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 10 

Abstract 11 

The number of people affected by snow avalanches during recreational activities has increased 12 

considerably over the recent years in Norway. An instrument to reduce these numbers are improved 13 

terrain classification systems to provide guidance for safe route finding. One such system is the 14 

Avalanche Terrain Exposure Scale (ATES) which classifies terrain into the three classes simple, 15 

challenging, and complex. Forests can provide some protection from avalanches, and information on 16 

forest attributes can be incorporated into avalanche hazard models such as the automated ATES 17 

model (AutoATES). The objectives of this study were to i) map relevant forest attributes (stem 18 

density and canopy cover) based on National Forest Inventory and remote sensing data and, ii) use 19 

these forest attributes as input to the AutoATES model to improve avalanche hazard maps. We 20 

predicted stem density with species-specific mixed-effects models and directly calculated canopy 21 

cover using airborne laser scanning data in a 20 Mha study area ranging from the arctic circle to 22 

southern Norway. The forest attributes were mapped for 16 m x 16 m pixels, which were used as 23 

input for the AutoATES model. The uncertainties of the stem number and canopy cover maps were 24 

30% and 31%, respectively. The overall classification accuracy of 52 ski touring routes in Western 25 

Norway with a total length of 282 km increased from 55% in the model without forest information to 26 

67% when utilizing canopy cover. The F1 score for the three predicted ATES classes improved by 31%, 27 

9%, and 6%. The use of stem number improved the hazard maps to a slightly smaller degree. We 28 

conclude that large-scale fine-resolution forest attribute maps are valuable data in the modelling and 29 

mapping of avalanche hazards. Together, these maps may be valuable for precise planning of forest 30 

management operations aiming at the utilization of forests as nature-based solutions for avalanche-31 

related disaster risk reduction. 32 
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1 Introduction 37 

Snow avalanches cause on average six fatalities per year in Norway (NGI 2022; Varsom 2022); these 38 

deaths and other injuries are primarily associated with recreation. Likely due to the increased use of 39 

the outdoors, the number of people affected by avalanches has increased remarkably in the recent 40 

years (Varsom 2022). Considerable resources have therefore been invested to reduce the number of 41 

casualties. Hazard maps to assist route-finding are believed to be an important tool in this context. 42 

Forest cover can alter avalanche behavior by modifying the snowpack through canopy interception 43 

(Bebi et al. 2001) and, albeit to a lesser extent, by increasing friction on prone slopes though the 44 

mechanism of the physical barriers of tree stems (Teich et al. 2014). On the other hand, large 45 

avalanches that release far above the tree line are only to a small degree affected by forests (Teich et 46 

al. 2012). Snow interception is largely dependent on tree species, because of the different 47 

morphology of tree crowns, and the size and number of trees in a given area, which are the factors 48 

that will collectively determine canopy cover and gaps. These parameters can potentially be derived 49 

from remote sensing in a way that is suited to avalanche simulation (Brožová et al. 2020) because 50 

they are spatially explicit. Maps of such forest attributes allow for monitoring of forest development 51 

and, subsequently, for adequate and effective forest management towards an optimized avalanche 52 

protection function to reduce avalanche hazards (Brang et al. 2006). This is especially crucial under 53 

the challenge of climate change that requires us to adapt forests to changing growing conditions to 54 

maintain healthy and resilient forests that can fulfil their functions. Moreover, once avalanche hazard 55 

zones are mapped, forest management measures could be used to reduce avalanche hazard, for 56 

example by avoiding clear cuts. 57 

Worldwide, various hazard maps have been developed for recreationalists using different avalanche 58 

classification schemes (Barbolini et al. 2011; Schmudlach and Köhler 2016; Harvey et al. 2018; Larsen 59 

et al. 2020b). In Norway, the most used classification of avalanche terrain is the Avalanche Terrain 60 

Exposure Scale (ATES, Statham et al. 2006). The classification scheme divides avalanche terrain into 61 

simple (class 1), challenging (class 2) and complex (class 3) terrain.  62 

Originally, the ATES classification scheme was developed to provide an overall classification of an 63 

entire route based on the overall exposure likely to be encountered. Recent advances including 64 

modern cartographic techniques have made it more common to develop spatial maps. Making ATES 65 

maps, Delparte (2008) found that slope angle and stem density were the two most important factors 66 

when classifying avalanche terrain with the ATES model. Campbell and Gould (2013) developed a 67 

specific model for spatial ATES including parameters for slope angle and forest density. Building on 68 

the proposed model for spatial ATES mapping, Larsen et al. (2020b, a) developed an automated ATES 69 

algorithm (AutoATES) for nationwide maps in Norway. However, due to limits in the spatial 70 

resolution and area-coverage of forest data, this version of the algorithm was only developed for 71 

non-forested terrain. The AutoATES map is consequentially likely to be inaccurate below the treeline. 72 

