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Abstract. The insights gained by the large-scale analysis of health-
related data can have an enormous impact in public health and medical
research, but access to such personal and sensitive data poses serious
privacy implications for the data provider and a heavy data security and
administrative burden on the data consumer. In this paper we present an
architecture that fills the gap between the statistical tools ubiquitously
used in medical research on the one hand, and privacy-preserving data
mining methods on the other. This architecture foresees the primitive in-
structions needed to re-implement the elementary statistical methods so
that they only access data via a privacy-preserving protocol. The advan-
tage is that more complex analysis and visualisation tools that are built
upon these elementary methods can remain unaffected. Furthermore,
we introduce RASSP, a secure summation protocol that implements the
primitive instructions foreseen by the architecture. An open-source refer-
ence implementation of this architecture is provided for the R language.
We use these results to argue that the tension between medical research
and privacy requirements can be technically alleviated and we outline
a research plan towards a system that covers further requirements on
computation efficiency and on the trust that the medical researcher can
place on the statistical results obtained by it.

Keywords: Privacy-Preserving statistical analysis; Secure summation protocol;
Statistical processing of health records.

1 Introduction

The insights gained by the large-scale analysis of health-related data can have an
enormous impact in public health and medical research, but access to such per-
sonal and sensitive data poses serious privacy implications for the data provider
and a heavy data security and administrative burden on the data consumer. The
discussion on what exactly it means to not disclose private data [4] and the dis-
cussion on policies for balancing between scientific advancement and privacy [7]



are very relevant, but should be complemented by the equally relevant discussion
of whether there is tension at all between data privacy and data-driven research.
In other words, it is not straightforward if private data can be insulated from
medical research workflows without compromising either.

As anonymization has been repeatedly proven to be inadequate [15], atten-
tion has turned to research in cryptography and distributed computation. These
fields can provide methods for computing aggregates and statistics without re-
vealing the specific data values involved in the computation, offering a much
stronger guarantee of privacy than anonymization. However, from the perspec-
tive of the data mining practitioners and the medical researchers there is still a
residue of functionality missing between their workflows over anonymized data
and what is technically possible to achieve without accessing specific datapoints.
Naturally, part of the workflow involves browsing data in order to formulate a
hypothesis, and cannot possibly be performed over anything else but experi-
mental data specifically collected and licensed to be shared. The scope of our
discussion is, therefore, necessarily restricted to the data and processing required
to empirically validate an already formulated hypothesis over a larger dataset
than what can reasonably be made available to research.

To make this more concrete, we will assume use cases from ambient assisted
living (AAL) environments. AAL covers a wide range of concepts, hardware
and software products, and services that facilitate better, healthier and safer
life outside formal health-care institutions. These environments emphasise the
automatic collection of health data in one’s own environment and the secure
sharing of such data with medical care providers. In such a system, health data
is shared between the following entities:

– The AAL agent that is the data management component of the AAL envi-
ronment. The AAL agent has unrestricted access to its user’s sensitive data.
The management and security of the data held by the AAL agent is primarily
within the scope of network security.

– The health-care provider that needs access to sensitive data of a small set
of individuals on a need-to-know basis, depending on the medical condition
that necessitates the monitoring of each individual. The management and
security of the data held by the health-care provider is primarily within the
scope of network security and access control.

– The medical researcher that needs access to aggregate values computed over
the sensitive data of a large set of individuals, but does not need to know
any specific individual’s data. It is the data transfer protocols between this
agent and the AAL agents that are within the scope of the work described
here.

In the remainder of this paper, we first present the main approaches to
privacy-preserving computation and discuss what requirements from our use case
are not covered by the state of the art (Section 2). We then proceed to present
a system architecture that exposes privacy-preserving computation functional-
ity to tools (such as R) that are commonly used in medical research workflows
(Section 3). We then present our peer-to-peer protocol that implements this



privacy-preserving computation functionality based on the homomorphic prop-
erty of composite secret sharing schemes (Section 4). We finally conclude and
discuss future research direction (Section 5).

