
Online syntax highlighting and
checker for Control Unit Type of
Finite State Machine

August 2016

Author:
Francesca Cecilia Schiavi

Supervisors:
Jean-Charles Tournier
Manuel González Berges

CERN openlab Summer Student Report 2016

CERN openlab Summer Student Report 2016

Abstract

CERN describes the Detector Control Systems (DCSes) of the experiments of the Large Hadron
Collider using finite state machines organised in a hierarchical directed acyclic graph structure.
These systems are huge and impossible to understand only with human intervention, so computer
checking is needed. Before the introduction of the tool described in this document, the analysis of
the code controlling the DCSes was performed few times a week, introducing problem solving
delay. The tool proposed allows an online time checking of the detectors’ Control Units, thanks to
the integration with the WinCCOA panel. WinCCOA is a SCADA (Supervisory Control and Data
Acquisition) system tool that is used to develop the Control System applications at CERN.

Chapter breakdown:

Chapter 1: introduction to the environment, explaining why the project has been proposed and what
is the aim of the tool in solving current problems.

Chapter 2: description about the framework that manage the control environment at CERN, and
main concepts of the language that must be controlled by the tool.

Chapter 3: general illustration of the employed tools, ACE and PEG.js

Chapter 4: description on how the work has been implemented, from the setting up of the work
environment, to the syntax rules and error reporting

Chapter 5: future development of the tool

Chapter 7: conclusions

CERN openlab Summer Student Report 2016

Table of Contents

Abstract ... 2

1 Introduction .. 5

1.1 Chapter Breakdown ... 6

2 SMI++ .. 6

2.1 State Manager Overview ... 6

2.2 SMI ... 7

2.2.1 Object model .. 8

2.2.2 Object communication ... 8

2.3 Design the control system .. 8

2.4 SML .. 9

3 Tools .. 10

3.1 ACE .. 10

3.1.1 Set up environment .. 10

3.1.2 ACE’s rules .. 11

3.2 PEG.js .. 13

3.2.1 What is a parser ... 13

3.2.2 Set up environment .. 13

3.2.3 Generate the parser ... 14

3.2.4 PEG.js’s rules .. 14

4 Development and Implementation .. 15

4.1 ACE .. 15

4.1.1 Mode Rules .. 15

4.2 PEG .. 17

4.2.1 Creation of Syntax Rules On-line .. 17

4.2.2 Generation of the Parser ... 19

CERN openlab Summer Student Report 2016

4.2.3 Input File Checking .. 19

4.2.4 Error reporting .. 19

5 Future Scope ... 20

5.1 Integration with WinCCOA ... 20

5.2 Create Final State Machine Visualization .. 20

6 Conclusions ... 22

Appendix A .. 22

CLASS declaration .. 22

OBJECT declaration .. 23

STATE declaration... 23

ACTION declaration .. 23

WHEN statement ... 24

DO statement ... 24

IF statement ... 24

Appendix B .. 24

References .. 27

CERN openlab Summer Student Report 2016

5 | P a g e

1 Introduction
The Large Hadron Collider at CERN is a circular particle accelerator designed for the purpose of
colliding particles in its experiments. In all experiments, a Detector Control System (DCS) monitors
and controls environment variables such as voltage, temperature and humidity within the detector.
It consists of many pieces of hardware that measure and control over a million parameters
concerning these environment variables. All these sensors cannot be monitored by operators, so a
DCS consists of software designed to gather information from its hardware sensors in order to
summarise it to human operators and send commands to the hardware.

The architecture of a control unit of the DCS consists of nodes organized in a hierarchical structure
(Figure 1.1).

Figure 1.1: Architecture of a Detector Control System

Nodes gather the states of their children, use that information to move to a new state and
notify their parents about the new state. Nodes also receive and send commands to trigger activity
in their children.

The problem of controlling the various activities that constitute the data-acquisition and/or the slow
control system of an experiment is a difficult, mainly because of the complexity of the required
operations. In order to cope with the complexity of the online control system before the LHC-era
the DELPHI experiment at CERN developed a new concept for the coding of the control logic. The
adopted approach to the control problem is based on the State Manager (SM): the control aspects
of an experiment are simulated by a finite state machine, which represents the behavioural model
of the equipment under control. The various procedures necessary to run the experiment are
executed by the SM which operates the corresponding state transitions on the state machine. Later
this concept has been extended and redesigned using object-oriented techniques in SMI++ for the
BaBar experiment at SLAC and is now used in all LHC experiments.

Nodes are modelled in the Finite State Machine (FSM) language, being an abstraction of the State
Manager Language (SML), which runs on the State Management Interface (SMI++) framework
that is part of the Joint Control Project (JCOP) framework.

