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4.1  INTRODUCTION
Bank filtration (BF), sometimes also called riverbank filtration (RBF), is used worldwide for drinking water production 
(Tufenkji et al., 2002; Doussan et al., 1997; Grünheid et al., 2005). It has two main advantages: (1) Sufficient quantity of water 
can be produced independent of the usable groundwater capacity as BF is a form of artificial groundwater recharge (Bouwer, 
2002; Dillon, 2005). (2) Low cost post-treatment is often sufficient for the raw water as the process of bank filtration takes 
advantage of the natural filter capacity of the sediments during the soil passage (Kuehn & Mueller, 2000). Usually, there is a 
significant increase in water quality for the bank filtrate compared to the surface water regarding organic substances, colour, 
coliform bacteria and faecal contaminants (Singh et al., 2010; Weiss et al., 2005). Additionally, the water quality at bank 
filtration wells is relatively constant, and, therefore, it is easier to treat than surface water, which often shows high variation in 
many quality parameters (Ray, 2004; Tufenkji et al., 2002).

Typically, bank filtration sites are planned according to the local hydrogeological conditions and the wells are constructed 
to achieve both of the above mentioned effects (Ray et al., 2002). In developing countries there is usually an emphasis on 
securing sufficient water quantity for drinking. Wells are often constructed along rivers and lakes because alluvial or riparian 
aquifers generally have good hydraulic properties (Rosenshein, 1988). The shallow depths of the sediments make them 
easy to exploit and help to reduce drilling costs (Doussan et al., 1997). However, when bank filtration is applied at sewage 
contaminated surface waters, which is often the case in developing countries (Ray, 2008), a range of problems can arise as 
contaminated water infiltrates into the aquifer in large quantities and the capacity of the soil to filter the contaminants is often 
exceeded (Heberer, 2002). The resulting contamination of the aquifer can prevail for many decades, making post-treatment 
and/or remediation measures necessary. Such contamination is often caused by nitrogen, especially the species ammonium 
(Hiscock & Grischek, 2002).

Increasing ammonium concentrations at one specific well (P3) in a well field located at the Yamuna River in East Delhi are 
a cause for concern as the well field is used for drinking water production. Elevated ammonium concentrations at the well were 
reported since 2006 (Sprenger & Lorenzen, 2014) and Groeschke (2013) identified the sewage contaminated river water as the 
main source of ammonium in the raw water. Ammonium concentrations are already about ten times higher (5.5–8 mg/L) than 
the Indian guideline value of 0.6 mg/L total ammonia [0.5 mg/L total ammonia-N] as specified in BIS 10500:2012 and are 
expected to increase further. As water suppliers have to plan several decades ahead in order to be able to develop appropriate 
water management concepts, it is important to know about the development of future ammonium concentrations at that well 
field and other well fields along the Yamuna River to be able to choose appropriate remediation and treatment options.

Numerous studies of ammonium contaminations in groundwater have been conducted, mostly focusing on contamination 
from point sources - such as septic tank effluents (Hinkle et al., 2007), leachate from sewage farms (Hamann, 2009), leachate 
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from coking plants (Haerens et al., 2002a) or chemical companies (Clark et al., 2008) – and from contaminations resulting 
from the infiltration of treated sewage water (LeBlanc, 1984; Ceazan et al., 1989; Böhlke et al., 2006; DeSimone & Howes, 
1996, 1998). A comprehensive review of published literature on ammonium retardation is given by Buss et al. (2004). Doussan 
et al. (1997, 1998) studied the transport of nitrogen species at a RBF site at the Seine (France), where the river water was a 
main source of nitrogen – in the form of nitrate. Reducing conditions prevailed in the aquifer owing to the decay of organic 
matter and the nitrate was reduced to ammonium during the soil passage, while the mineralization of organic matter was an 
additional source of ammonium. In central Delhi, reducing conditions in the aquifer are caused by the infiltration of reducing 
surface water. It is expected that without infiltration of reducing surface water, a redox sequence from oxidizing conditions 
to iron-reducing conditions further away from the river would prevail – as reported by Lorenzen et al. (2010a) for a field site 
upstream Delhi.

In order to understand the behaviour of ammonium in aquifers at BF sites at surface waters highly polluted by untreated 
sewage, field data have been collected and laboratory column studies have been conducted with aquifer material from Delhi. 
Results of the analyses and experiments are summarized in section 4.3 and were used as the basis for recommendations about 
the application of BF in nitrogen contaminated aquifers.

4.2  NITROGEN
4.2.1  Occurrence and effects
Nitrogen is a redox-sensitive parameter which can occur in different species. The most common forms of nitrogen in the 
water-soil environment are, in order of decreasing oxidation state (Metcalf & Eddy Inc, 2014; Stumm & Morgan, 1996):

• Nitrate (NO3
−, +V)

• Nitrite (NO2
−, +III)

• Nitrogen gas (N2, 0)
• Ammonia and ammonium (NH3, and NH4

+, both –III)
• Organic nitrogen (OrgN, mostly –III)

Whether the reduced form of nitrogen occurs as un-ionized ammonia (NH3) or in the form of ammonium ions (NH4
+) 

depends on the temperature and, to a stronger extent, the pH of the solution (Table 4.1).

