks
decrease significantly with kernel caching enabled. In this case, the FUSE module must
fetch each file on the first access, but the kernel can directly handle subsequent activity.
Thus we see that these two benchmarks do little work beyond loading their application
stacks. The CMS and CMSx8 benchmarks, on the other hand, show less improvement
from kernel caching. This is likely because these benchmarks spend more time doing
simulation work, so I/O performance is not as significant.

11 | P a g e

CERN openlab Summer Student Report 2016

Figure 5: Benchmark performance under FUSE and Parrot

When comparing the performance of the filesystem interfaces in Figure 5 for a
representative cache configuration, we see the previously discussed performance increase
with the kernel cache on the ATLAS and ALICE benchmarks. For these two, Parrot's
performance is intermediate between the kernel caching modes, but appears to be closer
to uncached FUSE. As the simulation time increases with CMS and CMSx8, however,
the three filesystem configurations show approximately the same performance. This
suggests that for compute-bound tasks like simulation, running under Parrot does not
introduce an undue performance penalty compared to either FUSE configuration.

8 Microbenchmarks

While not necessarily representative of real-world performance, microbenchmarks are
useful for assessing performance limits. Measuring file open/close and stat operations
show a substantial slowdown under Parrot.

12 | P a g e

CERN openlab Summer Student Report 2016

Figure 6: Open/close operations

The microbenchmark in Figure 6 is nearly pure syscalls, so this is something of a worst
case for Parrot's performance. In addition to the overhead from the syscall, Parrot has its
own processing, and often makes a syscall itself in processing a request. Since stat is such
a common operation, Parrot's performance might benefit from better metadata caching.

Figure 7: File reads

When examining read performance in Figure 7, we again observe a significant slowdown
under Parrot. This effect is especially acute on the small 4K reads. With larger reads,
more data is read per syscall, so the bandwidth is much improved. Any computation or
other processing that a realistic program performs between reads would similarly reduce
the slowdown.

13 | P a g e

CERN openlab Summer Student Report 2016

Figure 8: IPC via shared memory

In the microbenchmark in Figure 8, each iteration involved receiving a file descriptor to a
shared memory object over a Unix domain socket, mapping it into the test process’
address space, making a local copy, and unmapping the shared memory. In this case, the
number of syscalls is indepent of the amount of data transferred, so while a slowdown is
observed for small memory objects, Parrot’s slowdown nearly vanishes as data size
increases. As with many of the previous measurements, this suggests that programs that
can minimize the number of syscalls relative to computation can achieve acceptable
performance under Parrot.

9 Conclusions and Future Work

Running high energy physics applications on high performance computing resources
presents some distinct challenges compared to existing deployments. HPC environments
often impose restrictions on the network and filesystem access, as well as privileges on
worker nodes. By adding an in-memory cache in addition to the existing filesystem-
backed cache, CVMFS can now run efficiently without write access to the local
filesystem. With an HTTP cluster proxy, a shared cluster filesystem is not necessary
either. Finally, measurements running actual experiment software stacks suggest that
Parrot is a viable choice for running compute-bound jobs such as simulation without
administrative privileges.

For future work, we would like to expand the RAM cache manager to support additional
memory allocators, for example a log-structured allocator. Another important addition is
support for clients on a single cache manager instance. One possibility is RamCloud,
which can provide a low latency, in-RAM key/value store distributed over a cluster. A
locally shared cache would allow multiple Parrot instances to efficiently share cache
space on a worker node. Work Queue [6], another software component developed at the
University of Notre Dame, allows worker nodes to run job instances. This is a promising
direction for efficiently running slot allocated HEP jobs on whole-node allocated HPC
resources. Work Queue can be leveraged to schedule multiple jobs using the full

14 | P a g e

CERN openlab Summer Student Report 2016

resources on each node, presenting a grid-like scheduling interface on top of any
available resources. Over the course of this project, we updated and expanded the
CVMFS benchmark jobs to run under the new cache configurations, and under Parrot.
These benchmarks test multiple experiment frameworks, and give an indication of
performance under real workloads. Therefore, we propose using these benchmarks to
validate both correctness and performance on new computing platforms. Using Work
Queue, we can easily run batches of these benchmark jobs on a new cluster, which gives
a preliminary indicator of how the cluster will behave under load. At the time of writing,
we are discussing the possibility of testing these benchmarks and some realistic
workflows using CVMFS on real hardware at NERSC.

10 References

[1] G Ganis et al.; 2015 J. Phys.: Conf. Ser. 664 022018 "Status and Roadmap of
CernVM"

[2] J Blomer et al.; Computing in Science and Engineering 17(6) 61-71, "The Evolution
of Global Scale Filesystems for Scientific Software Distribution"

[3] https://cvmfs.readthedocs.io/en/latest/cpt-overview.html

[4] https://cvmfs.readthedocs.io/en/latest/cpt-hpc.html

[5] http://ccl.cse.nd.edu/software/parrot/

[6] http://ccl.cse.nd.edu/software/workqueue/

15 | P a g e