While many recreational accidents associated with avalanches happen above the treeline, Norway is 73 

not a country with particularly high mountains and the fjordic landscape means that a considerable 74 

amount of avalanche prone terrain is found below the treeline. Therefore, the inclusion of forest 75 

attributes in terrain exposure classification is important. Consequentially, in this study we aim to 76 

integrate high spatial resolution data on forests into the spatially explicit classification of avalanche 77 

exposure (AutoATES-Forest). 78 

The relationship between forest attributes and remote sensing data can be quantified via regression 79 

models, where the response (a forest attribute) is explained by predictors (remotely sensed 80 

variables). Such models are usually established using ground reference data from field plots with 81 

known locations and remote-sensing data extracted for the same locations. This is commonly known 82 



as the area-based approach (Næsset 2002). In Norway, the National Forest Inventory (NFI) collects 83 

extensive information about forest properties in sample plots with a size of 250 m2 (Breidenbach et 84 

al. 2020a), which can serve as ground reference for remote-sensing data to establish regression 85 

models predicting these forest attributes. Once established, these models can be extrapolated to 86 

areas beyond field-inventory plots, to obtain prediction maps for the attributes of interest. These 87 

predictions are particularly useful to support operational forest management (e.g. reviewed by 88 

Brosofske et al. 2014). To achieve this mapping of forest attributes, the entire area is gridded into 89 

aerial units of the same size as used for model fitting on NFI plots, and the same remotely sensed 90 

variables are extracted for each unit. Following this approach, various forest attributes were 91 

modelled and mapped for the Norwegian forest resource map SR16 (Astrup et al. 2019; Hauglin et al. 92 

2021), which is a national map at spatial resolution of 16 m x 16 m that is freely available (NIBIO 93 

2022).  94 

The necessary forest attributes for the AutoATES-Forest avalanche hazard model in Norway are 95 

canopy cover or stem density. Canopy cover is defined as the proportion of the forest floor that is 96 

obscured by tree crowns. Consequentially, airborne laser scanning (ALS) is the ideal way in which to 97 

assess this variable directly for example from a surface model or as the proportion of first returns 98 

above a specified height threshold (Korhonen et al. 2011). On the other hand, stem density is more 99 

challenging to obtain from wide-area coverage ALS because the lasers do not penetrate the canopy 100 

with sufficient spatial-resolution to directly observe the stems. Therefore, the aforementioned 101 

relationships need to be quantified. Previous studies have attempted to do this in comparable forest 102 

types (Næsset and Bjerknes 2001; Lindberg et al. 2010; Lindberg and Hollaus 2012; Ene et al. 2012; 103 

Eysn et al. 2015). In general, the model errors are quite high compared to volume or tree height and 104 

these increase with increasing complexity of the forest in terms of species and age structure. As none 105 

of the currently available models are extrapolatable to the national level in Norway, this was an 106 

important facilitating aim in the current study. 107 

Our objectives were twofold: (I) to describe empirical models linking stem density (number of trees 108 

per ha) observed at NFI sample plots to ALS metrics that are used to map this forest attribute in a 109 

fine resolution of 16 m × 16 m; to map canopy cover obtained directly from ALS data; and (II) to 110 

demonstrate and assess the inclusion of these in avalanche hazard classification models for 111 

recreational activities. For the latter, we use expert-classified ski-touring routes in Western Norway 112 

as a reference. To the best of our knowledge, this is the first study that documents the use of high-113 

resolution forest maps for the improvement of avalanche maps for recreational purposes. 114 

2 Material and methods 115 

2.1 Study areas 116 

In this study we referred to two different areas for the different analysis levels: modelling forest 117 

attributes (large part of Norway), and modelling avalanche hazard for recreational activities 118 

(backcountry skiing area Romsdalen).  119 

For modelling forest attributes with field reference data and auxiliary remote sensing data, we used 120 

NFI data from a large part of the country covering 21.5 Mha (66% of the Norwegian mainland), 121 

located in Norway between latitudes 58.0° and 69.5° N. This spatial extent was determined by the 122 

availability of ALS data (Figure 1). Within the study area, forest growing conditions vary considerably 123 

with latitude and elevation. The natural tree line is at around 1100 m asl in southern Norway and 124 

around 130 m asl in the north. Depending on these factors, climate zones range roughly from 125 

subarctic in the north and east, oceanic at the west coast, and continental in the south-east. The tree 126 

species are primarily Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). These make up 127 



the majority of above ground biomass and standing volume. Birch (Betula pendula and B. pubescens) 128 

is the most abundant species in terms of surface area and mainly occurs as early succession following 129 

disturbance (including timber harvests) or in high elevation and/or latitude forests (Breidenbach et 130 

al. 2020a). In this study the term broadleaves is used to represent what are mostly birch forests. 131 

 132 

For assessing the effect of forest towards improved avalanche hazard models for recreational 133 

activities we used the area of Romsdalen (Figure 1). This region is a popular destination for ski-134 

touring attracting national and international visitors. Within this area we focused on forested areas 135 

on slopes that were relevant for avalanche hazard mapping along 52 documented ski-touring routes 136 