CERN openlab Summer Student Report 2016

6 | P a g e

Due to the sheer sizes, getting and maintaining complete overview of a DCS is very hard if
not impossible for any human. This makes system maintenance and error discovery hard to do by
hand. In 2012, the CMS experiment developed a set of tools (see reference [2] Leemans, 2012)
that periodically check the semantic of the code of all the CU types defined in a system, but the
delay between the modification of the control unit and the feedback to developers is too long.

To shorten the feedback given to the developers, this project aims to create an editor with syntax
validation and highlighting for the development of FSM CU type. The editor has been created in
JavaScript to allow future integration with WinCCOA panel. The syntax validation has been
performed with PEG.js parser and the syntax highlighting has been handled with ACE.

1.1 Chapter Breakdown
Chapter 1: introduction of the problem’s background and motivation behind the implementation of
the editor.

Chapter 2: illustration of State Management Interface framework and State Manager Language, as
well as a brief description on the State Machine concept.

Chapter 3: general explanation on the tools used to implement the project, highlighter ACE and
parser PEG.js

Chapter 4: description of the development model and the implementation for the completion of
project.

Chapter 5: point out possible future usage of the tool and an initial draft of integration with
WinCCOA.

Chapter 6: summary of result and conclusion.

2 SMI++
SMI++ [1] is a framework for designing and implementing distributed control systems based on
the original State Manager (SM) concept.

2.1 State Manager Overview
The State Manager (SM) is a computer-based control system for the experiment. The experiment
(a set of hardware devices and software programs) is seen by the SM exclusively through computer
processes, dedicated to one specific activity, called associated processes or proxies (Figure 2.1).
The basic action by which the SM can control activities in the experiment is the exchange of
messages with the associated processes, allowing the SM to have a unique interface with the outside
world.

CERN openlab Summer Student Report 2016

7 | P a g e

Figure 2.1 SMI environment (Source: Franek, Gaspar,”SMI++ User Manual”)

The SM program is the implementation of the model defined by the experiment description. This
description, made by the physicist in terms of the SM language (SML), is processed by the SMI
tools in order to produce a State Manager and its associated proxies. So, the problem of creating a
control system is therefore equivalent to that of giving a good description of the experiment in
terms of the objects being controlled and the procedures that operate on them.

2.2 SMI
SMI is a tool for developing control systems, it is based on the concept of Finite State Machines
(FSM). Finite state machines are a simple way to describe control systems and complex systems,
this latter can be broken down into small and simple FSMs that are hierarchically controlled by
other FSMs.

Figure 2.2 FSM example

Using SMI the experiment can be decomposed and described in terms of objects behaving as finite
state machines. This model of interaction between objects is one that reflects our abstraction of
reality.

CERN openlab Summer Student Report 2016

8 | P a g e

2.2.1 Object model
SMI objects can represent directly a concrete entity in the experiment (such as “gas valve 12”) or
it may equally represent a logical subsystem, or any abstraction used in describing the experiment
provided it can be identified by a noun (e.g. “run”, “trigger”, “central detector”). The objects
representing concrete entities interact with the hardware they model and control through driver
processes or proxies. The main attribute of an object is its state, visible by other objects. The normal
practice is to define values that correspond to adjectives which could qualify the name of the object
(e.g. the object “run” may be in one of the states “active”, “dormant” or “paused”).

2.2.2 Object communication
An object operates on other objects by sending command messages to them. The communication
mesh linking the objects carries the global flow of control in the system. A node can send state
update messages to its parents and command messages to its children. The sources have no parents
but can receive commands from other external control systems or from human operators.

A domain defines the scope of visibility for the associated objects’ names, it establishes the
boundaries of the SM control space. This is achieved by assigning a name to each domain. The
domain structure is superimposed in a completely transparent way.

2.3 Design the control system
The control problem is progressively narrowed down to a manageable level of complexity.

First of all, indicate the broad areas where an independent control activity is necessary, these areas
will eventually become SM domains. For examples: “run control” or “detector control”, if the
apparatus is composed of several detectors, each of them may belong to an independent SM
domain. Then, for each SM domain, determine the controllable items, real entities that can be driven
by commands and are susceptible of assuming a state; for each of them, a program will be provided
in order to drive all the activity related to this entity, according to the instructions received by the
SM.

A model of the behaviour of the given domain must be formulated using SML, as a SM program
(Figure 2.3). The SM program describes the objects previously defined, the states they can take and
the commands they accept in each state. The actions generated by each command must then be
described: they consist of a sequence of instructions, each instruction being an executable statement
of the experiment description language.