2 Related Work

We see in the literature three major approaches to privacy-preserving computa-
tion: differential privacy , homomorphic encryption, and secure multiparty com-
putation. Differential privacy is based on the property that a result of a statistical
value can be approximated even if random noise has been added to the data.
Homomorphic encryption supports computations over cipher-texts, so that the
result can be obtained without decrypting individual datapoints. Finally, secure
multiparty computation is based on communication protocols between the agents
to collaboratively compute a function over their private values without revealing
the actual values.

Differential privacy preserves privacy by perturbing the datasets with ran-
domized noise, such as symmetric exponential (Laplace) noise or with a use of
a Geometric Distribution [18]. When the perturbed datasets are used in sta-
tistical analysis, knowledge of the distribution parameters of the noise applied
allows approximating the analysis outcomes over the unperturbed data, but does
not allow recovering any of the individual datapoints. To name an example, the
PINQ data analysis platform [13] creates a differential privacy layer between the
raw data and data analysis software. PINQ supplies the analyst with a set of
transformations in operations like Where, Select, GroupBy and Join, in order
to apply them to the data-set before applying operations for differential-privacy
aggregations.

What should be noted about differential privacy is that it provides approx-
imations and is only applicable where this is tolerated and where the datasets
are large enough to allow for this approximation to be accurate enough for its
purpose. In the the analysis for medical data, it is often the case that datasets
are not large enough to give tolerable error margins or that outliers can lead to
important insights and should be highlighted rather than smoothed out.

The second major strain of privacy-aware computation protocols is based on
homomorphic cryptosystems, cryptographic mechanisms with the property that
certain operators (such as addition) can be computed directly within the en-
crypted space without requiring that the individual operands can be decrypted.
One of the most prominent homomorphic cryptosystems is Paillier’s cryptosys-
tem [16], which allows computing the cipher of the sum of two numbers given the
ciphers of these numbers. Paillier’s cryptosystem requires that all numbers are
encrypted using derivatives of the public part of a master key; these derivatives
are such that they cannot decrypt the cipher of other derivative keys, but the
master key can decrypt the cipher of the sum. This algorithmic basis can be
extended to provide further numerical and categorical operators beyond sum-
mation; for example Kissner and Song [12] proposed an extension that supports
union, intersection and element reduction.



Although data providers are perfectly protected from their peers, the main
weakness of homomorphic systems is the trust that must be placed on the en-
tity that issues the master key [10]. The typical summation protocol based on
Paillier’s cryptosystem has a master agent issue a master key and a number of
data agents that exchange their encrypted values between them in order to send
a total encrypted summation back to the master agent. Privacy from the master
agent is only guaranteed by the fact the master agent only receives the cipher
of the end-result. If the master agent colludes with one malicious data agent,
they can use the private part of the master key to reveal the private value of
the victim agent, the data agent that passes its encrypted data to the malicious
agent.

To lift the requirement that the master agent must be trusted, Shi et al. [18]
proposed a framework that can compute statistics on medical data with the use of
an untrusted data aggregator, by encrypting values that can be decrypted with
the sum of multiple cipher-texts under different user keys. Shi et al. propose
a method where each agent encrypts periodically its data with its respective
private key. The data of every agent includes its private value combined with
white noise. The untrusted aggregator receives all the encrypted values from the
agents and decrypts them with its private key and with the use of a correlation
between the private keys of all agents and a specific hash function, that is based
on the time series. The algorithm needs an initial trusted setup phase, which does
not allow agents to join or leave the system dynamically. The proposed protocol
is based on differential privacy and as an implication the resulted statistic is
an approximation of the real one, which may cause problems in medical data.
Moreover, as authors report, in order for their approach to work efficiently, the
plain text space should be small.