Table 4.1  Proportions of ammonium (NH4
+) and ammonia (NH3) at 

different pH values (Metcalf & Eddy Inc, 2014, p.94).

NH3 + H2O ⟷ NH4
+ + HO− pH Temperature

10% 90% 8.3 20°C

50% 50% 9.25 20°C

At pH and temperature conditions commonly found in natural waters, ammonium is the principal species (Hem, 2005). 
Sometimes the term “total ammonia” is being used referring to the sum of ionized and un-ionized ammonia.

Nitrogen pollution can cause problems such as eutrophication of surface water bodies (Howarth & Marino, 2006), which can 
lead to toxic algal blooms or decreasing dissolved oxygen concentrations and related issues such as a decrease in animal and 
plant diversity. Furthermore, NH3 is toxic for aquatic species (Randall & Tsui, 2002), but not for humans at low concentrations 
(GESTIS Substance database, 2014). Nitrite (NO2

−) is also extremely toxic to fish or other aquatic species (Metcalf & Eddy 
Inc, 2014). For humans, excessive nitrogen intake in the form of nitrate (NO3

−) or nitrite through water can result in diarrhoea 
or methaemoglobinemia (blue-baby syndrome) in infants (Ward et al., 2005). When chlorination is used for the disinfection 
of drinking water, the presence of ammonium in raw water, even at low concentrations, causes the formation of chloramines 
(Weil & Morris, 1949). Higher chlorine doses are necessary to achieve required minimum residual chlorine concentration at 
the outlet of the water treatment plants (WTPs) and in the distribution system (Duong et al., 2003).

4.2.2  Guideline values
Guideline values for nitrogen species given in the Indian standard (BIS, 10500, 2012) and the WHO drinking water quality 
guidelines (WHO, 2011) are compared in Table 4.2. The WHO did not establish a guideline value for total ammonia because 
it usually occurs in drinking water at concentrations well below those of health concern. Because the WHO includes the 
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non-ionized form NH3 and the ionized form NH4
+ in their definition of ammonia, it is assumed that this is also the case in the 

Indian Standard BIS 10500, although it is not further defined.

Table 4.2  Guideline values for nitrogen species in drinking water.

Parameter Unit BIS 10500:2012 (India) WHO (2011)

Nitrate (as NO3
−) mg/L 45 50

Nitrite (as NO2
−) mg/L No guideline value 3

Ammonia (as NH3-N and NH4
+-N)* mg/L 0.05 No guideline value

*Definition of WHO, not specified in BIS 10500.

4.2.3  Nitrogen in surface water bodies
In surface water bodies, nitrogen concentrations depend on several factors, mainly land use, sewage disposal and the water 
balance of the water body, as dilution strongly affects the pollutant concentrations. In European rivers agricultural fertilizers 
are the main source of nitrogen. NH4

+-N concentrations range between 0.1 and 0.3 mg/L and median NO3-N concentrations 
are around 3 mg/L in large rivers (EEA, 2001). In urban agglomerations in developing or newly industrialized countries 
nitrogen loads in surface water bodies are expected to be substantially higher: Nitrogen contamination of surface water 
through untreated or partially treated domestic sewage water is a concern in many of these countries. According to Corcoran 
et  al. (2010), up to 90% of sewage water in developing or newly industrialized countries is not collected or treated but 
discharged directly into rivers, lakes and coastal areas or leached into the subsoil. In the Asia-Pacific region alone, this 
amounts to approximately 150–250 million m3 per day of untreated (domestic) wastewater from urban areas released to the 
environment (WWAP, 2012). However, data on total inorganic nitrogen concentrations (NH4

+, NO2
−, NO3

−) is scarce, as most 
studies on river water quality in Asian megacities only report concentrations for nitrate and nitrite, e.g. Sikder et al. (2013) 
and Kido et al. (2009). But because of the high chemical oxygen demand in sewage contaminated rivers, the prevailing form 
of inorganic nitrogen is expected to be ammonium.

4.2.4  Nitrogen in sewage water
In sewage water about 60–70% of the nitrogen is present in the form of ammonia/ammonium, depending on the pH of the 
solution, while the remaining 30–40% is mostly found as biodegradable or non-biodegradable organic nitrogen (Metcalf & Eddy 
Inc, 2014, p. 712). Fresh domestic wastewater usually contains no more than 1% nitrates and nitrites (Eckenfelder & Argaman, 
1991) before it is aerated in the nitrification step at wastewater treatment plants (WWTPs). Total nitrogen concentrations in 
wastewater are highly variable depending on the diet of the population (Pescod, 1992; Patterson, 2003) and the per capita 
wastewater flow rate (Eckenfelder & Argaman, 1991). Concentrations between 20 and 85 mg/L are reported as an average 
for typical domestic wastewater in Metcalf & Eddy Inc (2014), and maximum concentrations can be much higher (sometimes 
above 150 mg/L – e.g. Ammary, 2007). The main source of nitrogen in wastewater is urea, which is contained in urine and is 
degraded by biological hydrolysis (Mobley & Hausinger, 1989, Table 4.3).