The service programs, or proxies, must be prepared as well. These programs operate on the
apparatus upon receiving command messages. Their behaviour must be represented by a state
machine.

CERN openlab Summer Student Report 2016

9 | P a g e

Figure 2.3 Simple example of State Manager Program

2.4 SML
Objects behave as finite-state machines.

A state in FSM describes the behaviour of a node when it is in that state, and consists of a, possibly
empty, list of when clauses and a, possibly empty, list of action clauses. A change of state is brought
about by the receipt of a command. Once accepted, a command triggers the execution of an action;
this eventually terminates when the object reaches a new steady state. An action is identified by a
verb applicable to the object name (e.g. the object “run” may perform any of the actions “start”,
“pause”, “continue”, and “stop”).

An action consists of a sequence of operations, specified in the SM language by a list of
instructions. These are essentially of two types: DO and IF. DO is an instruction that sends a
command to another object; IF is an instruction that evaluates a Boolean function of the states of
other objects, and makes a conditional branch depending on the result. While an object is executing
an action, its state is undefined and no further command is accepted until the action is terminated.
The final state reached after the execution of an action may depend on the results of tests performed
on the state of other objects.

A command is not the only way of triggering an action: a state change in another object may
provoke it. This type of dependence is specified in the SM language by a WHEN clause, this
instruction are probed in the order in which they are given until one is found for which the guard is
true.

See Appendix A for language keywords.

For this language an EBNF grammar [2] has been build, following rules in Appendix B.

CERN openlab Summer Student Report 2016

10 | P a g e

3 Tools

3.1 ACE
Ace is an embeddable and standalone code editor written in JavaScript that performs syntax
highlighting, automatic indent and outdent, searching and replacing of regular expressions,
highlighting matching parentheses, dragging and dropping text using the mouse, code folding and
many other.

The syntax highlighting allows code to be highlighted based on the language it's written in, to
improve the readability and context of the text.

Figure 3.1 Comparison between highlight and raw input file

3.1.1 Set up environment

Ace can be easily embedded into a web page, downloading a prebuilt version from ace-builds
repository, it contains 4 versions:

https://github.com/ajaxorg/ace-builds/

CERN openlab Summer Student Report 2016

11 | P a g e

• src, concatenated but not minified
• src-min, concatenated and minified with uglify.js
• src-noconflict, uses ace.require instead of require
• src-min-noconflict.

Then creating a simple HTML web page.

<!DOCTYPE html>
<html lang="en">
<head>
 <title>ACE in Action</title>
</head>
<body>

<div id="editor"> TEXT TO BE HIGHLIGHTED </div>

 //path to ace mode
<script src="ace-builds-master/src-noconflict/ace.js"
type="text/javascript" charset="utf-8"></script>
<script>
 var editor = ace.edit("editor");
 editor.setTheme("ace/theme/xcode");
 editor.getSession().setMode("ace/mode/fsm");
</script>
</body>
</html>

Finally, create a mode, a JavaScript file that points to definitions for the highlighting rules, as well
as rules for code folding. Without defining a mode, ACE won't know anything about the finer
aspects of the language.

// defines the language specific highlighters and folding rules
var MyNewHighlightRules =
require("./mynew_highlight_rules").MyNewHighlightRules;
var MyNewFoldMode = require("./folding/mynew").MyNewFoldMode;

var Mode = function() {
 // set everything up
 this.HighlightRules = MyNewHighlightRules;
 this.$outdent = new MatchingBraceOutdent();
 this.foldingRules = new MyNewFoldMode();
};
oop.inherits(Mode, TextMode);

3.1.2 ACE’s rules
The Ace highlighter can be considered to be a state machine, in which regular expressions define
the tokens for the current state, as well as the transitions into another state. The token state machine
operates on whatever is defined in this.$rules. The highlighter always begins at the start state, and
progresses down the list, looking for a matching regex.

var MyNewHighlightRules = function() {

 // regexps are ordered -> the first match is used

https://github.com/ajaxorg/ace-builds/tree/master/src
https://github.com/ajaxorg/ace-builds/tree/master/src-min
https://github.com/ajaxorg/ace-builds/tree/master/src-noconflict
https://github.com/ajaxorg/ace-builds/tree/master/src-min-noconflict

CERN openlab Summer Student Report 2016

12 | P a g e

this.$rules = {
 "start" : [
 {
 token: <token>, // String, Array, or Function: the CSS
token to apply
 regex: <regex>, // String or RegExp: the regexp to
match
 next: <next> // [Optional] String: next state to
enter
 }
]
 };
};

Let introduce a simple example to understand the roles of token, regex and next. The syntax
highlighting state machine stays in the start state, until you define a next state for it to advance
to. At that point, the tokenizer stays in that new state, until it advances to another state.
Afterwards, you should return to the original start state.

this.$rules = {
 "start" : [{
 token : "text",
 regex : "<\\!\\[CDATA\\[",
 next : "cdata"
 },

 "cdata" : [{
 token : "text",
 regex : "\\]\\]>",
 next : "start"
 }, {
 defaultToken : "text"
 }]
};

When <![CDATA tag is encountered, the tokenizer moves from start into the cdata state. It
remains there, applying the text token to any string it encounters. Finally, when it hits a closing
]> symbol, it returns to the start state and continues to tokenize anything else.