There are many studies that combine their secure mechanism with the use
of a trusted third party that works as the aggregator. In trusted third party
protocols, there is an external trusted party which receives the private data of
the agents and computes a function by using them. Hanmanthu et al. [5] propose
an enhanced protocol that combines a technique which perturbs distributed data
with the use of a third party. Specifically, they define a protocol for constructing
a Naive Bayes classifier. In this protocol, each agent encrypts its perturbed
data with its private key and sends it to a trusted third party. The trusted
third party decrypts this data with the public key of the respective agent and
constructs a perturbed Naive Bayes Classifier. Moreover, there are some studies
that combine secure multiparty computation (SMC) systems with a trusted third
party. Generally speaking, an SMC system deals with the computation of any
function with any input in a distributed network, where the involved agents
can learn only the total result and their own input. Thus, a common strategy to
ensure trustworthiness is the use of a trusted third party. Ajmani et al. [1] present
TEP, a trusted third party computation service that maintains generality. TEP
offers flexibility because it fits in many SMC applications to guarantee privacy.
However, this type of mechanism requires the existence of a trusted third party,
so is inherently weaker than purely peer-to-peer networks.



Nevertheless, Sheikh et al. [17] proposed a SMC system that applies a secure
summation protocol without the use of a trusted third party. The proposed
protocol focuses on the increased computation complexity to avoid hacking. Each
agent splits its data to a fixed number of segments and promotes a single segment
to the next agent at each iteration. As an extension Sheikh et al. [17] define a
master agent, which sets a random number during the initialization. Despite the
fact that this protocol does not utilize a third trusted party, it is weak because if
two neighbour agents collude, they can reveal the data value of the middle agent.
Moreover, this technique imposes a considerable overhead in the communication
between the agents.

Many recent research studies focus on privacy preserving on vertical and
on horizontal partition of data. Our approach is oriented to horizontally dis-
tributed data, as each AAL agent keeps a private database with its values and
each database contains the same set of attributes. Specifically, Karr et al. [8]
propose a secure computation of linear regression for horizontally partitioned
data without the use of a trusted third party. This is achieved by converting the
linear regression equation to a summation form, where the quantities of each
summation involve attribute values of the same agency. To protect data from
the scope of the source and the values, they propose a SMC secure sum compu-
tation protocol. During the initialization of the protocol, a master agent adds his
private value with a random number, that he previously produced, and forwards
the summed value to the next agent. Each agent receives the aggregated value
from the previous agent and forwards it to the neighbor agent, after the addition
of his private value. The total summation result is returned back to the master
agent, which removes his random number. This protocol is weak mostly because
a private value of an agent can be revealed by the collusion of his neighbors.
Also due to the circular mode of the algorithm, it can not be parallelised.

The study of Molina et al. [14] is closer to our approach. Specifically, they
propose an application of homomorphic encryption to compute basic statistics
on aggregated medical data which also guarantee the privacy of the medical data.
Their SMC protocol preserves the privacy between the caregivers, where each
one computes statistics for their corresponding patients. This is achieved with
a double encryption, each one depending on a different public key — the public
key of researcher and the public key of a caregiver chosen randomly to work as
the aggregator. This approach can be mapped well in distributed systems be-
cause each caregiver can work in parallel to compute aggregates of their patients’
data. However, privacy is relatively weak as the researcher and the aggregator
can collude to reveal the plaintexts of each caregiver. Moreover, doubly homo-
morphic encryption schemes are not fully explored to define which statistics can
be determined.

3 Privacy-Preserving Statistical Analysis

In this section we introduce our system architecture, and show how elementary
statistical analysis methods can be implemented within this architecture in a



way that essencially preserves the API of their convential implementation. As a
showcase, we assume the R language implementation of the t-test and show how
the same interface can be implemented within our privacy-preserving architec-
ture instead of by directly accessing data matrices. As the architecture assumes
the existence of a privacy-preseving summation protocol to access the private
data, we also discuss what characteristics are required from this protocol.

