

Communications in Mathematics 30 (2022) 25–36

DOI: 10.46298/cm.9076

©2022 Abdelkarim Boua and Ahmed Y. Abdelwanis

This is an open access article licensed under the CC BY-SA 4.0

On commutativity of 3-prime near-rings with generalized (α, β) -derivations

Abdelkarim Boua and Ahmed Y. Abdelwanis

Abstract. Let \mathcal{N} be a 3-prime near ring and $\alpha, \beta: \mathcal{N} \to \mathcal{N}$ be endomorphisms. In the present paper we amplify a few outcomes concerning generalized derivations and two-sided α -generalized derivations of 3-prime near rings to generalized (α, β) -derivations. Cases demonstrating the need of the 3-primeness speculation are given. When $\beta = id_{\mathcal{N}}$ (resp. $\alpha = \beta = id_{\mathcal{N}}$), one can easily obtain the main results of [1] (resp.[7]).

1 Introduction

In the present paper, \mathcal{N} is a zero symmetric right near-ring i.e. non empty set together with two binary operations "+" and "." that satisfies $(\mathcal{N},+,0)$ is a group (not necessarily abelian), $(\mathcal{N},.)$ is a semigroup, for all $x,y,z\in\mathcal{N}\colon (x+y)z=xz+yz$ ("right distributive law") and n0=0 for all $n\in\mathcal{N}$. $Z(\mathcal{N})$ is the multiplication center of \mathcal{N} , that is, $Z(\mathcal{N})=\{x\in N\mid xy=yx \text{ for all }y\in\mathcal{N}\}$. Note that $0\in Z(\mathcal{N})$, so $Z(\mathcal{N})\neq\emptyset$. Usually \mathcal{N} will be 3-prime near ring, that is, will have the property that $x\mathcal{N}y=\{0\}$ for $x,y\in\mathcal{N}$ implies x=0 or y=0. Nonempty subset I of \mathcal{N} is called a semigroup right ideal or a semigroup left ideal if $I\mathcal{N}\subseteq I$ or $\mathcal{N}I\subseteq I$ respectively; and I is said to be a semigroup ideal if its both a semigroup right ideal and a semigroup left ideal. Recalling that \mathcal{N} is 2-torsion free if 2x=0 implies x=0 for all $x\in\mathcal{N}$. An additive mapping $d:\mathcal{N}\to\mathcal{N}$ is said to be a derivation if d(xy)=xd(y)+d(x)y for all $x,y\in\mathcal{N}$, or equivalently, if d(xy)=d(x)y+xd(y) for all $x,y\in\mathcal{N}$. As in [8], an additive mapping $F:\mathcal{N}\to\mathcal{N}$ is a right or left generalized derivation with associated derivation d if F(xy)=F(x)y+xd(y) or F(xy)=d(x)y+xF(y) holds for all $x,y\in\mathcal{N}$ respectively.

2020 MSC: 16N60, 16W25, 16Y30

Keywords: Commutativity, Generalized (α, β) -derivations; 3-prime near-rings. Affiliation:

Abdelkarim Boua – Sidi Mohammed Ben Abdellah University, Polydisciplinary Faculty, LSI, Taza, Morocco

 $E ext{-}mail:$ abdelkarimbouaboua@yahoo.fr

Ahmed Y. Abdelwanis – Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt

E-mail: ayunis@sci.cu.edu.eg

Let $\alpha, \beta: \mathcal{N} \to \mathcal{N}$ be endomorphisms, an additive mapping $d: \mathcal{N} \to \mathcal{N}$ is called (α, β) -derivation, if $d(xy) = \alpha(x)d(y) + d(x)\beta(y)$ for all $x, y \in \mathcal{N}$, and or equivalently from [3] that $d(xy) = d(x)\beta(y) + \alpha(x)d(y)$, for all $x, y \in \mathcal{N}$.

Now we give an example of a (α, β) -derivation on a near-ring $\mathcal N$ which is not a derivation.