The Ace highlighting system is derived by TextMate [5] language grammar. A llanguage grammar
is used to assign names to document elements such as keywords, comments, strings or similar to
allow styling. In ACE editor this role is carry out by the token identifier, which represent the type
of the regular expression defined in regex. For example:

{
 token : "constant.language.boolean",
 regex : /(?:true|false)\b/
}

CERN openlab Summer Student Report 2016

13 | P a g e

3.2 PEG.js
PEG.js is a simple parser generator for JavaScript, the name is the acronym for Parsing Expression
Grammar. Parsing is the general problem of turning raw text into structured data. In programming
language theory grammar is consider a context free grammar (CFG), and in particular, parsing
converts the text the programmer writes into an abstract syntax tree.

A CFG is a set of production rules involving non-terminal and terminal symbols. Non-terminal
symbols are things like expression or integer, they are names that help parse input but aren't actually
part of the input.

S -> " "

S -> "(" S ")"

S -> "[" S "]"

The CFG represented in the example above accepts a period with any number of matched
parentheses and square brackets.

In PEG there is no need to declare precedence levels and associativity, because if PEG finds more
than one way to match an expression, the first match is chosen. This rule is chosen in order to avoid
ambiguity [10].

The most important restriction in a PEG is that is not possible to have left recursive rules because
it leads to an infinite loop in the parser. For example, the rule E -> E "+" E is left recursive because
the non-terminal symbol appears in the first position of the body of the rule.

3.2.1 What is a parser
A parser is a program, usually part of a compiler, that receives input in form of sequential source
program instructions, interactive online commands or markup tags and breaks them up into parts
that can then be managed by other programming.

Parsers are used to recognize "structure" of language phrases, such structure is generally "context
sensitive", and that means that parsers attach meaning by classifying strings of tokens from the
input (sentences) as the particular nonterminals and building the parse tree. E.g.: all these token
strings: [number][operator][number],[id][operator][id],
[id][operator][number][operator][number] will be classified as "expression"
nonterminal by the C/C++ parser.

Must be remarked that the concept of a lexer is different by the parser concept. Lexers are used to
recognize "words" that make up language elements. While lexers are about getting the words right,
parsers are about getting the sentences right. "See spot run" and "spot run See" are both valid as far
as a lexer is concerned, but it takes a parser to determine that phrase structure is wrong.

3.2.2 Set up environment
PEG.js can be installed trough Node.js or from the browser.

In order to install PEG.js with Node.js [7]:

CERN openlab Summer Student Report 2016

14 | P a g e

install PEG.js globally $ npm install -g pegjs

install PEG.js locally $ npm install pegjs

In order to install PEG.js with the browser, download the PEG.js library (regular or minified
version) or install it using Bower [8]

$ bower install pegjs

3.2.3 Generate the parser
PEG.js generates parser from a grammar that describes expected input. A parser can be generated
in three ways:

• From command line:
$ pegjs [OPTIONS] grammar.pegjs grammar-parser.js

By default, the parser object is assigned to module.exports, which makes the output a
Node.js module. You can assign it to another variable by passing a variable name using
the -e/--export-var option. This may be helpful to use the parser in browser
environment.

3.2.4 PEG.js’s rules
Starting from a grammar, PEG.js creates a parsing function. This function parse takes a string as
input.

A grammar for PEG.js is a list of rules, based on RegEx [9].

Each rule has a name (sum - digit) that identifies the rule and then a body (ex: [0-9]) that
defines a pattern to match and can contains some JavaScript code that determines what happen if
the pattern matches successfully ({return parseInt("" + first + second +
third);}). The start name is special because parsing always starts there.

The first rule can be preceded by an initializer, a JavaScript code, which is executed before the
parser starts parsing.

Grammar example:

{

Initializer

}

start =

 sum

sum =

http://pegjs.org/#download

CERN openlab Summer Student Report 2016

15 | P a g e

 first:[1-3] second: digit third: digit

 {return parseInt("" + first + second + third);}

digit =

 [0-9]

If an expression matches a part of the input text when running the parser, it produces a matched
result. The match results propagate over the rules, up to the start rule. Then the parser returns
start rule’s match result when parsing is successful.