3.1 System Architecture

The system architecture can be perceived as a stack of three layers and each
layer depends on the functionality provided from the layer at the lower stage.
The upper layer, called the Medical Researcher’s interface, accepts from the
medical researcher the method with the initial parameters to be executed by
the system. The purpose of this interface is to provide a familiar environment to
the researcher and therefore in our current implementation this layer is devel-
oped in the R language. The initial parameters are transformed appropriately
in order to be passed to the next layer, which is the Compilation Layer . At
that stage, the high-level parameters and commands of the statistical method
are transformed into low-level instruction for accessing the private databases of
the agents. An instruction represents an aggregation over a selection of data.
Currently, the aggregation operation is summation. However, the aggregations
that are on one hand feasible by the system and on the other hand safe for pre-
serving privacy depend on the secure protocol used. These instructions will be
eventually evaluated by the lowest layer of the architecture, the Privacy Protocol
Layer . Figure 1 depicts the system architecture and the information exchanged
between the layers.

The Medical Researcher’s interface The interface is developed in the R
language since it offers a variety of plotting and analysis tools, while in parallel
it is a familiar environment for statisticians. The researchers can execute the
statistical method through the R environment by importing the secure statistics
library. The purpose of this library is to expose high-level statistic methods (e.g.
linear regression, t-test) as R functions.

The secure statistics library receive the same arguments as the conventional
statistics functions in R. The only difference is that the data arguments are not
matrices of values, but the parameters needed to make a distributed computa-
tion. The results of the statistics functions are, then, identical to those of the
respective conventional functions over the same data.

The Compilation Layer This layer is responsible for the communication be-
tween the two other layers. Specifically, it translates the arguments of the secure
statistic to a suitable format, thus it defines the appropriate data that are going
to be used for the statistic computation. Moreover, it converts the simple statis-
tic equations to a set of summations; a compatible format to achieve the secure
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Fig. 1. The system’s architecture

summation protocol. Therefore, a set of instructions is composed where each in-
struction represents a summation equation of the statistic with the appropriate
parameters set for its computation. During the execution, the compilation layer
gives to the privacy protocol layer a single instruction at a time and it receives
its result. After the execution of the whole set, it computes the statistic and the
analysis parameters. The statistic result is sent back to the Medical Researcher’s
interface layer.

The Aggregation Protocol This layer executes the privacy protocol between
the AAL agents, To deal with the concurrent computation of each instruction,
we model our agents as actors. Each actor makes the appropriate computations
with respect to the given instruction and its private data. These computations



can easily be done since every AAL agent controls its corresponding health
records. After the computation of the value, which represents the initial secret,
the privacy protocol is executed. The protocol may involve all the actors to
work collaboratively in order to compute the aggregation of their secrets without
revealing the actual secrets to each other or the agent requesting the aggregation.
The aggregated result is collected a designated actor. The selection of such actor
is irrelevant and can be done randomly. Our proposed implementation for this
layer is presented in more detail in Section 4.

Example We will use a simple example to better demonstrate the proposed
system. Suppose that a medical researcher needs to run a t-test to assess whether
the means of two groups are statistically different from each other, that is to
compute t in Eq. 1:

t =
X̄ − Ȳ√

|X|−1 σ2
X + |Y |−1 σ2

Y

(1)

where X and Y are the datapoints of the two groups, X̄ and Ȳ are their means,
|X| and |Y | are their cardinalities, and σ2

X and σ2
Y their variances.

Assume, for instance, that a researcher wants to test the effect of medicine
M1 (Group 1) and medicine M2 (Group 2) on blood pressure, with the further
restriction that participants in Group 2 should be above 65 years old. A workflow
using the R language would be:

– Select from a database the instances that match Group 1 criteria and store
them in variable X

– Select from a database the instances that match Group 2 criteria and store
them in variable Y

– Decide on the conditions of the T-test, such as the confidence level and
alternation, and store them in variable C

– Pass X,Y,C as arguments to an implementation of t-test

Our architecture allows this workflow to remain essentially unaffected, except for
the contents of X and Y . Instead of holding actual data arrays these now contain
a representation of the Group 1 and Group 2 criteria, so that the selection can
be executed in distributed manner. Using this representation, a privacy-aware
implementation of t-test can produce the exact same result as the conventional
implementation, except without ever accessing any individual data.