(see section 2.3.1). The study area has an area of 3200 km2 and the mountains reach from sea level 137 

and up to 1784 m above sea level. 138 

 139 

 140 

Figure 1: Study area with airborne laser scanner (ALS) data coverage used for modelling forest characteristics, 141 
and Romsdalen area including ski-touring routes through mountainous terrain. The terrain and touring routes 142 
are classified according to the ATES classification scheme with classes 1 – simple (green), 2 – challenging (blue), 143 
3 – complex (red). 144 



 145 

2.2 Mapping forest attributes 146 

To map the forest attribute stem density, we developed a mixed-modelling regression between this 147 

attribute (our response variable) and independent predictor variables calculated from remote 148 

sensing data. We used field measured stem density from the Norwegian NFI (Breidenbach et al. 149 

2020a) as the response variable, and remote sensing data from airborne laser scanning (ALS) and 150 

Sentinel-2 satellite images (S2) as independent predictor variables (sections 2.2.2 and 2.2.3). The 151 

attribute canopy cover was obtained from the ALS data directly and compared to and visually 152 

assessed canopy cover in the NFI.  153 

 154 

2.2.1 Data 155 

National Forest Inventory data 156 

We used the permanent sample plots of the Norwegian NFI as reference data (Breidenbach et al. 157 

2020a). In the study area, the NFI is based on a systematic grid of 3 km x 3 km in the lowland region 158 

and 3 km x 9 km in the low-productive, birch-dominated mountain region. For trees with a diameter 159 

at breast height >= 5 cm (dbh, 1.3 m above ground), parameters are measured on circular plots with 160 

a size of 250 m2.  161 

We used NFI plots located in stands dominated by spruce, pine, and broadleaved trees (defined as 162 

plots with >= 75% timber volume of each tree species, respectively). From these plots, we only 163 

selected NFI plots in productive forest (yearly volume increment > 0.1 m3 / ha), and in one-layered 164 

forests for stem density modelling, resulting in 1,351 spruce, 1,064 pine, and 535 broadleaved 165 

dominated plots that were used for modelling stem density (Table 1). Canopy cover is only assessed 166 

for unproductive forest and other wooded land in the NFI (Viken 2021, p. 69) and, therefore, the 167 

number of plots used for the analysis of the ALS-based canopy cover measurement was 247, 205, 168 

and 112 for spruce, pine, and broadleaved forest, respectively. 169 

 170 

Table 1: Summary statistics of the Norwegian national forest inventory (NFI) data used for modelling in this 171 
study. 172 

 Height (m) Volume* (m3) Stem density** Canopy cover (%) 

Overall 
Min 4.9 5.2 40 0 
Max 34.1 1144.7 2840 99.0 
Mean 15.2 208.9 860 68.5 
STD 4.4 152.2 463 23.3 

Spruce 
Min 5.7 7.6 40 3.0 
Max 34.1 1144.7 2840 99.0 
Mean 17.0 277.1 1030 75.8 
STD 4.4 172.2 451 19.5 

Pine 
Min 7.2 12.7 40 5.0 
Max 28.3 693.7 2560 99.0 
Mean 14.8 176.2 652 64.4 
STD 3.5 106.2 370 22.0 



Broadleaved trees 
Min 4.9 5.2 40 0.0 
Max 26.4 400.7 2760 99.0 
Mean 11.3 101.7 845 60.2 
STD 3.5 70.9 485 28.1 

*Volume with bark; **number of trees >= 8 cm diameter at breast height (dbh) per ha. 173 

 174 

Remote sensing data 175 

ALS data were acquired during several measurement campaigns for the study area between 2010 176 

and 2019 with a density of 2 to 5 pulses per m2. A high-resolution digital terrain model (DTM, 1 m x 1 177 

m pixel size) was produced from the last-return data by the Norwegian Mapping Authority 178 

(Kartverket 2019). The ALS point cloud was height-normalized by subtracting the DTM elevation from 179 

corresponding point cloud elevation using bi-directional interpolation. The height-normalized point 180 

cloud was used to calculate various descriptive metrics for each NFI plot based on first returns, first 181 

returns above 2 m height above ground, and last returns. The metrics included mean, variance, 182 

coefficients of variation, kurtosis and skewness of ALS return heights, 10th, 25th, 50th, 75th, 90th, and 183 

95th height percentiles, and ALS return density metrics for 10 height slices (d0 – d9). A canopy 184 

coverage metric was calculated as percentage of first returns above 2 m (pctab2f). The DTM was 185 

resampled to 16 m x 16 m, such that the cell size corresponded approximately to the area covered by 186 

an NFI plot (250 m2). From the DTM, terrain slope was computed as a raster with a cell size of 16 m x 187 

16 m. S2 bottom of atmosphere reflectance images acquired between 30 June and 31 July 2018 were 188 

mosaiced using the bands B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12, measuring reflectance in the 189 

visible, NIR and SWIR spectrum (Drusch et al. 2012). The normalized difference vegetation index 190 