Input Output

123 6

a throw an exception indicating
that the input could not be

parsed.

4 Development and Implementation

4.1 ACE

ACE is a code editor written in JavaScript (see section 3.1), that matches the feature of
native code editors such as Sublime and Vim, and offers real time checking for code
accuracy. It provides syntax highlighting, proper indentation, keyboard shortcuts, auto-
completion, code folding, find and replace of regular expressions.

4.1.1 Mode Rules
In this paragraph is given an outline of the construction of the highlighter and the chosen rules.

4.1.1.1 Define a html page to render the input text:
<!DOCTYPE html>
<html lang="en">

<head>
 . . .
</head>

 <body>

<div id="editor">
Input text
</div>

CERN openlab Summer Student Report 2016

16 | P a g e

<script src="ace-builds-master/src-noconflict/ace.js"
type="text/javascript" charset="utf-8"></script>
<script>

var editor = ace.edit("editor");
editor.setTheme("ace/theme/xcode");
editor.getSession().setMode("ace/mode/fsm");

</script>
 </body>
</html>

 editor.getSession().setMode("ace/mode/fsm"); defines the path to the mode
that contains the syntax highlighting rules, indentation rules, and code folding rules.

4.1.1.2 Define the ace mode rules
The highlighting rules have been created for the CU Type, following the definition of the SML in
the document “Validation of CERN's Finite State Machines” [2].

• Comments are allowed in the input text in the form !comment[EOL]. A single line
comment must have the specific type comment.line.*, a comment line can be of many
types (.*) depending of the starting character (# for example).

 { token: 'comment.line.*',

 regex: '//.*$|!.*$' },

• The syntax has two main entities (state and action) that must be checked during
the parsing in order to have coherent relations between states and between actions on states
(more lately in the PEG section). In order to identify them properly, they are defined with
a predefined colouring. The entity token has been defined because an entity refers to a
larger part of the document, for example a chapter, class, function, or tag; as well as, in
SML, it referred to an “entity” whose role is to define a “container” for the node.

 { token: 'entity.name.function',

 regex: '\\b(?:state)\\b' },

Figure 4.1 state and comment highlighting

 { token: 'entity.name.function',

 regex: '\\b(?:action)\\b' }

Figure 4.2 action and comment highlighting

• The SML has also keyword related to the control flow of actions
 { token: 'keyword.control',

CERN openlab Summer Student Report 2016

17 | P a g e

regex:
'\\b(?:when|do|set|wait|sleep|if|then|else|endif)\\b'

},

{ token: 'keyword.operator',

 regex: '\\b(?:or|and)\\b' }

and keyword related to specific operations/controls that can be performed on the state
 { token: 'keyword.operator',

 regex:
'\\b(?:move_to|in_state|not_in_state|stay_in_state)\\b
' }

Figure 4.3 control keyword and operator

• Another important aspect that has been analysed was the folding concept. Folding has been
defined for round and square parenthesis and curly brackets.

this.foldingStartMarker=/(\{|\[)[^\}\]]*$|^\s*(\/*)/;
this.foldingStopMarker=/^[^\[\{]*(\}|\])|^[\s*]*(*\/
)/;

An interesting chance would have been done folding based on state or class, in
order to be able to aggregate all the information about a state. In order to support code
folding, the text editor must provide a mechanism for identifying "folding points" within a
text file, a beginning and an end. The problem in providing this feature has been finding
an end point for the folded block: the language define a start point, start:, but does not
provide any final keyword or parenthesis, neither was possible to use the same word as an
end. Tabulation was not possible because is allowed at every start of a line.

4.2 PEG
As described in section 3.2 PEG.js is a parser used to evaluate syntax rules of a grammar, SML in
case of Control Unit Type. The FSM syntax rules are described in Appendix C and Chapter 3 of
Validation of CERN's Finite State Machines [2].

4.2.1 Creation of Syntax Rules On-line
PEG.js tool offers an online version of the syntax parser [13], which has been used for the
generation of the .pejgs grammar, from which the parser is finally generated.

In the following is listed a sequence of rules that have been implemented:

• Syntax rules
o Every rules of Appendix C [2] has been implemented. Here an example to show

how the RegEx work

FSM syntax

identifier = character, {character};

file://b

CERN openlab Summer Student Report 2016

18 | P a g e

action clause = 'action:', [action parameter],
identifier, statement, {statement};

RegEx syntax

action =
 "action:" + space*
identifier =
 [0-9a-zA-Z'_'-'&']
statements =
 first:statement enter*
action_parameter =
 "(" space* third:action_parameter_list space*
")"
action_simple =
action enter* second:action_parameter? enter*
third:identifier+ comment* fourth:statements+

In the following table, are explained some relations that are between the FSM
syntax and the RegEx rules [9]:

FSM syntax RegEx syntax

[action parameter]

[] indicate that the token
inside is optional, so it can
be taken 0 or 1 time.

action_parameter?