This representation declares a list of dependent variables and a list of eligi-
bility criteria of the sample groups, as a set of (variable, operator, value) tuples.
In our example, we assign to X and Y the criteria that we would have used to
assign to them a value array if we had full access to the data:

– X = [("medicine",=, "M1")]
– Y = [("medicine",=, "M2"), ("age", >, "65")]

The compilation layer converts the t-test implementation into a set of in-
structions. Recall that each instruction is an aggregation over the private data



Function Definition

add(C)
∑

i
si(C), where si(C) is the secret value of the

i-th AAL agent if condition C is satisfied, 0 otherwise

add2(C, k)
∑

i
(si(C) + k)2, where k is a constant

and si(C) is same as above
cnt(C)

∑
i
ci(C), where ci(C) is 1 if the i-th AAL agent

satisfies condition C, 0 otherwise.
Table 1. Characteristic instructions provided by the RASSP Protocol.

of each agent, under the given selection restrictions. Table 1 defines the instruc-
tions needed to implement the t-test (Eq. 1), which is then implemented using
the following pseudo-code:

1. X = [("medicine",=, "M1")];
X is a representation of the secret values of all AAL agents where medicine
M1 is used.

2. Y = [("medicine",=, "M1"), ("age", >, "65")];
Y is a representation of the secret values of all AAL agents where medicine
M2 is used and age is above 65.

3. N1 = add(X);N2 = add(Y );
N1 is the sum of the secret values X and N2 is the sum of the secret values
Y .

4. C1 = cnt(X);C2 = cnt(Y );
C1 is the number of AAL agents with non-zero values in X and C2 is the
number of AAL agents with non-zero values in Y .

5. X̄ = N1/C1; Ȳ = N2/C2;
This uses the values above to calculate means.

6. σ2
X = add2(X,−X̄);σ2

Y = add2(Y,−Ȳ );
This uses the values above to calculate variances.

7. T =
(
X̄ − Ȳ

)
/sqroot

(
σ2
X/C1 + σ2

Y /C2

)
;

Each instruction is executed with the use of the secure summation protocol,
obtaining the aggregate values specified in the instruction without obtaining the
values themselves. From the perspective of the R interface user, the t-test func-
tions operate as if they had been passed the actual value matrices as parameters.

3.2 Reference Implementation

The system architecture that is described in Section 3.1 is implemented by the
open source project at https://bitbucket.org/dataengineering/rassp

The project’s source code is organized in three modules, each one implement-
ing one of the layers in our architecture:

– proto implements the aggregation protocol



– stats is the implementation of statistical analysis primitives over an aggre-
gation protocol, and implements the compilation layer

– RStats implements the R interface for the medical researcher over the com-
pilation layer.

To execute the example immediatelly above using our implementation, the
medical researcher executes the following code in the R interface:

# Describe the two groups in GroupStat structures:

group1 <- GroupStat(list(c("med","=","A")))

group2 <- GroupStat(list(c("med","=","B"), c("age",">","65")))

# Set dependent variables and groups in a Parameters structure:

p <- Parameters(list("bloodPr"), list(group1, group2))

# Execute the normal t-test using the Parameters structure p:

ttest(p, varEq=TRUE)

What is important to note in the example is that our implementation of the
ttest() function presents an interface identical to the standard R implemen-
tation of the t-test. The underlying difference is that the Parameters structure
does not point to actual data matrices but to instances of our GroupStat struc-
ture, which hold the information needed by the compilation layer in order to
distibute the computation to the participating nodes.

3.3 Discussion

The proposed system architecture assumes that:

– The statistical analysis that is to be carried out can be implemented using
the set of aggregation instructions provided by the aggregation protocol. In
other words the algorithm should not depend on individual data points.

– A summation protocol exists that guarantees privacy.

The first assumption holds, since the most commonly used class of data mining
algorithms can be expressed as an iteration of summation expressions [9]. If
needed, categorical operators can be implemented based on summation [12].