Table 4.3  Reactions of urea in the environment (Mobley and Hausinger, 1989).

Reactant Product Explanation

urea + water ammonia + carbamate Hydrolysis of urea

(NH2)2CO + H2O *→ NH3 + H2NCOOH *Naturally occurring enzyme urease catalyzes reaction

carbamate + water ammonia + carbonic acid Hydrolysis of carbamate

H2NCOOH + H2O → NH3 + H2CO3

carbonic acid hydrogen ion + bicarbonate Dissociation of carbonic acid

H2CO3 → H+ + HCO3
− Increase in pH

ammonia + water ammonium + hydroxide

2NH3 + 2H2O → 2NH4
+ + 2OH− Ammonia molecules equilibrate with water
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Other sources are faeces (a source of organic nitrogen) and grey water from laundry and personal washing (a source of 
NH3/NH4

+) (Patterson, 2003). Products like toilet paper had the lowest nitrogen load contribution (Tjandraatmadja et al., 
2010). In countries without a regular waste disposal system, garbage disposal in wastewater is another large source of organic 
nitrogen.

4.3  THE DELHI CASE STUDY
4.3.1  Overview
The well fields in East Delhi are an example of unintended contamination by RBF use by placing wells along a sewage 
contaminated river. Delhi is a megacity with a population of currently 16 million people (Census of India, 2011) located in the 
centre of the Indo-Gangetic Plain (Figure 4.1). The Yamuna River, the largest tributary of the Ganges River, flows through 
Delhi in north-southerly direction. As many rivers in Asia, the Yamuna is characterized by high sediment loads during 
monsoon season (Jha et al., 1988) and a constantly changing riverbed (Khan & Bajpai, 2014). Although numerous dykes and 
embankments were constructed within the city to control the flow, the river still has the opportunity to shift within certain 
limits between the embankments (Figure 4.2). Thus, the location of the riverbank frequently changes. The river is dammed 
up by two barrages within the city area, Wazirabad barrage in the North and Okhla barrage in the South, and the 22 km river 
stretch between the two barrages is highly polluted by sewage water.

Figure 4.1  (a) Delhi is located in the Indo-Gangetic plain (Indian part marked in medium grey). Data source: Natural Earth 
(2011) (b) The study area is located on the East bank of the Yamuna River, where sewage influenced river water infiltrates into 
the sediments of the Newer Alluvium. Geological Map modified after Geological Survey of India (2006).

The floodplain covers the eastern and western bank along the entire stretch of the river in Delhi. It is mostly undeveloped 
and mainly used for agriculture. The floodplain sediments are mostly medium grained sands with a layer thickness of up 
to 70 m in the north of Delhi (Shekhar & Prasad, 2009) and about 20 m in the southern part of the city. They constitute 
what is known as the floodplain aquifer or Newer Alluvium. Compared to other groundwater sources in Delhi, the 
groundwater of the Newer Alluvium is found at shallow depth and is characterized by only minor water table fluctuations 
of about 0–2 m throughout the year and over decades – as opposed to about 4–20 m in other aquifers in Delhi (CGWB, 
2012; Shekhar et al., 2009).

Numerous tube wells and about 20 Ranney wells (radial collector wells) were constructed on the floodplain in Delhi, 
tapping the Newer Alluvium. The wells are not arranged parallel to the riverbank but were constructed across the complete 
width of the upper floodplain. Owing to losing stream conditions (Lorenzen et al., 2010a) it can be assumed that the wells 
situated along the river draw a high share of bank filtrate, although they have not been specifically designed for bank 
filtration.
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Figure 4.2  (a) Location of the study area (b) Drilling of observation well (c) Location of the hand pumps, Ranney wells and 
of the shallow and deep drillings conducted during the field work (modified after Groeschke, 2013). The river is able to shift 
between the dykes on the eastern and the western bank.

4.3.2  Study area
The study area covers an area of about 2.5 km2 on the east bank of the Yamuna River in East Delhi near the Akshardham 
Temple between 720800 and 722800 m E and 3165900 and 3168200 m N (UTM, WGS84 Zone 43 N). Here the undeveloped 
floodplain is about 2.4 km wide. Four Ranney wells operated by the Delhi water company Delhi Jal Board (DJB – P3, P4, 
P5, P6) and one Ranney well operated by the Indian Railways (NH24) as well as numerous hand pumps and bore wells 
used by the local population are located within the area and some of them were used for water sampling. Additionally, four 
observations wells and two hand pumps were installed in the frame of Saph Pani (see section 4.3.3). The study site with the 
location and type of the sampling points are shown in Figure 4.2.

Previous research
Previous research at this location was conducted 2006 in the frame of the feasibility study IDB India (International 
Development of Bank Filtration: Case Study India) and 2007–10 in the frame of the TECHNEAU project (Lorenzen et al., 
2007; Pekdeger et al., 2008; Sprenger et al., 2008; Lorenzen et al., 2010a; Lorenzen et al., 2010b; Lorenzen, 2011; Sprenger, 
2011; Sprenger & Lorenzen, 2014).