(NDVI) was calculated as band 8 minus band 4 divided by band 8 plus band 4 and tested as predictor 191 

in the prediction models. 192 

 193 

2.2.2 Modelling and mapping tree density 194 

In the Norwegian forest resource mapping project SR16 (Astrup et al. 2019; Hauglin et al. 2021) linear 195 

mixed regression models were developed estimating various forest properties. These models have 196 

the structure: 197 

𝑦 =  𝑿𝛽 +  𝒁𝑢 +  𝜖, 𝑤𝑖𝑡ℎ 𝑢 ~𝑁(0, 𝑮) 𝑎𝑛𝑑 𝜖 ~𝑁(0, 𝑹),   (Equation 1) 198 

where 𝑦 is the dependent response variable, 𝐗 and 𝐙 are the design matrices for fixed and random 199 

effects, respectively, β are the fixed effects parameters, 𝑢 is a vector of random effects, and 𝐆 and 𝐑 200 

are the covariance matrices for random effects and residual errors, respectively. We used the nlme 201 

package (Pinheiro et al. 2020) in the statistics software R (R Core Team 2020) to estimate the model 202 

parameters. A starting model was stepwise reduced by forward and backward selection of predictors 203 

based on Akaike Information Criterion as stopping rule (stepAIC function in R (Venables and Ripley 204 

2002)) and was further reduced by backward selection based on p-values (p<0.05). We used the 205 

information on ALS project acquisition as random effect on the intercept in the models to account for 206 

differences in ALS data collection between the different projects. Among others, we used the 207 

predicted coefficient of determination, R2, for model assessment 208 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅2 =  1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

     (Equation 2) 209 



where 𝑦𝑖  and 𝑦̂𝑖  are observed and predicted values in unit i and the number of units is denoted by 𝑛.  210 

 211 

We used the approach described above and the model structure in Equation (1) to fit linear-mixed 212 

effects models predicting stem density (for trees >= 8 cm dbh) for three tree species of interest. Area 213 

wide predictions of the forest attributes were made by applying the developed models to 16 m x 16 214 

m pixels, which is similar to the area of the NFI plots used during model fitting. A tree species map 215 

(Breidenbach et al. 2020b) was used to apply the corresponding tree species-specific model. 216 

 217 

2.2.3 Mapping canopy cover  218 

Canopy cover was calculated from the ALS data directly by analyzing the spatial distribution of laser 219 

echoes with above-ground heights >= 5 m. The normalized laser point cloud of each 16 m × 16 m 220 

pixel was divided into 64 voxels of size 2 × 2 × h m3, where h is the vertical distance from 5 m above 221 

ground to the maximum above-ground echo height. Each voxel was thus defined by a 2 × 2 m2 base 222 

at 5 m above ground and extended upwards to the height of the highest echo, i.e., h. Note that this 223 

means that the shape of the voxels where in most cases not cubical, but typically were higher than 224 

the 2 m sides of the base and that forests smaller than 5 m height will have a crown cover of 0. The 225 

proportion of non-empty voxels were used as a representation for canopy cover in the 16 m × 16 m 226 

pixel, with non-empty voxels being voxels containing at least one laser echo. Canopy cover was then 227 

compared to field-based estimates of canopy cover at NFI plots.  228 

 229 

2.3 Avalanche hazard maps for recreational activities 230 

2.3.1 Reference data generation: avalanche hazard classification for routes 231 

As a basis for comparison in the case study area, we used the hazard classification of (ski-touring) 232 

routes by local avalanche experts. The dataset consists of 52 routes with a total length of 282 km 233 

(Figure 1, Table 2) that were manually mapped by local avalanche experts of the Norwegian Water 234 

Resources and Energy Directorate (NVE) in 2018 (Larsen et al. 2020b). NVE is the government 235 

authority for avalanche hazard mapping in Norway. The work was done using the ATES v1.04 defined 236 

by Statham et al. (2006) presented in Table 2. Methods used included: a GIS web tool, visual 237 

interpretation of aerial imagery, local expertise, and field surveys. Each route is classified according 238 

to eleven different avalanche terrain factors and classified as either simple, challenging, or complex 239 

terrain. If the route is within the challenging or complex definition of slope angle for a short section 240 

of the trip, the whole trip will be classified as challenging or complex.  241 

 242 

Table 2: ATES Public Communication Model (v1.04) (Statham et al. 2006), and summary of the 52 documented ski-touring 243 
routes in Romsdalen used in this study. 244 

Description Class Terrain Criteria for Avalanche Exposure  
(relevant excerpt) 

# Routes Total length 

(km) 

Simple 1 Exposure to low angle or primarily forested 
terrain. Some forest openings may involve the 
runout zones of infrequent avalanches. Many 
options to reduce or eliminate exposure.  

12 43 



Challenging 2 Exposure to well defined avalanche paths, starting 
zones or terrain traps; options exist to reduce or 
eliminate exposure with careful route finding.  

26 131 

Complex 3 Exposure to multiple overlapping avalanche paths 
or large expanses of steep, open terrain; multiple 
avalanche starting zones and terrain traps below; 
minimal options to reduce exposure.  