Regarding the second assumption, we will now proceed to discuss the sum-
mation protocols that can be used in our architecture and, in Section 4, present
the protocol we use in our reference implementation of the architecture.

Most of the related studies guarantee their privacy by utilising encryption
or differential privacy techniques. These approaches do not fit in our problem,
because we deal with medical history data that are distributed across AAL
agents. In homomorphic techniques, a master agent shares a public key with the
rest of the agents, in order to encrypt their data, and keeps a private key for the
final decryption. Such a mechanism is privately weak in the case of collaborative
computations, because if the medical researcher (master agent) and one AAL
agent collude, they can learn another AAL agent’s private value. This makes the
technical protocol weak, as it places a heavy burden on non-technical policies



and protocols to guarantee the integrity of the medical researcher. Since our
main aim is to alleviate the need for non-technical policies and protocols and
to make it easier for medical researchers to run statistics over datapoint they
are not meant to access directly, homomorphism encryption does not cover our
requirements.

In addition, differential privacy is also not applicable, from both the per-
spective of the medical researcher as well as from that of the AAL agent. From
the perspective of the medical researcher, differential privacy computes approx-
imations, which can be a problem as discussed in Section 2 above. From the
perspective of the AAL agent, the secret value can be approximated by its re-
peated querying, since a different perturbation of the real secret needs to be
computed for each query. The AAL agent cannot produce a single perturbed
value and use this for all queries, since it needs to be re-computed to follow the
distribution parameters requested by the medical researcher. This might be less
of a problem in time-series data (such as power grid data or traffic data), but
can result in substantial information leaking in static historical data, such as
health records.

4 The Secure Summation Protocol

4.1 Background

Secret sharing schemes divide a secret into many shares which can be distributed
to n mutually suspicious agents. The initial secret can be revealed if any k of
these n agents combine their shares. We will call such schemes, (k, n)-threshold
schemes. If such a scheme also possesses the homomorphism property, then mul-
tiple secrets can be combined by direct computation only on the shares. Such
schemes are usually called composite secret sharing schemes [2].

More specifically, assume n mutually suspicious agents and each agent holds
a secret si. The desired computation is combination into a super-secret s under
an operation ⊕, namely s = s1⊕ · · · ⊕ sn. Using a secret sharing scheme each si
can be split into k shares di1 , . . . , dik such that given a known function FI it is
the case that:

si = FI(di1 , . . . dik)

We will say the (k, n) threshold scheme has the (⊕,⊗)-homomorphism prop-
erty if whenever s = FI(d1, . . . , dk) and s′ = FI(d′1, . . . d

′
k) then

s⊕ s′ = FI(d1 ⊗ d′1, . . . , dk ⊗ d′k)

The composition of the shares d1, d
′
1 yield a super-share d1⊗d′1. In other words,

the (⊕,⊗)-homomorphism property implies that the composition of the shares
under the operator ⊗ are shares of the composition under the operator ⊕.

Overall, the advantage of having a composite secret sharing scheme is that
secret cannot be obtained, only if k or more agents collude and combine their
sub-shares. In addition, this protocol is suitable to our approach from the AAL



agent’s point of view, because it does not use a trusted third party or depends
on cryptographic assumptions, while at the same time it is k-secure. This ap-
proach represents a secure summation protocol that can easily be applied to
collaborative agent systems.

Based on this mathematical foundation, we will now proceed to present the
RASSP protocol, a (+,+)-homophorphic composite secret sharing scheme.