Geology and hydrogeology
In the study area, like in the entire flood plain in Delhi, the Holocene alluvial sands (Newer Alluvium) are underlain by finer 
grained Pleistocene sediments of the Older Alluvium. At 38 mbgl Precambrian bedrock was encountered (Sprenger, 2011, 
p.70). Hydraulic conductivities of the Newer Alluvium are in the range of 2 × 10−4 to 7 × 10−4 m/s (Chatterjee et al., 2009) 
and Sprenger (2011, p.66) reported an average pore water velocity of 0.9 m/d for this unit at the field site. The hydraulic 
conductivities of the Old Alluvium are between 3 × 10−5 and 5 × 10−5 m/s (Chatterjee et al., 2009). According to Lorenzen 
et al. (2010a) losing stream conditions prevail on the east bank of the river. Sprenger (2011, p.66) reported infiltration rates of 
6.4 × 10−7 m3/m2/s for monsoon times and 4.2 × 10−7 m3/m2/s for non-monsoon times. No information is available about the 
west bank of the river at this location.

Description of the production wells
The Ranney wells of the Delhi Jal Board in the study area were constructed in 1973 and commenced operation in 1975. 
They are about 15 m deep and thus tap the floodplain aquifer. Each well has ten laterals which are each about 30 m long. The 
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recorded discharge of the wells is about 150–300 m3/h (Chatterjee et al., 2009). The wells are typically operated about eight 
hours every day, except for well number P3, which is sometimes not operating because of elevated ammonium concentrations 
in the groundwater. The water of well P4 is directed to the Commonwealth Games Village WTP while the water of wells P3, 
P5, P6 is supplied to the Okhla WTP. Well NH24 of the Indian Railways is constructed similar to the DJB Ranney wells but 
the water is not used for public water supply.

4.3.3  Field studies
Water and sediment sampling
In the frame of Saph Pani, 72 groundwater samples were taken from the sampling points shown in Figure 4.2, including the 
newly constructed observations wells and hand pumps. In addition, eleven regular river water samples and two samples of the 
flood event in July 2013 were taken and analyzed (for NO3

−, NO2
−, NH4

+, main cations and anions, pH, oxidation reduction 
potential, electrical conductivity, dissolved oxygen, trace elements). The four new observation wells were installed at distances 
between 500–550 m to the riverbank and the two new hand pumps were installed at distances of 35 m and 250 m to the river. 
The drillings were done by manual auger drilling and have depths between 7.6 and 28 m. Sediment samples were collected 
of the encountered lithological units. In addition, sediment samples were collected from seven shallow drillings with depths 
between 2.5 and 4.3 m at distances of 5 m, 75 m, 200 m, 375 m, 500 m, 600 m, and 775 m to the river. This was conducted by 
using an Eijkelkamp hand drilling device. To sample river bottom sediments and to measure water depths, three profiles were 
taken across the Yamuna River in December 2013, using a Van-Veen grab sampler.

Results: Ammonium concentrations at the field site
Varying ammonium concentrations were found in the aquifer close to the river (Figure 4.3). In 2012, a similar trend was 
observed in ammonium concentrations at the three sampling points B1, H1, and H3, with values between 4.5 mg/L in June 
2012 and 26 mg/L in December 2012 (Groeschke, 2013). In 2013, ammonium concentrations still fluctuated (between 6.4 
and 35 mg/L), but no trend could be discerned. In the Ranney well P3 at a distance of 500 m from the river, ammonium 
concentrations varied between 5.5 and 8 mg/L in 2012 and 2013. In wells farther away from the riverbank, ammonium 
concentrations remained below 1.7 mg/L in both years. In the river water, ammonium concentrations up to 20 mg/L were 
measured in 2012 and up to 16 mg/L during the field campaigns in 2013. Maximum and minimum concentrations at the field 
site are summarized in Figure 4.3. Data obtained from water samples were further used to set-up the 1D model (section 4.3.5). 
A detailed description of the ammonium plume is given in Groeschke et al. (2015a).

Figure 4.3  (a) Location of the study area (b) Hand pump H1 (c) Minimum and maximum total nitrogen concentrations in the 
water samples taken between March 2012 and December 2013 work (modified after Groeschke, 2013).
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4.3.4  Laboratory studies
Sediment analyses
To characterize the alluvial aquifer a total of 25 sediment samples from the unsaturated zone were studied (Groeschke et al., 
2015b) and 14 samples from the saturated zone as well as one sediment sample from the river bed were analysed (Groeschke 
et al., 2015a). Grain size distribution was determined by sieve test and hydrometer method, organic content and carbonate 
content were measured through loss on ignition. The cation-exchange capacity (CEC) was determined using a barium chloride 
(BaCl2) percolation method for sands and gravels and a BaCl2 batch method for fine grained sediments.