14 108 

 245 

 246 

2.3.2 The AutoATES model 247 

To investigate the effect of forest data on ATES maps for recreational activities, we used the 248 

AutoATES algorithms developed by Larsen et al. (2020b, a). We examined the impact of using either 249 

canopy cover or stem density and compared it to AutoATES with no forest data as input as per Larsen 250 

et al. (2020b, a). AutoATES is an automated algorithm that is made to create spatial ATES maps using 251 

a DEM and optional forest data as input. In the present study a DEM based on ALS data was used 252 

(Kartverket 2019). 253 

The full methodology of the AutoATES model is described in detail in Larsen et al. (2020b), and it will 254 

therefore only be briefly presented here. The first step of the algorithm is to calculate the potential 255 

release areas (PRA) using the algorithm developed by Veitinger et al. (2016) and modified by Sharp et 256 

al. (2018). Using a fuzzy operator, they combine the input variables slope angle, terrain roughness, 257 

wind shelter, and stem density using a Cauchy membership value (Jang et al. 1997). In previous 258 

publications, stem density has not been available in high resolution. Cauchy membership values must 259 

be defined for each input variable:  260 

     𝜇(𝑥) =
1

1+(
𝑥−𝑐

𝑎
)

2𝑏     (Equation 3) 261 

where 𝜇(𝑥)  is the Cauchy membership value, x is an input variable, and a, b, and c are parameters 262 
which control the weight of each input variable. We use the parameter values suggested by Sharp et 263 
al. (2018) for slope angle, roughness, wind shelter, and stem density. There are currently no 264 
parameter values documented for canopy cover, therefore we set the values as given in Table 3. A 265 
fuzzy operator is used to generate the final PRA values as a result of the four Cauchy membership 266 
values (Table 3) (Veitinger et al. 2016; Sharp et al. 2018). The PRA zone is classified as ATES class 3 267 
(complex terrain). 268 
 269 

Table 3: The parameters used to calculate the fuzzy membership of forest input in the PRA model. 270 

Parameter: a b c 
Slope angle (Sharp et al. 2018) 7 2 38 
Roughness (Sharp et al. 2018) 0.01 5 -0.007 
Wind shelter (Sharp et al. 2018) 2 3 2 
Stem density (Sharp et al. 2018) 350 2.5 -150 
Canopy cover 240 25 -200 

 271 

In a second step, a runout model is used to calculate areas downslope of the PRAs that could be 272 
affected by an avalanche. For modelling the runout, FlowPy (D’Amboise et al. 2021) is used, which is 273 
a flow model that is limited by the angle of reach, i.e. the angle from the top pf the PRA to the 274 
lowermost point of the avalanche path (Larsen et al. 2020b). The algorithm is controlled by 275 
parameters for slope angle (SAT), cell count (CC), angle of reach (AAT), and PRA threshold (PRA THD) 276 



(Table 4). Using these parameters, the AutoATES model outputs a preliminary layer with the 277 
categorical classes simple, challenging, and complex terrain. 278 
 279 

Table 4: The input parameters used for AutoATES (Larsen et al. 2020b). The parameters were used in models that included 280 
either no forest data, stem density, or canopy cover. 281 

Parameter: AAT1 AAT2 AAT3 CC1 CC2 SAT01 SAT12 SAR23 SAT34 PRA THD 
Value: 20° 25° 31° 50 250 15° 25° 31° 37° 0.15 

 282 

To account for forest attributes in the runout zone, the forest map information of each pixel is split 283 

into four categories given the cut points in Table 5. Using map algebra equations on each of these 284 

forest density categories, the ATES classifications are then kept the same, or altered to a lower ATES-285 

class value (Larsen et al. 2020b). For example, if the initial ATES class is 3 (complex) but forest is 286 

dense (category 4), the final ATES class is 2 (challenging). 287 

Table 5: The parameters used in the raster calculator to account for forest density outside of the PRA. 288 

Parameter: Cut 

point 1 

Cut 

point 2 

Cut  

point 3 

Stem density (n/ha) 100 250 500 

Canopy cover (%) 10 25 65 

 289 

To compare the AutoATES classification with the manual ATES classification for skiing routes, the 290 

values of the AutoATES map were extracted every 10 m along the length of the route. The 95th 291 

percentile of the extracted AutoATES predictions was used to assign one predicted class per route.  292 

 293 

2.4 Evaluation criteria 294 

We used the evaluation criteria RMSE, and RMSE% to evaluate the modelled forest attribute stem 295 

density and the calculated canopy cover (Equations, 4, 5).  296 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1       (Equation 4) 297 

𝑅𝑀𝑆𝐸% =  100 𝑥 
𝑅𝑀𝑆𝐸

1

𝑛
∑ (𝑦𝑖)𝑛

𝑖=1

      (Equation 5) 298 

where 𝑦𝑖  and 𝑦̂𝑖  are observed and predicted values in unit i. The number of units in data is denoted 299 
by 𝑛.  300 

To evaluate the overall route classification, we used overall accuracy (OA), and to evaluate each class 301 
separately we used producers’ accuracy (PA), users’ accuracy (UA), and F1 score according to  302 