4.2 The RASSP Protocol

Assume that we have n AAL agents, where each one has its private value vi, i ∈
[1..n]. Each AAL produces random breakdown of vi into n terms rij , j = 1..n
such that vi =

∑n
j=1 rij . These terms are computed by first producing n − 1

random terms rij , j = 1..i− 1, i+ 1..n and then setting

rii = vi −
∑

j∈[1..n]−{i}

rij

The rij terms are called sub-shares and are (except for rii) shared with the rest
of the AAL agents, one per agent. In this manner, each AAL agent shares n− 1
values and receives n−1 values from the rest of the AAL agents. The super-share
Yi for each agent is defined as:

Yi = rii +
∑

k∈[1..n]−{i}

rki (2)

Notice how the super-share of AAL agent i is the sum of the sub-share that it
has not shared and of all the sub-shares that it has received from the other AAL
agents. Finally, we define a function FI as the sum of the super-shares:

FI(Y1, . . . , Yn) =

n∑
i=1

Yi (3)

It is straightforward to verify that FI(Y1, . . . , Yn) is equal to the sum of all se-
crets. It is also straightforward to verify that only random numbers and obscured
data values are shared between AAL agents and between AAL agents the re-
searcher. Notice also that only if (n − 1) AAL agents collude to merge their
sub-shares can the private value of the n-th agent be revealed. Therefore, our
system guarantees (n− 1)-security.

Figure 2 gives an example of the above description for a system of three AAL
agents. In this example House1 has the private value v1 and produces three
numbers: r11, r12, r13. Then, it shares r12 and r13 with House2 and House3,
keeping r11 hidden. House1 receives two numbers (r21, r31) from the other AAL
agents. In then shares the computed Y1, so that FI can be computed by summing
all Yi. FI(Y1, Y2, Y3) computes the sum of all three AAL agents’ secret values.

The described secure summation protocol is suitable for computing medical
statistics and preserve privacy at the same time. The only constraint is that



House1 
v1

-------------------------
r11 , r12, r13

House2 
v2

-------------------------
r21 , r22, r23

House3 
v3

-------------------------
r31 , r32, r33

r12

r13

r23r21

r32

r31

Y1 = (v1 - r12  - r13) + 

+ r31 + r21 

r11 r22 r33

Y2 = (v2 - r21 - r23) +

+ r32 + r12 

Y3 = (v3 - r31- r32)  

        + r13 + r23 

 Y1 + Y2 + Y3 = v1 + v2 + v3 Y1 + Y2 + Y3 = v1 + v2 + v3

Fig. 2. The RASSP secure summation protocol.

the resulted outcome is a sum of the private values, thus the statistic equa-
tions should be converted in a summation form. The summation form results in
accurate values and not approximations, while simultaneously it can easily be
parallelised [3]. Besides, medical researchers typically use descriptive statistics
which utilise numerical descriptors such as mean and standard deviation. These
descriptors can easily be converted into a summation form, thus they can be
computed by our system.

5 Conclusions and Further Work

With this paper we experiment with privacy-preserving data mining that is
accessed not through specialized APIs and tools, but through statistical analysis
tools that are ubiquitous in data-driven research, such as the R language and its
statistical analysis libraries. In this manner, we are targeting the uptake of our
privacy-preservation infrastructure by the medical research community, as the
discussion around privacy preservation is mute if the data cannot be efficiently
and effectively used to achieve the medical research purpose.

Specifically, our first contribution is our architecture and its reference im-
plementation. This architecture foresees the primitive instructions needed to
re-implement the elementary statistical methods so that they only access data
via a privacy-preserving protocol. The overall gist is that function arguments



remain the same, except for substituting data matrices with a specification of
how to select the data that each AAL agent will contribute to the distributed
computation. The advantage is that more complex analysis and visualisation
tools that are built upon these elementary methods can remain unaffected by
replacing direct access to data with access via privacy-preserving protocols.

A further contribution is our review of secure multiparty computation, dif-
ferential privacy , and homomorphic encryption approaches to justify and ex-
plain assuming the former as the most appropriate basis for our personal health
record use case. Finally, we introduce RASSP, a secure summation protocol that
computes sums within Benaloh’s composite secret sharing framework for secure
multiparty computation.