Example 1. Let S be a zero-symmetric near-ring. Define \mathcal{N} and $d, \alpha, \beta : \mathcal{N} \to \mathcal{N}$ by:

$$\mathcal{N} = \left\{ \left(\begin{array}{cc} x & 0 \\ 0 & y \end{array} \right) \mid x, y \in S \right\}, \ d\left(\begin{array}{cc} x & 0 \\ 0 & y \end{array} \right) = \left(\begin{array}{cc} x & 0 \\ 0 & y \end{array} \right),$$

$$\alpha \left(\begin{array}{cc} x & 0 \\ 0 & y \end{array} \right) = \left(\begin{array}{cc} x & 0 \\ 0 & 0 \end{array} \right) \quad \text{and} \quad \beta \left(\begin{array}{cc} x & 0 \\ 0 & y \end{array} \right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & y \end{array} \right).$$

Clearly \mathcal{N} is a zero symmetric near-ring, d is a (α, β) -derivation on \mathcal{N} but not a derivation.

Let $\alpha, \beta: \mathcal{N} \to \mathcal{N}$ be endomorphisms. An additive mapping $F: \mathcal{N} \to \mathcal{N}$ is called a right generalized (α, β) -derivation (resp. left generalized (α, β) -derivation) if there exists a (α, β) -derivation d such that $F(xy) = F(x)\beta(y) + \alpha(x)d(y)$ (resp. $F(xy) = d(x)\beta(y) + \alpha(x)F(y)$) for all $x, y \in \mathcal{N}$. Moreover, F is called a generalized (α, β) -derivation if F is both right generalized (α, β) -derivation and left generalized (α, β) -derivation. Clearly the notion of generalized (α, β) -derivations includes those of (α, β) -derivations (when F = d) of derivations (when F = d and $\alpha = \beta = id_{\mathcal{N}}$, where $id_{\mathcal{N}}$ is the identity map on \mathcal{N}) and of generalized derivations (which is the case when $\alpha = \beta = id_{\mathcal{N}}$). Hence the concept of generalized (α, β) -derivations includes those of derivations, generalized derivations and (α, β) -derivations.

Now we give an example of a generalized (α, β) -derivation F associated with (α, β) -derivation d on a near-ring such that F is not a (α, β) -derivation of \mathcal{N} .

Example 2. Let S be a zero-symmetric near-ring. Let us define $\mathcal{N},\ d,\ F$ and $\alpha,\beta:\mathcal{N}\to\mathcal{N}$ by:

$$\mathcal{N} = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \mid x, y \in S \right\},$$

$$d \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} = \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}, \quad F \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix},$$

$$\alpha \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & y \end{pmatrix} \text{ and } \beta \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} = \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}.$$

Clearly \mathcal{N} is a zero symmetric near ring, d is a (α, β) -derivation of \mathcal{N} , and F is a generalized (α, β) -derivation associated with d, but F is not a (α, β) -derivation of \mathcal{N} .

We will write, for all $x, y \in \mathcal{N}$,

$$[x,y] = xy - yx$$
 and $x \circ y = xy + yx$

for the Lie and Jordan products, respectively. Usually, we denote

$$[x,y]_{\alpha,\beta} := \alpha(x)y - y\beta(x)$$
 and $(x \circ y)_{\alpha,\beta} := \alpha(x)y + y\beta(x)$,

for all $x, y \in \mathcal{N}$. In particular $[x, y]_{id_{\mathcal{N}}, id_{\mathcal{N}}} = [x, y]$ and $(x \circ y)_{id_{\mathcal{N}}, id_{\mathcal{N}}} = x \circ y$, for all $x, y \in \mathcal{N}$.

In the present paper, we generalize Theorems 3.1 and 3.5 of [1], Theorems 2.9, 2.10, 3.1, 3.2, 3.3 and 3.5 of [7].