The sediment’s main components range between silt and gravel. The particle sizes increase with increasing sampling 
depths. Silts and silty fine sands are predominant in the unsaturated zone, while the saturated zone is dominated by well 
sorted medium sands. Below is a gravelly layer at a depth of about 13.5 m, which consists of real gravel particles (grain size 
of >2 mm) and of concretions >2 mm made up of clay and silt. It is underlain by silty clays, presumably of the Old Alluvium, 
at a depth of about 16 m. In the New Alluvium, the hydraulic conductivity (k value) ranges between 1.0 × 10−7 m/s in the 
unsaturated zone and 4.2 × 10−3 m/s in the saturated zone if calculated according to Beyer (1964) or – in case of the fine 
grained sediments – to the U.S. Bureau of Soil Classification (Richter, 1966). The hydraulic conductivities increase with 
increasing particle size (and thus with depth). The organic content of the sediments ranges between 0.5% and 14.9%. In the 
unsaturated zone, the organic content was generally higher than in the saturated zone. The carbonate content of the sediments 
ranges between 0.9% and 18%. The highest carbonate content was found in the gravel layer, which contains the concretions. 
The CEC ranges between 1.2 meq/100 g sediment in the saturated zone and 37.2 meq/100 g sediment in the unsaturated zone. 
In the saturated zone, the CEC is slightly higher in the gravelly layer (2.1 meq/100 g sediment) than in the sand (1.6 meq/100 g 
sediment, Groeschke et al., 2015c). Calcium has the highest share in the CEC, leading to the conclusion that the carbonates 
consist mainly of calcium carbonate and that the concretions are probably the typical calcite concretions locally known as 
kankar (Eybing, 2014). The gravel layer will be referred to as kankar in the following text.

A detailed description of the unsaturated zone and an evaluation of its significance for the ammonium contamination 
is given by Groeschke et al. (2015b). The saturated zone, and especially the kankar layer and its significance for flow and 
transport are described in detail in Groeschke et al. (2015a; and 2015c).

Column experiments
The transport and fate of ammonium in the sand and kankar aquifer materials from the Yamuna floodplain was further 
investigated in laboratory column experiments at Freie Universität Berlin (Groeschke et  al., 2015b; and 2015c). Such 
experiments are a common method in hydrogeology to determine specific sediment parameters. The goal of these series of 
experiments was to provide data regarding sorption, degradation and fixation of ammonium under field site conditions. The 
data was later used to set up a reactive transport model of the field site to predict the future development of the ammonium 
plume. The set-up of the experiments is shown in Figure 4.4.

Figure 4.4  Set-up of the column experiments.
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The experiments were conducted under suboxic or anoxic conditions, whereby the latter prevail in the aquifer. To achieve 
laboratory conditions similar to those at the study site, the following parameters were adapted:

• The model water was adjusted for the main cations to be comparable to the concentrations in the groundwater.
• Anoxic conditions were established by using argon balloons to create an oxygen- (and nitrogen-) free atmosphere above 

the model water container and the effluent sampling flasks. Glass and gas-tight tubing materials were used to inhibit 
gas exchange. The oxygen concentration was monitored with chemical optical oxygen sensor spots (PreSens) at six 
points during the entire duration of the experiments. Redox potential was measured using oxidation reduction potential 
-probes at the outlet of the columns.

• A peristaltic pump maintained a flow rate of ~0.17 mL/min, which correlates to a flow velocity at the field site of about 
0.9 m/d (Sprenger, 2011, p.66).

The glass columns had an inner diameter of 45 mm and a sediment filled length of 146 mm and were flushed upflow with 
the model water. Three sets of experiments were conducted with this set-up: pre-tests, adsorption experiments and desorption 
experiments.

• During pre-tests, the freshly filled columns were flushed with nitrogen-free model water until nitrogen concentrations 
in the effluent were sufficiently low.

• In the adsorption experiments, the columns were flushed with model water with ammonium concentrations of either 
20 mg/L or 10 mg/L until the ammonium concentrations in the effluent were equal to the concentrations in the model 
water.

• During the subsequent desorption experiments, the columns were again flushed with nitrogen-free model water until 
nitrogen concentrations in the effluent were low and did not decrease any further.

Each experiment was conducted with two or three columns filled with the same sediment (doubles or triplets). To check for 
reproducibility, most experiments except for the pre-tests were repeated one or two times.

Results of the column experiments
The column experiments indicate that there is some degradation or fixation of ammonium in the sediments of the unsaturated 
zone and no or very little natural degradation potential in the sediments of the saturated zone. The transport of ammonium 
is therefore mainly controlled by cation exchange. In the sand columns, 10–12 pore volumes were necessary to observe 
ammonium saturation in the sediment and subsequently same ammonium concentrations in the column effluent as in the 
feed water (100% breakthrough of ammonium) and about 15 pore volumes to flush the ammonium out of the sediment. In 
the kankar, 30–35 pore volumes were necessary to observe the 100% breakthrough in the adsorption experiments and the 
flushing of the ammonium in the desorption experiments took about 40 pore volumes (Groeschke et al., 2015c).