𝑂𝐴 =  
∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
     (Equation 6) 303 

𝑃𝐴 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
    (Equation 7) 304 

𝑈𝐴 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
    (Equation 8) 305 

𝐹1 =  2 𝑥 
𝑃𝐴 𝑥 𝑈𝐴

𝑃𝐴 + 𝑈𝐴
     (Equation 9) 306 



 307 

3 Results 308 

3.1 Forest attribute maps 309 

We modelled the stem density using linear mixed effects models, and directly calculated canopy 310 

cover from ALS data for the spruce, pine, and broadleaved forests (Figure 2). The fit statistics 311 

associated with the linear-mixed models for stem density showed that the results for spruce were 312 

the most accurate in terms of leave-one-out cross-validated RMSEcv% (Table 6). The significant 313 

predictors were similar for the spruce and pine models. Both models contained the 75th percentile of 314 

first ALS returns, (h75f) and its squared version (h75fsq), the percentage of first ALS returns above 2 315 

m height, (pctab2f) and its squared version (pctab2fsq), the interactions between h75f and pctab2f, 316 

and between h75fsq and pctab2fsq, the normalized difference vegetation index (NDVI), and terrain 317 

slope. For the spruce model one additional first return density metric d6f was included, and for the 318 

pine model the first return density metric d4f was included. The model for broadleaved forests only 319 

included the predictors h75fsq, pctab2fsq, and d6f. Model details and variance components of the 320 

stem density models are presented in Section 6 in the Appendix in Table 9 and Table 10. 321 

 322 

 323 

 324 

 325 



 326 

 327 

Figure 2: Observed vs. predicted stem density (number of trees per ha, left column), and canopy cover (right 328 
column) stratified into three tree species groups: spruce (top row), pine (middle row), and broadleaved trees 329 
(bottom row). 330 

 331 



The R2 of the stem density models was 0.59, 0.56, 0.68, and 0.62 for spruce, pine, broadleaved, and 332 

all forest, respectively. The Pearson correlation between canopy cover directly obtained from the ALS 333 

data and canopy cover assessed at NFI plots was 0.58, 0.67, 0.62, and 0.64 for spruce, pine, and 334 

broadleaved, respectively, and all forest (Figure 2, Table 6).  335 

The two plots in broadleaved forest that have zero predicted canopy cover (Figure 2, bottom right) 336 

are due to low ALS returns. Since we only used ALS returns above 5 m height, canopy cover 337 

predictions are less accurate in low forest. 338 

 339 

Table 6: Characteristics of the fitted models and canopy cover relationship 340 

 Stem density Canopy cover* 
Overall 

RMSEcv 300.9 23.3 

RMSEcv% 35.0 34.0 

Norway spruce 
RMSEcv 307.9 20.2 
RMSEcv% 29.9 30.8 

Scots pine 
RMSEcv 277.4 23.6 
RMSEcv% 42.5 36.2 

Broadleaved trees 
RMSEcv 330.7 28.7 
RMSEcv% 39.1 38.8 

* RMSEcv in percentage points, RMSEcv% in percentage to the mean 341 

 342 

3.2 Assessment of hazard maps for recreational activities 343 

Overall, including forest attributes in the AutoATES model improved terrain and, thereby, route 344 

classifications with regard to avalanche hazard (Figure 3). Using the 95th percentile of predicted 345 

values to assign one class per route, AutoATES-Forest classifications showed a considerable 346 

improvement compared to AutoATES without forest attribute (Table 7).  347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 



Table 7: Confusion matrices for 282 km manually classified routes (ATES) in Romsdalen and the automated ATES 358 
algorithms AutoATES, AutoATES-Forest (canopy cover) and AutoATES-Forest (stem density) on entire-route 359 
level. Routes were classified according to the 95th percentile of AutoATES and AutoATES-Forest predictions. 360 
Values represent km of routes (route count is given in parentheses). 361 

No forest parameters included  

AutoATES 

   Class 1 Class 2 Class 3 

Manually mapped 

(ATES) 

Class 1 simple 10.5 (3) 21.8 (7) 10.6 (2) 

Class 2 challenging  0 (0) 59.9 (12) 71.2 (14) 

Class 3 complex 0 (0) 23.1 (3) 84.7 (11) 

Including canopy cover  

AutoATES-Forest 

   Class 1 Class 2 Class 3 

Manually mapped 

(ATES) 

Class 1 simple 23.1 (6) 13.8 (5) 6.0 (1) 

Class 2 challenging 0 (0) 90.1 (16) 41.0 (10) 

Class 3 complex  0 (0) 31.9 (4) 75.8 (10) 

Including stem density  

AutoATES-Forest 

Class 1 Class 2 Class 3 

Manually mapped 

(ATES) 

Class 1 simple 29.2 (8) 13.7 (4) 0 (0) 

Class 2 challenging 24.7 (3) 78.9 (16) 27.5 (7) 

Class 3 complex 0 (0) 38.7 (5) 69.0 (9) 