2 Preliminaries

We begin with the following lemmas which are essential in the following two sections.

Lemma 1. [6, Lemmas 1.2 (i), 1.2 (iii) & 1.3 (iii)]. Let \mathcal{N} be a 3-prime near-ring.

- (i) If $z \in Z(\mathcal{N}) \setminus \{0\}$, then z is not a zero divisor.
- (ii) If $z \in Z(\mathcal{N}) \setminus \{0\}$ and $xz \in Z(\mathcal{N})$, then $x \in Z(\mathcal{N})$.
- (iii) If z centralizes a non zero semigroup left ideal, then $z \in Z(\mathcal{N})$.

Lemma 2. [6, Lemma 1.3 (i)]. Let \mathcal{N} be a 3-prime near-ring. If I is a nonzero semigroup left ideal (resp. semigroup right ideal) and x is an element of \mathcal{N} such that $xI = \{0\}$, (or $Ix = \{0\}$,) then x = 0.

Lemma 3. [6, Lemma 1.4 (i)]. Let \mathcal{N} be a 3-prime near-ring and I is a nonzero semigroup ideal of \mathcal{N} . If $x, y \in \mathcal{N}$ and $xIy = \{0\}$, then x = 0 or y = 0.

Lemma 4. [6, Lemma 1.5]. Let \mathcal{N} be a 3-prime near-ring. If $Z(\mathcal{N})$ contains a non-zero semigroup right ideal or a semigroup left ideal, then \mathcal{N} is a commutative ring.

Lemma 5. [3, Lemma 2.2]. Let d be a (α, β) -derivation on a near-ring \mathcal{N} . Then \mathcal{N} satisfies the following partial distributive laws:

(i)
$$z(\alpha(x)d(y) + d(x)\beta(y)) = z\alpha(x)d(y) + zd(x)\beta(y)$$
 for all $x, y, z \in \mathcal{N}$.

(ii)
$$z(d(x)\beta(y) + \alpha(x)d(y)) = z(d(x)\beta(y) + z\alpha(x)d(y))$$
 for all $x, y, z \in \mathcal{N}$.

Lemma 6. [9, Lemma 4]. Let \mathcal{N} be a 3-prime near ring and $d: \mathcal{N} \to \mathcal{N}$ be a nonzero (α, β) -derivation. If I is a nonzero semigroup left ideal or a semigroup right ideal, then $d(I) \neq \{0\}$.

Lemma 7. [9, Theorem 2]. Let \mathcal{N} be a 3-prime near ring and I is a nonzero semigroup left ideal of \mathcal{N} . If \mathcal{N} admitting a non-trivial (α, β) -derivation d such that $d(I) \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.

Lemma 8. Let \mathcal{N} be a 3-prime near-ring and α , β maps of \mathcal{N} such as α is additive. If \mathcal{N} admits an additive mapping F, then the following assertions are equivalent:

(i)
$$F(xy) = F(x)\beta(y) + \alpha(x)d(y)$$
 for all $x, y \in \mathcal{N}$,

(ii)
$$F(xy) = \alpha(x)d(y) + F(x)\beta(y)$$
 for all $x, y \in \mathcal{N}$.

Proof. (i) \Rightarrow (ii) Assume that $F(xy) = F(x)\beta(y) + \alpha(x)d(y)$, for all $x, y \in \mathcal{N}$, so

$$F((x+x)y) = F(x+x)\beta(y) + \alpha(x+x)d(y)$$

= $F(x)\beta(y) + F(x)\beta(y) + \alpha(x)d(y) + \alpha(x)d(y)$ for all $x, y \in \mathcal{N}$,

and

$$F((x+x)y) = F(xy) + F(xy)$$

= $F(x)\beta(y) + \alpha(x)d(y) + F(x)\beta(y) + \alpha(x)d(y)$ for all $x, y \in \mathcal{N}$.