4.3.5  1D Transport modelling
With the aim to predict the future concentrations of ammonium at well P3, 1D reactive transport models (Haerens et al., 
2002b) were set up for the field site. Based on the results of the 1D reactive transport column models, of Groeschke et al. 
(2015c), two flow paths in representative aquifer sediments were modelled with PHREEQC v3 (Parkhurst & Appelo, 2013; 
Figure 4.5). One flow path comprises 500 m distance from the riverbank to Ranney well P3. These 500 m were set up as a 
column divided into 139 cells with a cell length of 3.6 m each. The time step was set to 4 d, resulting in the average linear 
velocity of 0.9 m/d as determined by Sprenger (2011). Transport parameters (effective porosities, number of exchange 
sites, and selectivity coefficients for the cation exchange) were taken from the 1D column modelling without any further 
adjustments (Table 4.4). Dispersivities were adjusted to the model length. Although dispersion is generally higher at the 
field scale than at the laboratory scale because of sediment inhomogeneities which are not present in laboratory columns 
(Gelhar et al., 1992), the dispersivities of the field model were adjusted to represent the magnitude measured in the column 
experiments: the longitudinal dispersivity was set to 5 m (1/100 of the flow path) in the sand and to 50 m (1/10 of the flow 
path) in the kankar. Because the sediment is carbonatic (Eybing, 2014) and most water samples at the field site are slightly 
oversaturated with calcite, calcite was included as an equilibrium phase in the model. To check for numerical errors, the 
models were also run with 278 cells (1.8 m cell lengths) and 2 d time steps and with 556 cells (0.9 m cell lengths) and 1 d 
time steps.
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Table 4.4  Transport parameters used in the simplified 1D model.

Parameter Unit Sand Kankar

Effective Porosity (ne)* — 0.24 0.175

Number of exchange sites meq/1L water 0.054 0.21

log_kNa\K — 0.67 0.98

log_kNa\Ca — 0.1 0.18

log_kNa\Mg — –0.28 –0.09

log_kNa\NH4 — 0.55 0.81

*Effective porosities are not explicitly included in PHREEQC models. They are 
incorporated through the number of exchange sites.

Figure 4.5  Flow paths from the river to well P3 in the 1D reactive transport models. The vertical flow from the river to the 
kankar layer was not considered and modelled. Cross section after geological information given in Groeschke et al. (2015a).

To keep the model minimal and straightforward, the following assumptions and simplifications were applied:

• Source water composition (displacing solution) was kept constant, although in reality there is a seasonal variability in 
the river water due to monsoon–non monsoon compositions.

• Ammonium was decoupled from the nitrogen cycle, meaning it cannot be oxidized to nitrate in the model. This would 
be representative of anoxic conditions in the aquifer, which by no means must prevail after an improvement of source 
water quality.

• An average linear flow velocity of 0.9 m/d (Sprenger, 2011) was assumed for both flow paths. It is very likely that flow 
velocities are much higher in the kankar layer, but real data for this layer are not available.

Adsorption modelling
To estimate the increase of ammonium concentrations at well P3, the infiltration of sewage influenced river water into the 
aquifer was modelled. The cells were equilibrated with water samples taken at sampling points still uninfluenced by the 
ammonium plume. A sample taken from HatP4 in December was used for equilibrating the sand layer and a sample taken 
at P4 in December 2013 was used to equilibrate the kankar layer. The cells were then flushed with a displacing solution 
with the composition of a sewage influenced river water sample taken at the field site in December 2012 with an ammonium 
concentration of 20 mg/L. The compositions of the water samples are summarized in Table 4.5. In the models, it took about 15 
years to reach the 100% ammonium breakthrough in the sand layer and 62 years to reach the 100% ammonium breakthrough 
in the kankar layer (Figure 4.6).

Desorption modelling
How long the ammonium contamination will prevail in the aquifer after source water quality improves depends not only on 
the sediment properties, but also on the extent of the ammonium plume. To model ammonium desorption, it was assumed that

• the ammonium plume has completely reached the well P3 and
• the ammonium distribution within the plume is homogenous at 35 mg/L NH4

+ in the groundwater in the sand layer and 
26 mg/L in the kankar layer.
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Table 4.5  Composition of the equilibrating and displacing solutions. Water samples were charge-balanced with alkalinity as 
HCO3

−. Groundwater samples were taken in December 2013. River water sample was taken in December 2012.

Parameter Unit Equilibrating Solution 
Sand (HatP4)

Equilibrating Solution 
Kankar (P4)

Displacing Solution 
(River Water Field Site)

Temperature (T) °C 26.2 26.4 20.5

pH pH 7.58 7.4 7.6

Reduction potential (Eh) mV 160 175 82

Electrical conductivity (EC) µS/cm 495 893 1588

Sodium (Na) mg/L 19.9 67.5 171

Potassium (K) mg/L 5.4 6.8 15.4

Magnesium (Mg) mg/L 14 23 33.7

Calcium (Ca) mg/L 63.7 80 65.4

Iron (Fe) mg/L 0.09 0.1 0.07

Manganese (Mn) mg/L 0.09 0.3 0.3

Hydrogencarbonate (HCO3
−) mmol/L 5.2 5.9 6.5

Chloride (Cl) mg/L 6 78 218

Sulphate (SO4
2−) mg/L 2 53 125

Sulfide (S2−) mg/L 0 0 0

Ammonium (NH4
+) mg/L 0 0.6 20

Nitrite (NO2
−) mg/L 0.005 0.03 0.02

Nitrate (NO3
−) mg/L 0 3.5 0

Figure 4.6  Results of adsorption modelling. Solid black line: Ammonium concentration in the water in mg/L (shown on the 
primary y-axis), dashed grey line: Ammonium concentrations on the exchanger in meq/kg sediment (shown on the secondary 
y-axis). The amount of ammonium sorbed on the sediment depends on the number of exchange sites available, on the solute 
composition and on the selectivity coefficients, which are sediment-dependent. It can be clearly seen that more ammonium 
can be adsorbed on the kankar material than on the sand.