The correlation between the []
and the RegEx is made thanks to
the ‘?’ character, that
indicates that the non-terminal
parameter can be taken/not-
taken

identifier = character,
{character};

+ indicates that 1 or more
token can be taken from the
terminal parameters that
derive from the non-terminal
identifier

identifier+

+ indicates that 1 or more token
can be taken from the terminal
parameters that derive from the
non-terminal identifier

• One fundamental point for the project has been the comparison between tokens that
represent states and actions in the regular expression. For this purpose, JavaScript functions
have been used. Let’s take as an example the code below to define in a clear way the
problem.

CERN openlab Summer Student Report 2016

19 | P a g e

o Every state has a name (ERROR), which identify the node in the FSM. Every
state can have a sequence of ‘when sentences’(second line) and
‘action sentences’ (third and fourth line); a when sentence is defined
by an expression (ALLFwCHILDREN not_in_state ERROR) and by a
referrer (move_to NOT_READY). An action sentence is identified by a name
(RECOVER), and can have a sequence of statements (do RECOVER
ALLFwCHILDREN) that represent the action that must be performed on other
states (ALLFwCHILDREN).
 State checking: states’ names must be recorded in order to not perform

actions on states that do not exist. In the previous example, the
move_to action cannot be performed on state NOT_READY because it
does not exists. So an error must be thrown by the parser.

 State child checking: the same checking defined before must be
performed with respect to the state declared in the children’s nodes
(ALLFwCHILDREN). In the previous example, if the state ERROR
does not exist in all the children nodes of the class in which the when
expression is defined (ALLFwCHILDREN) an error is thrown by
the parser.

 Action checking: the same check done for the states must be performed
between actions. An action can be performed on a state only if is it
declared.

4.2.2 Generation of the Parser
After the definition of the grammar, there are two ways to create a parser:

• From the on-line version [13]: define a parser name before downloading it (ex: parser)
• From the shell: save the grammar file as grammar.pegjs and execute the command

pegjs [OPTIONS] grammar.pegjs grammar-parser.js
With the optional parameter --trace, when the input file is parsed, the output file
shows also the sequence of used RegEx rules.

4.2.3 Input File Checking
• From html page: the content of the input file needs to be copied into a textarea, to be

processed by the parser.
• From shell: to run the parser execute the command node parser.js

The input file must be read through parser.js

4.2.4 Error reporting
The input text is parsed in a sequential order. As soon as the parsers detects an error, the process is
stopped and the error is reported.

CERN openlab Summer Student Report 2016

20 | P a g e

5 Future Scope

5.1 Integration with WinCCOA
Coworkers in the section have already started to integrate the CU editor with the WinCCOA [11]
panel.

WinCC-OA, previously known as PVSS, is a SCADA framework owned by Siemens, which
support the control system processes at CERN. For example, applications for monitoring and
controlling detectors of major experiments, ventilation, cryogenics, cooling systems and other
infrastructures.

Figure 5.1 WinCCOA integration

5.2 Create Final State Machine Visualization
Another possible usage of this tool is the ability to build a FSM starting from the input file. This
approach can be extremely useful to have a graphical vision of the system.

For example from this simple input file

class: $FWPART_$TOP$DCUtypeClass

CERN openlab Summer Student Report 2016

21 | P a g e

 state:NOT_READY

 when (ALLCHILDREN in_state NOT_READY) move_to ERROR

when (ALLCHILDREN in_state READY) move_to ready

 state:READY

state:ERROR

This kind of FSM can be obtained for each class.

Figure 5.2 FSM example

Each class diagram must be connected to its parents’ and to its childs’ FSMs, in order to do so,
another graphical representation can connect classes to classes.

CERN openlab Summer Student Report 2016

22 | P a g e

Figure 5.3 FSM between classes

A possible tool to create FSMs is Concrete Editor [12].

6 Conclusions

This tool proposes a useful approach to facilitate the visualization and error checking of
the of FSM Control Unit Type online. It gives a visually comprehensive method to simplify
code checking thanks to the syntax highlighter, and ensure a correct evaluation of the rules
of the code, as well as a coherent relation between states, thanks to the parser.

To prove the relevance of the tool, the integration with WinCCOA panel must be
completed. And possible improvements can be done thanks to future proposals.

Appendix A
A formal definition of the language syntax can be found in [1/Appendix A] and [3].