Comparing the two equations, then we get

$$F(x)\beta(y) + \alpha(x)d(y) = \alpha(x)d(y) + F(x)\beta(y)$$
 for all $x, y \in \mathcal{N}$.

Similarly, we can prove the other implication.

Lemma 9. [10, Lemma 2.2]. Let F be a generalized (α, β) -derivation of near ring $\mathcal N$ associated with d. Then

$$z(F(x)\beta(y) + \alpha(x)d(y)) = zF(x)\beta(y) + z\alpha(x)d(y)$$
 for all $x, y, z \in \mathcal{N}$.

We need the following lemma in the next sections

Lemma 10. Let \mathcal{N} be a 2-torsion-free 3-prime near-ring and I is a nonzero semi-group ideal of \mathcal{N} . If α and β are automorphisms on \mathcal{N} , then there exists $x, y \in I$ such that $(x \circ y)_{\alpha,\beta} \neq 0$.

Proof. We demonstrate by disagreement, we isolate the confirmation of this lemma into two sections, in the initial segment we demonstrate that \mathcal{N} is a commutative ring, situated in this property in the second part we get the disagreement.

Assume on the contrary that $(x \circ y)_{\alpha,\beta} = 0$ for all $x, y \in I$, then $\alpha(x)y = -y\beta(x)$ for all $x, y \in I$. Replacing y by yz in the last equation and using it, we obtain

$$\begin{split} \alpha(x)yz &= -yz\beta(x) \\ &= (-y)(z\beta(x)) \\ &= (-y)(-\alpha(x)z) \\ &= (-y)(\alpha(-x)z) \text{ for all } x,y,z \in I \end{split}$$

which implies that

$$(\alpha(x)y + y\alpha(-x))I = \{0\}$$
 for all $x, y \in I$.

Using Lemma 2, we get $\alpha(-x)y = y\alpha(-x)$ for all $x, y \in I$. Taking ny in place of y, where $n \in \mathcal{N}$, we obtain

$$\alpha(-x)ny = ny\alpha(-x)$$

= $n\alpha(-x)y$ for all $x, y \in I, n \in \mathcal{N}$

which reduces to $[\alpha(-x), n]I = \{0\}$ for all $x \in I$, $n \in \mathcal{N}$. Using again Lemma 2, we get $\alpha(-x) \in Z(\mathcal{N})$, for all $x \in I$, i.e. $\alpha(-I) \subseteq Z(\mathcal{N})$. Since α is an automorphism of \mathcal{N} , then $-I \subseteq Z(\mathcal{N})$ and using the fact that -I is a nonzero semigroup right ideal. Thus \mathcal{N} is a commutative ring by Lemma 4. In this case, our hypothesis implies that

$$0 = \alpha(x)y + y\beta(x)$$

= $\alpha(x)y + \beta(x)y$
= $(\alpha(x) + \beta(x))y$ for all $x, y \in I$.

It follows by Lemma 2 $\alpha(x) + \beta(x) = 0$ for all $x \in I$. i.e. $\beta(x) = -\alpha(x)$ for all $x \in I$. So for every $n \in \mathcal{N}$ and $x \in I$, we get

$$\begin{aligned} -\alpha(n)\alpha(x) &= -\alpha(nx) \\ &= \beta(nx) \\ &= \beta(n)\beta(x) \\ &= \beta(n)(-\alpha(x)) \\ &= -\beta(n)\alpha(x) \text{ for all } x \in I, n \in \mathcal{N}. \end{aligned}$$

Which implies that $\alpha(n)\alpha(x) = \beta(n)\alpha(x)$ for all $x \in I$, $n \in N$. So

$$(\alpha(n)\alpha(x) - \beta(n)\alpha(x)) = 0$$

= $(\alpha(n) - \beta(n))\alpha(x)$ for all $x \in I, n \in \mathcal{N}$.