More complex instructions will be implemented as iterations of the primitive
sum operator. As this is bound to reduce the run-time efficiency of the system,
our next steps will be to integrate distributed computation concepts in order
to parallelise the computation. Chu et al. [3] propose using the map-reduce
framework to execute a variety of statistics, where the summation form of their
equations facilitates the distribution of their calculations. This approach will be
mapped to our architecture to improve the run-time efficiency of the system. A
further optimization step will be to execute simultaneously instructions when
there is no dependence between them. To achieve this, we will transfer from
the programming languages and distributed computation literature optimization
methods that can decide about the most efficient execution plan for a given
program with multiple calls to the primitive instructions. We will also need to
extend the current API of these instructions in order to allow multiple requests
to be made to the distributed AAL agents with one network transaction.

Another relevent on-going discussion in the community is the involvement of
humans in the data mining process itself [6] and when acting upon data mining
results [11]. Given the responsibility of the medical practitioner when using data
to make medical decisions, the uptake of our—and, in fact, any—privacy preserv-
ing protocol depends on the data consumers’ ability to apply checks and bounds
to the values that are allowed to participate in the computation. In this context,
a more ambitious goal is to extend the RASSP protocol so that the medical
researcher can specify what value ranges of the secret variables are reasonable or
useful and to have this range restriction guaranteed without having to trust the
AAL agents. To achieve this, we will experiment with variations of the current
RASSP protocol where the AAL agents can to some extend also check whether
their peers are (erroneously or maliciously) sharing sub-shares that add up to
out-of-range values. Since such AAL agent behaviour can corrupt the result or
obscure useful outliers, it undermines the trust that the researcher places on the
result. Our goal is to devise a system of cross-checks that makes it unlikely that
out-of-range values contribute to the sum undetected, but without compromising
the privacy-preserving nature of the protocol.



Acknowledgements

The work described here was carried out in the context of the RADIO project.
This project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No 643892. For more
details, please visit the RADIO Web site http://www.radio-project.eu

References

[1] Ajmani, S., Morris, R., Liskov, B.: A trusted third-party computation ser-
vice. Tech. rep., MIT-LCS-TR-847, MIT (2001)

[2] Benaloh, J.C.: Secret sharing homomorphisms: Keeping shares of a secret
secret. In: Advances in Cryptology: Proceedings of CRYPTO ’86. LNCS,
vol. 263, pp. 251–260. Springer (1986)

[3] Chu, C.t., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G., Ng, A.Y., Olukotun,
K.: Map-reduce for machine learning on multicore. In: Schölkopf, B., Platt,
J.C., Hoffman, T. (eds.) Advances in Neural Information Processing Sys-
tems 19: Proceedings of the 21st Annual Conference on Neural Information
Processing Systems (NIPS 2007), Vancouver, BC, Canada, 3–5 December
2007. pp. 281–288. MIT Press (2007)

[4] Clifton, C., Kantarcioglu, M., Vaidya, J.: Defining privacy for data min-
ing. In: Proceedings of the National Science Foundation Workshop on Next
Generation Data Mining, Baltimore, USA, 1-3 November 2002 (2002)

[5] Hanmanthu, B., Ram, B.R., Niranjan, P.: Third party privacy preserving
protocol for perturbation based classification of vertically fragmented data
bases. arXiv preprint arXiv:1304.6575 (2013)

[6] Holzinger, A.: Interactive machine learning for health informatics: When do
we need the human-in-the-loop? Brain Informatics 3(2), 119–131 (2016)

[7] Horvitz, E., Mulligan, D.: Data, privacy, and the greater good. Science
Magazine (2015)

[8] Karr, A.F., Lin, X., Sanil, A.P., Reiter, J.P.: Secure regression on distributed
databases. Journal of Computational and Graphical Statistics 14(2), 263–
279 (2005)

[9] Kearns, M.: Efficient noise-tolerant learning from statistical queries. Journal
of the ACM (JACM) 45(6), 983–1006 (1998)

[10] Kerschbaum, F.: Privacy-preserving computation. In: Privacy Technologies
and Policy: Revised Selected Papers from the First Annual Privacy Forum
(APF 2012), Limassol, Cyprus, 10-11 October 2012, pp. 41–54. Springer
(2012)
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