CLASS declaration

CLASS: class_name [/ASSOCIATED]

This statement is used to describe a set of identical objects. The description of the set begins with
the CLASS declaration. All the statements concerning the set of objects must immediately follow.
For the ASSOCIATED class, the same considerations apply as for the associated object (see the
OBJECT declaration).

CERN openlab Summer Student Report 2016

23 | P a g e

OBJECT declaration
OBJECT object_name [/ASSOCIATED] [IS_OF_CLASS class_name]

The description of an object begins with the OBJECT declaration. All the statements concerning
one object must follow immediately its declaration.

An ASSOCIATED object does not execute itself the action it receives. It transmits the command
to its associated process and updates its state according to the variation of the associated process.
The associated process may belong to a domain different from the one of the SM itself: in this case
the domain must be explicitly specified as a prefix of the object name, separated from it by a double
colon (e.g. TPC::HV indicates the object HV in the domain TPC).

The IS_OF_CLASS qualifier specifies that the object inherits the description and all the
characteristics of the class.

Both objects (abstract and associated) can have parameters associated with it. One of their
most important uses is passing values between SMI world and the associated proxies.
When object has parameters, then the Object declaration must be immediately followed
by:

Parameters : parameters-declaration

 parameters-declaration : pd [, pd,…,pd]

 pd : [type] name [= default-value]

STATE declaration
STATE : state_name [/INITIAL_STATE] [/DEAD-STATE]

This statement is used to declare one of the possible states an object can take. The STATE
declaration may be followed by all the WHEN and ACTION statements that apply to this
state.
INITIAL_STATE, in the case of logical objects, indicates that the object must be put in
the flagged state when the SM program starts up, in the case of associated objects, the
flagged state is the one that the object initially assumes when a process becomes associated
with it. By default, the initial state is the first one declared.
DEAD_STATE is a state qualifier which only applies to associated objects. It designates
the state to be assigned to an object when the associated process aborts or in general is not
running.

ACTION declaration
ACTION : action_name [(param [= default_value], …)]

This statement declares a command accepted by the object in a given state. If the object
accepts the same command in different states, this command must be declared for all the
states.

CERN openlab Summer Student Report 2016

24 | P a g e

For a logical object the ACTION declaration must be followed by the instructions that the
object performs at reception of the command. On the other hand, an associated object does
not execute any action but sends the command as a message string to the associated process.

WHEN statement
WHEN condition DO action_name

The WHEN statement allows an object to react to unsolicited state changes of some other
objects. The statement applies to one state only: if the logical condition becomes true when
the object is in this state, the object starts to execute the action specified in the WHEN
statement.
The condition of the WHEN statement can be a logical expression combining the state of
various objects with logical operators.

DO statement
DO action_name [(parameter=value,…)] object_name

This statement allows an object to trigger further actions on itself or on other objects during
the execution of an action.

IF statement
IF condition THEN statements [ELSE statements] ENDIF

The IF statement conditionally executes a statement or a block of statements. The condition
can be a logical expression combining the state of various objects with logical operators.

The IF statement realises also the synchronisation between all the objects whose state is
tested in the condition. Before evaluating the condition, all the objects will execute the
pending actions.

Appendix B
This appendix gives the Extended Backus-Naur Form (EBNF) grammar of the FSM syntax. White
space and comments are left out of this grammar but are allowed at every comma (,) in the grammar,
except if indicated otherwise. Comments in FSM are embraced with an exclamation mark (!) and
a line end. The start symbol is specification.

specification = class, {class};

class = 'class:', '$FWPART_$TOP$', identifier, state, {state};

state = 'state:', identifier, {when clause}, {action clause};

when clause = 'when', expression, referrer;

CERN openlab Summer Student Report 2016

25 | P a g e

expression = (paren expression | not expression | base expression),

[and expression | or expression];

base expression = child pattern, ('empty' |(state operator,

state specification));

state operator = 'in_state' | 'not_in_state';

not expression = 'not', '(', expression, ')';

paren expression = '(', expression, ')';

and expression = 'and', expression;

or expression = 'or', expression;

child pattern = '$', ['all$' | 'any$'], identifier;

state specification = identifier |

('{', {identifier, ','},identifier, '}');

referrer = referrer do | referrer move_to | referrer stay_in_state;

referrer do = 'do', identifier;

referrer move_to = 'move_to', identifier;

referrer stay_in_state = 'stay_in_state', [identifier];

action clause = 'action:', [action parameter], identifier,

statement, {statement};

action parameter = '(', [action parameter single, {',',

action parameter single}], ')';

action parameter single = 'string', identifier,

 '=', string literal;