Thus by Lemma (2), we get $\alpha(n) = \beta(n)$ for all $n \in \mathcal{N}$. But $\alpha(x) = -\beta(x)$ for all $x \in I$. So $\beta(x) = -\beta(x)$ for all $x \in I$, and using 2-torsion freeness of \mathcal{N} , we get $2\beta(x) = 0 = \beta(x)$ for all $x \in I$. Hence $\beta(I) = \{0\}$, but β is an automorphisms, which implies $I = \{0\}$; a contradiction.

Lemma 11. Let \mathcal{N} be a 3-prime near ring, I is a nonzero semigroup left ideal and α , β be automorphisms on \mathcal{N} . If $x \in \mathcal{N}$ and $[x,y]_{\alpha,\beta} = 0$ for all $y \in I$, then $x \in Z(\mathcal{N})$.

Proof. Let $x \in \mathcal{N}$ such that $[x,y]_{\alpha,\beta} = 0$ for all $y \in I$, then $\alpha(x)y = y\beta(x)$ for all $y \in I$. Replace y by ty, where $t \in \mathcal{N}$, we get

$$\alpha(x)ty = ty\beta(x)$$

$$= t\alpha(x)y \text{ for all } y \in I, t \in \mathcal{N}.$$

Then $[\alpha(x),t]y=0$ for all $y\in I,\ t\in N$. By Lemma 2, we obtain $\alpha(x)\in Z(\mathcal{N})$, but α is an automorphism, so $x\in Z(\mathcal{N})$.

3 Commutativity conditions and (α, β) -derivations

In this section, \mathcal{N} is assumed to be a zero symmetric near-ring and $\alpha, \beta : \mathcal{N} \to \mathcal{N}$ are automorphisms.

Our next theorem is a generalization of [1, Theorem 3.1] and [7, Theorem 2.9].

Theorem 1. Let \mathcal{N} be a 3-prime near-ring. If I is a nonzero semigroup ideal and d is a nonzero (α, β) -derivation on \mathcal{N} , then the following assertions are equivalent:

- (i) $[x, y]_{\alpha,\beta} \in Z(\mathcal{N})$ for all $x, y \in I$;
- (ii) $[d(x), y]_{\alpha,\beta} \in Z(\mathcal{N})$ for all $x, y \in I$;
- (iii) \mathcal{N} is a commutative ring.

Proof. $(iii) \Rightarrow (i)$ and $(iii) \Rightarrow (ii)$ are obvious.

 $(i) \Rightarrow (iii)$ Assume that

$$[x, y]_{\alpha, \beta} \in Z(\mathcal{N}) \text{ for all } x, y \in I.$$
 (1)

Replacing y by $y\beta(x)$ in (1) and noting that $[x,y\beta(x)]_{\alpha,\beta}=[x,y]_{\alpha,\beta}\beta(x)$, we get

$$[x, y]_{\alpha, \beta} \beta(x) \in Z(\mathcal{N}) \text{ for all } x, y \in I.$$
 (2)

By Lemma 1 (ii), we conclude that for each $x \in I$, we have

$$[x, y]_{\alpha, \beta} = 0 \text{ or } \beta(x) \in Z(\mathcal{N}) \text{ for all } x, y \in I.$$
 (3)

But β is an automorphism, so (3 implies that

$$[x, y]_{\alpha, \beta} = 0 \text{ or } x \in Z(\mathcal{N}) \text{ for all } x, y \in I.$$
 (4)

By Lemma 11, we get $x \in Z(\mathcal{N})$ for all $x \in I$, i.e $I \subseteq Z(\mathcal{N})$. Hence \mathcal{N} is a commutative ring by Lemma 4.

The proof of $(ii) \Rightarrow (iii)$ is by the same way of the proof of $(i) \Rightarrow (iii)$, and use Lemma 7 instead of Lemma 4.

It is worthy noticing that the results of Theorem 1 generalizes [1, Theorem 3.1], if we put $\beta = id_{\mathcal{N}}$, and [7, Theorem 2.9], if we put $\alpha = \beta = id_{\mathcal{N}}$.