 362 

Overall accuracies weighted by route lengths increased from 0.55 for AutoATES to 0.67 for AutoATES-363 

Forest using canopy cover and to 0.63 for AutoATES-Forest using stem density. Similarly, also the 364 

other accuracy statistics PA, UA, and F1 score improved (Table 8). Only PA of class 3 decreased when 365 

using forest properties in the model since more routes that were marked as class 3 in the reference 366 

were predicted as class 2. 367 

 368 

Table 8: accuracies for routes assigned to one class; routes were assigned one predicted value using the 95th percentile of 369 
predicted pixel values within a route; OA = Overall accuracy, PA = Producer’s accuracy, UA = User’s accuracy. 370 

 OA F1 score PA UA 
Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

AutoATES 
No forest 

0.55 0.39 0.51 0.62 0.25 0.46 0.79 1.00 0.57 0.51 

AutoATES 

Canopy cover 
0.67 0.70 0.58 0.66 0.54 0.69 0.70 1.00 0.66 0.62 

AutoATES 

Stem density 
0.63 0.60 0.60 0.68 0.68 0.60 0.64 0.54 0.60 0.72 

 371 

 372 

 373 

 374 



 375 

 376 

Figure 3: Area around the town Isforden; A) manually ATES classification of touring routes according to the part 377 
with the greatest hazard used as reference (class 1 = simple in green, class 2 = challenging in blue, class 3 = 378 
complex in red); B) output of AutoATES model without forest; C) output of AutoATES-Forest model with forest 379 
canopy cover as model input; D) output of AutoATES-Forest model with forest stem density as model input. 380 



 381 

 382 

Figure 3 continued. 383 

 384 

4 Discussion 385 

In this study, we modelled and mapped the forest attributes of stem density and canopy cover 386 

respectively using NFI and remote sensing data collected over a large area in Norway. We included 387 



these forest attribute maps as inputs in the spatially explicit avalanche hazard model AutoATES-388 

Forest in order to improve avalanche hazard maps for recreational activities. Forest attribute and 389 

avalanche hazard maps may in this way become valuable tools for informing forest management 390 

decisions aiming at the utilization of forests as nature-based solutions for avalanche-related disaster 391 

risk reduction (EEA 2021). 392 

We predicted stem density and found and an overall R2 and cross-validated RMSE of 0.62 and 301 393 

(35%), respectively. Tompalski et al. (2019) found similar results with R2 and RMSE of 0.37 and 293 394 

(42%), respectively, for modelling stem density in Canada. Lindberg and Hollaus (2012) compared 395 

area-based and single tree-based approaches for estimating the number of trees and found RMSE of 396 

53% (area-based) and 63-92% (single tree based). Ene et al. (2012) used the single tree-based 397 

approach and reported 46-50% detection rate for stem number estimates in heterogenous boreal 398 

forests. Eysn et al. (2015) reported 47% overall tree detection rate in heterogenous alpine forest. 399 

Stem density is difficult to predict using the type of remote sensing data used in this study. While 400 

using very high-resolution ALS or drone data (Puliti et al. 2020; Persson et al. 2022) would allow for 401 

analyses on single tree trunk level that might result in higher accuracies, collecting such high-402 

resolution data on the large spatial scale used in this study is currently not feasible.  403 

In an initial analysis, we also compared canopy cover calculated as proposed by Korhonen et al. 404 

(2011) with canopy cover from the NFI. However, this relationship was worse than our voxel-based 405 

approach and therefore not further considered in this study. The relation between predicted and 406 

observed canopy cover was not as good as for stem density. This can partially be attributed to the 407 

fact that canopy cover in the NFI is not measured, but visually estimated by the NFI crew. 408 

Using the forest attributes stem density or canopy cover in the AutoATES-Forest models improved 409 

the terrain and route hazard classification compared to the AutoATES model without forest 410 

attributes. The percentage of class 1 (simple terrain) wrongly classified as class 2 (challenging) or 3 411 

(complex) was reduced. When classifying ski-touring routes linearly using manual ATES, the overall 412 

class is decided by the most hazardous area on a given route. This means that if the route is located 413 

mostly in simple terrain (class 1), the whole route could be classified as complex terrain (class 3) if 414 

there is a short section of this type of terrain along the given route. This is a deliberate design feature 415 

that errs on the side of safety. A result of this is that even though the algorithm, which works on the 416 

pixel level, defines a large percentage of a given route as less hazardous than the manual 417 

classification class rating, it is not wrong. Therefore, the 95th percentile of pixel values from the 418 

AutoATES predictions was used for assigning one hazard class to a route.  419 

Using the forest attribute canopy cover resulted in slightly better classifications, but the difference 420 

between the two forest metrics was not as great as the difference between the use of forest metrics 421 

and the lack of forest metrics. These results indicate that adding spatially explicit information on 422 

forest attributes are beneficial for terrain evaluation. Other forest properties such as diameter 423 

distributions can be mapped from laser scanner data (Räty et al. 2021) and should be considered as 424 

input to avalanche hazard models in the future. Furthermore, avalanche hazard models could be 425 

further improved to utilize forest attributes as continuous values. 426 

Brožová et al. (2020) evaluated variables extracted from ALS and photogrammetric point clouds 427 

towards their influence on simulation results of avalanche runout in a case study in Switzerland. 428 