The cells of the sand flow path were equilibrated with a water sample from hand pump B1 taken in December 2013 
and the cells of the kankar flow path were equilibrated with water composition of sample H250 taken in December 2013 
(Table 4.6). After equilibration, the column was flushed with a displacing solution with the composition of the river water 
upstream Delhi at Palla, where the Yamuna is still uninfluenced by sewage water. Assuming the same average linear velocity 
of 0.9 m/s in the sand and the kankar, Ammonium concentrations were below the drinking water limit value of 0.5 mg/L 
after about 19 years in the sand layer and after about 61 years in the kankar layer (Figure 4.7). This is due to the higher 
number of exchange sites in the kankar and to different selectivity coefficients in both materials. Because degradation of 
ammonium was not implemented in the models, the results can only be seen as conservative estimates. Furthermore, the 
average linear velocity in the kankar is probably higher than in the sand and flushing the ammonium out of the kankar layer 
might therefore be faster than 61 years.
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Table 4.6  Composition of the equilibrating and displacing solutions. Water samples were charge-balanced with alkalinity as 
HCO3

−. Groundwater samples were taken in December 2013. River water sample was taken in March 2007 in the frame of 
the TECHNEAU project.

Parameter Unit Equilibrating 
Solution Sand (B1)

Equilibrating 
Solution Kankar 
(H250)

Displacing Solution 
(River Water 
Upstream)

Temperature (T) °C 25.2 24.3 22.3
pH pH 6.93 7.23 8.56
Reduction potential (Eh) mV 105 84 268
Electrical conductivity (EC) µS/cm 1615 1153 457
Sodium (Na) mg/L 97 79.7 35
Potassium (K) mg/L 17.3 13.2 9
Magnesium (Mg) mg/L 38.7 24.8 14
Calcium (Ca) mg/L 126.5 89.1 44
Iron (Fe) mg/L 16.9 5.2 0.62
Manganese (Mn) mg/L 0.42 0.27 0.05
Hydrogencarbonate (HCO3

−) mmol/L 11.9 8.3 2.7
Chloride (Cl) mg/L 141 115 38
Sulphate (SO4

2−) mg/L 5 4 46
Sulfide (S2−) mg/L 0.04 0 0
Ammonium (NH4

+) mg/L 35 26 0.1
Nitrite (NO2

−) mg/L 0.005 0.005 0.2
Nitrate (NO3

−) mg/L 0 0.05 6

Figure 4.7  Results of the desorption modelling. Solid black line: Ammonium concentration in water in mg/L (shown on the 
primary y-axis), dashed grey line: Ammonium concentrations on the exchanger in meq/kg sediment (shown on the secondary 
y-axis). Like in the adsorption-model runs, more ammonium is adsorbed on the kankar material than on the sand. However, 
the actual amounts adsorbed in the beginning of the desorption-model run are higher than the amounts adsorbed in the 
adsorption-models (Figure 4.6). The reason for this discrepancy is that the desorption-model was equilibrated with higher 
concentrations of ammonium (see Table 4.6).

4.4  OVERVIEW OF REMEDIATION AND POST-TREATMENT OPTIONS
To make ammonium-contaminated groundwater suitable for drinking purposes, either remediation measures have to be 
applied to lower ammonium concentrations in the groundwater, or the raw water has to be treated before distribution. For 
remediation, there are generally three different approaches: (1) source control, meaning the removal or control of all known 
and suspected sources of contamination, (2) in-situ treatment methods, where the remediation takes place in the aquifer 
itself, or (3) pump and treat measures, which involve treating the water above-ground and re-injecting it into the aquifer. 
In Table 4.7 a short overview of possible remediation measures is given and the use of the measures in the Indian context 
is briefly discussed. Post-treatment options, which include physico-chemical treatment options (ammonia stripping, ion 
exchange, breakpoint chlorination and reverse osmosis) and biological filters, are summarized in Table 4.8 together with a 
brief assessment of the advantages and disadvantages regarding the application in India.
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4.5  CONCLUSION AND RECOMMENDATIONS
The use of BF in the Yamuna floodplain in Delhi and in similar hydrogeological settings is basically recommended. However, 
in these locations, bank filtration should not be seen as a treatment option, but as an option to adapt and improve water 
management measures. The two main advantages are (1) temporary water storage in the aquifer and (2) a relatively constant raw 
water composition, improving operating conditions for WTPs. In addition, it is advised to set up a post-treatment concept that is 
designed specifically for the groundwater parameters at the particular BF location. Such an adapted site-specific post-treatment 
concept would have the advantage that it would not only reduce elevated ammonium concentrations caused by the infiltration 
of sewage water, but it would also allow treating other (geogenic) parameters of concern, for example arsenic and fluoride.