string literal = '"', {? any charachter but " ?}, '"';

statement = statement do | statement move_to |statement if |

 statement set | statement wait | statement sleep;

statement do = 'do', identifier, ['(', statement parameter, ')'],

CERN openlab Summer Student Report 2016

26 | P a g e

child pattern;

statement parameter = ['string'], identifier, '=', (string literal

 | identifier | statement parameter object);

statement parameter object = '$', identifier, {'.', identifier};

statement move_to = 'move_to', identifier;

statement if = 'if', expression, 'then', statement, {statement},

['else', statement, {statement}], 'endif';

statement set = 'set', statement parameter;

statement wait = 'wait', '(', child pattern, {',',

child pattern}, ')';

statement sleep = 'sleep', integer;

identifier = character, {character};

(*in an identifier, no white space or comment is allowed*)

(*after an identifier, no 'character' is allowed*)

integer = digit, {digit | '0'};

(*in an integer, no white space or comment is allowed*)

character = 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' |

 'h' | 'i' | 'j' | 'k' | 'l' | 'm' | 'n' |

 'o' | 'p' | 'q' | 'r' | 's' | 't' | 'u' |

 'v' | 'w' | 'x' | 'y' | 'z' | 'A' | 'B' |

 'C' | 'D' | 'E' | 'F' | 'G' | 'H' | 'I' |

 'J' | 'K' | 'L' | 'M' | 'N' | 'O' | 'P' |

 'Q' | 'R' | 'S' | 'T' | 'U' | 'V' | 'W' |

 'X' | 'Y' | 'Z' | '_' | '&' | '-' | '0' |

digit;

digit = '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9';

CERN openlab Summer Student Report 2016

27 | P a g e

References
[1] SMI++ User Manual, B.Franek, C. Gaspar, 28 March 1988

[2] Validation of CERN's Finite State Machines, Sander J.J. Leemans, 8th June 2012

[3] http://smi.web.cern.ch/smi/LANGUAGE_DESCRIPTION.html

[4] https://ace.c9.io/#nav=about

[5] http://manual.macromates.com/en/language_grammars

[6] http://pegjs.org/

[7] https://howtonode.org/how-to-install-nodejs

[8] http://blog.teamtreehouse.com/getting-started-bower

[9] http://www.w3schools.com/jsref/jsref_obj_regexp.asp

[10] http://books.xmlschemata.org/relaxng/relax-CHP-16-SECT-1.html

[11]https://wikis.web.cern.ch/wikis/display/EN/PVSS

[12] http://concrete-editor.org/

[13] http://pegjs.org/online

http://smi.web.cern.ch/smi/LANGUAGE_DESCRIPTION.html
https://ace.c9.io/%23nav=about
http://manual.macromates.com/en/language_grammars
http://pegjs.org/
https://howtonode.org/how-to-install-nodejs
http://blog.teamtreehouse.com/getting-started-bower
http://www.w3schools.com/jsref/jsref_obj_regexp.asp
http://books.xmlschemata.org/relaxng/relax-CHP-16-SECT-1.html
https://wikis.web.cern.ch/wikis/display/EN/PVSS+Service+Training+PVSS-JCOPFw+Course+Downloads
http://concrete-editor.org/
http://pegjs.org/online

	Online syntax highlighting and checker for Control Unit Type of Finite State Machine
	August 2016
	Author:
	Francesca Cecilia Schiavi
	Supervisors:
	Jean-Charles Tournier
	Manuel González Berges
	CERN openlab Summer Student Report 2016

	1 Introduction
	1.1 Chapter Breakdown

	2 SMI++
	2.1 State Manager Overview
	2.2 SMI
	2.2.1 Object model
	2.2.2 Object communication

	2.3 Design the control system
	2.4 SML

	3 Tools
	3.1 ACE
	3.1.1 Set up environment
	3.1.2 ACE’s rules

	3.2 PEG.js
	3.2.1 What is a parser
	3.2.2 Set up environment
	3.2.3 Generate the parser
	3.2.4 PEG.js’s rules

	4 Development and Implementation
	4.1 ACE
	4.1.1 Mode Rules
	4.1.1.1 Define a html page to render the input text:
	4.1.1.2 Define the ace mode rules

	4.2 PEG
	4.2.1 Creation of Syntax Rules On-line
	4.2.2 Generation of the Parser
	4.2.3 Input File Checking
	4.2.4 Error reporting

	5 Future Scope
	5.1 Integration with WinCCOA
	5.2 Create Final State Machine Visualization

	6 Conclusions
	Appendix A
	OBJECT declaration
	STATE declaration
	ACTION declaration
	WHEN statement
	DO statement
	IF statement

	Appendix B
	References