Remote sensing based tree heights, canopy coverage, and DTM roughness were used for avalanche 429 

simulation. They concluded that remote sensing data with a fine resolution of about 1 m x 1 m were 430 

generally suitable to model relevant forest attributes used as input for avalanche simulation. The 431 

simulation results using the two data sources – ALS and photogrammetric point clouds – were both 432 



sufficiently accurate for numerical modelling and for real-world applications in snow avalanche 433 

hazard mapping using the RAMMS model. However, simulations of only two avalanches were 434 

analyzed. Bühler et al. (2022) described automated avalanche hazard mapping using the RAMMS 435 

model in one Canton in Switzerland. Terrain slope and the forest properties percentage of crown 436 

cover and gap width were used to predict a ‘protection forest index’ for each forested raster cell of 5 437 

m x 5 m. Threshold values were found defining a sufficient protection forest index for two different 438 

return period scenarios (frequent and rare). This way, forest was treated as a binary input variable 439 

either being present and influencing an avalanche or not.  This approach is similar to ours for the 440 

runout zone where we define four groups of forest types that influence avalanche behavior. 441 

However, Bühler et al. (2022) focus on avalanche hazard modelling for regional planning with 442 

avalanche return periods of 10-30 and 100-300 years. In the present study we focus on avalanche 443 

hazard modelling for backcountry ski-touring, where return periods are much shorter. 444 

A wider implication of these findings is that the value of ecosystem services, such as the protection 445 

function of forests, is often difficult to assess. In this respect, our study showed the positive effect of 446 

forest in avalanche hazard prediction, and this is something that can be quantified, at least spatially. 447 

The authors jointly consider that no price should be put on human lives and therefore we will not 448 

enter into discussion of the monetary value of such protection here, though examples exist (e.g Grilli 449 

et al. 2020) and it is no doubt an important subject for forest owners whose primary interests are 450 

timber revenues. In this respect however, we feel that protection should influence forest 451 

management decisions, but that significantly more research is required to investigate optimal forest 452 

management of protective forests in a Norwegian context.  453 

Finally, mapping the probability of avalanche releases is meant as an additional planning aid for route 454 

choice, much like a weather forecast, and can be wrong. Avalanche conditions change dramatically 455 

depending on snow conditions and these are not in any way included in the ATES system. While we 456 

strive to improve the decision-making tools, these are no substitute for local evaluation of the 457 

current conditions on the ground, and this requires specific training and experience. Even then, 458 

avalanches pose a significant threat and safety is solely the responsibility of the individual. 459 

Nonetheless, we can conclude that the inclusion of forest attributes in avalanche hazard models can 460 

considerably improve their predictive performance. 461 

 462 
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6 Appendix 468 

 469 

Table 9: stem density models; coefficients, their standard errors, and p-values for the tree species specific linear 470 
regression models for spruce, pine, and broadleaved trees. 471 

Variable Estimate Std. Error p-value 

Stem density model for spruce 



Intercept -73.85 130.87 0.573 
h75f 37.52 23.48 0.110 

h75fsq -1.37 0.65 0.034 
pctab2f -175.99 406.92 0.665 

pctab2fsq 1862.63 421.25 < 0.001 
d6f 1122.08 103.12 < 0.001 

NDVI 414.73 113.61 < 0.001 
slope -1.94 0.57 < 0.001 

h75f_x_pctab2f -89.52 35 0.011 
h75fsq_x_pctab2fsq 1.57 0.74 0.033 

Stem density model for pine 
Intercept -171.32 109.02 0.116 

h75f 16.39 15.27 0.283 
h75fsq 0.60 0.65 0.361 
pctab2f 364.46 421.98 0.388 

pctab2fsq 1491.58 375.16 < 0.001 
d4f 986.33 140.30 < 0.001 

NDVI 240.69 110.80 0.03 
Slope -1.84 0.54 0.001 

h75f x pctab2f -126.86 32.79 < 0.001 
h75fsq x pctab2fsq 2.37 0.84 0.005 

Stem density model for broadleaved trees 
Intercept 191.58 41.93 < 0.001 

h75fsq -2.07 0.25 < 0.001 
pctab2fsq 1255.46 91.02 < 0.001 

d6f 993.70 180.47 < 0.001 

 472 

 473 

Table 10: Variance components for fixed and random effects and residual of the stem density models for spruce, pine, and 474 
broadleaved forest. 475 

 Variance (%) 

Norway spruce 
Fixed effects 50.91 
Random effect 5.59 
Residual 43.50 

Scots pine 
Fixed effects 40.72 
Random effect 10.81 
Residual 48.47 

Broadleaved trees 
Fixed effects 48.08 
Random effect 13.99 
Residual 37.93 

 476 
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