In the long term, it is essential to improve the river water quality by implementing sufficient sewage treatment capacity. As 
this has been widely recognized several new wastewater treatment plants are planned or under construction, e.g. five WWTPs 
with a designed capacity of 360,000 m3/d are likely to be commissioned in 2014–5 (Government of India, 2014). However, 
elevated ammonium concentrations will prevail long after source water quality has improved.

According to the laboratory column experiments (section 4.3.4) and a simplified 1D reactive transport model that was set 
up for the field site (section 4.3.5), ammonium desorption in the kankar layer – where the laterals of the contaminated well 
(P3) are presumably located – will take decades. With the assumptions described in section 4.3, the period of ammonium 
desorption to concentrations <0.5 mg/L will last for about 61 years in the 500 m strip along the river. This result of the simple 
1D model is a conservative estimate, as the average linear flow velocity in the kankar layer is probably much higher than the 
literature value (Sprenger, 2011) suggests. In general, due to the continuing accumulation of ammonium on the aquifer matrix, 
desorption times will increase with prolonged infiltration of contaminated surface water. Thus, a short and medium term 
solution such as post-treatment remains a necessity for the investigated site, even if river water quality improves fast. More 
detailed 2D models are strongly recommended to make more precise and realistic predictions.

4.5.1  Recommended remediation
In general, ammonium remediation options are complex and expensive. At BF sites such as Delhi remediation would often be 
further complicated by the fact that wells are spread along a long stretch of the river. In-situ or pump and treat remediation 
measures would, therefore, have to be installed over large areas making remediation extremely costly. If it is decided to 
develop such a remediation concept, it is of utmost importance to implement the following recommendations:

• Installation of multi-level observation wells at the well field including levelling survey: Regular measurements of the 
water level when wells are operating and when they are switched off, and creation of groundwater contour maps for the 
different seasons.

• Development of a groundwater flow model based on the water level data. The hydraulic conditions at the well field have 
to be well known in order to be able to decide on a concept; it is especially important to understand, how the wells 
influence the flow regime.

• Modelling of scenarios of possible remediation concepts.
• Implementation of groundwater monitoring by regularly taking groundwater samples from the observation wells. To 

be able to evaluate remediation measures, groundwater quality has to be known and documented before the start of 
remediation measures.

• Implementation of accompanying groundwater monitoring during remediation.

In case a remediation option is wanted, it is not recommended to use any option involving the injection of chemicals 
or additives other than oxygen into the aquifer. Although those methods usually are characterized by a faster removal of 
ammonium, there is a risk of unwanted secondary reactions and formation of by-products, which might not get degraded on 
the short flow paths to the production wells. BF sites are always water protection zones and therefore special precaution should 
be taken.

4.5.2  Recommended post-treatment
Two options were identified as the most applicable for the given context of high ammonium concentrations in raw water: 
(1) raw water from affected wells can be mixed with raw water from other sources before treatment or (2) raw water from 
wells can be treated separately in independent WTPs.

In Delhi, the first option is generally chosen. Raw water from the Ranney wells is usually mixed with surface water 
before treatment. This has the advantage that the groundwater from the Ranney wells is diluted and parameters such as 
arsenic remain below the guideline values and do not need to be treated. A major disadvantage of this method is that water 
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quality is not constant. Nitrogen concentrations in the Yamuna River upstream Delhi show high variations. As the treatment 
plants are not designed to cope with peak concentrations, it is not always possible to remain below the guideline values for 
ammonium and/or nitrate. Furthermore, the mixing of ammonium contaminated groundwater with surface water might 
increase ammonium concentrations in the WTP influents to a level where chlorination is negatively affected.

The second option is therefore recommended. It is better to treat the raw water from the floodplain aquifer separately, e.g. 
by further pursuing the concept started with the Commonwealth Games Village WTP, a 4.5 million litres per day (MLD) 
WTP for the water from P4 and nearby bore wells, and the 27 MLD nitrification plant in Okhla.

Although microbial filters (nitrification filters, Table 4.5), as for example used in the Okhla nitrification plant, are a common 
and cost-efficient option to treat ammonium in raw water, most studies about biological filters for drinking water treatment 
were not conducted under conditions met in India and the results cannot directly be transferred. Challenges to be met with 
this technique in locations like Delhi include:

• Supply enough oxygen to cope with the high ammonium concentrations.
• Monitor both inlet and outlet concentrations closely and adapt the hydraulic loading to stabilize nitrogen loading and 

thus achieve complete nitrification.

Lee et al. (2014) reported stable ammonium removal in new, less concentration-sensitive biological filters. However, the 
reported range of ammonium concentrations is an order of magnitude lower than in the raw water of the Ranney wells 
in Delhi. Therefore, pilot and full scale studies to find optimum operating conditions for the specific local requirements 
are recommended if the application of this technique should be further enhanced in India. As an alternative to biological 
filters, a method with more robustness towards fluctuating input parameters and less downtime in case of failures should be 
considered, such as ion exchange using zeolites.
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