If \mathcal{N} is 2-torsion free, Theorem 1 stays legitimate if we replace $[x,y]_{\alpha,\beta}$ by $(x\circ y)_{\alpha,\beta}$. In fact, we obtain the following result:

The next theorem is a generalization of [1, Theorem 3.5] and [7, Theorem 2.10].

Theorem 2. Let \mathcal{N} be a 2-torsion free 3-prime near-ring. If I is a nonzero semi-group ideal and d is a nonzero (α, α) -derivation on \mathcal{N} , then the following assertions are equivalent:

- (i) $(x \circ y)_{\alpha,\alpha} \in Z(\mathcal{N})$ for all $x, y \in I$;
- (ii) $(d(x) \circ y)_{\alpha,\alpha} \in Z(\mathcal{N})$ for all $x, y \in I$;
- (iii) \mathcal{N} is a commutative ring.

Proof. $(iii) \Rightarrow (i)$ and $(iii) \Rightarrow (ii)$ are obvious.

The proof of part $(i) \Rightarrow (ii)$ of Theorem 2 is the same as the proof of $(i) \Rightarrow (iii)$ of Theorem 1 with the same steps.

 $(ii) \Rightarrow (iii)$ Assume that

$$(d(x) \circ y)_{\alpha,\alpha} \in Z(\mathcal{N}) \text{ for all } x, y \in I.$$
 (5)

As above replacing y by $y\alpha(d(x))$ in (5), we get

$$(d(x) \circ y)_{\alpha,\alpha} \alpha(d(x)) \in Z(\mathcal{N}) \text{ for all } x, y \in I.$$
 (6)

By Lemma (1) (ii), we conclude that

$$(d(x) \circ y)_{\alpha,\alpha} = 0 \text{ or } \alpha(d(x)) \in Z(\mathcal{N}) \text{ for all } x, y \in I.$$
 (7)

Again (7) implies that

$$(d(x) \circ y)_{\alpha,\alpha} = 0 \text{ or } d(x) \in Z(\mathcal{N}) \text{ for all } x, y \in I.$$
 (8)

Assume there exists $x_0 \in I$ such that $d(x_0) \in Z(\mathcal{N})$. Since α is an automorphism of \mathcal{N} , $\alpha(d(x_0)) \in Z(\mathcal{N})$. Then (5) implies $(y+y)\alpha(d(x_0)) \in Z(\mathcal{N})$ for all $y \in I$. By Lemma 1 (ii), we obtain $\alpha(d(x_0)) = 0$ or $y + y \in Z(\mathcal{N})$ for all $y \in I$ which implies that $d(x_0) = 0$ or $(y + y)y = y^2 + y^2 \in Z(\mathcal{N})$ for all $y \in I$. Using again Lemma 1 (ii) with 2-torsion freeness of \mathcal{N} , we get $d(x_0) = 0$ or $y \in Z(\mathcal{N})$ for all $y \in I$ which means that $d(x_0) = 0$ or $I \subseteq Z(\mathcal{N})$. By Lemma 4, we conclude that $d(x_0) = 0$ or \mathcal{N} is a commutative ring. In this case (8) becomes

$$(d(x) \circ y)_{\alpha,\alpha} = 0$$
 for all $x, y \in I$ or \mathcal{N} is a commutative ring.

If $(d(x) \circ y)_{\alpha,\alpha} = 0$ for all $x, y \in I$. We get $\alpha(d(x))y = -y\alpha(d(x))$ for all $x, y \in I$. Putting yt in place of y, we obtain

$$\alpha(d(-x))yt = yt\alpha(d(x))$$

$$= y(t\alpha(d(x))$$

$$= y\alpha(d(-x))t \text{ for all } x, y, t \in I,$$

which implies that $\alpha(d(-x))y - y\alpha(d(-x))I = \{0\}$ for all $x, y \in I$. As a consequence, $\alpha(d(-x))y = y\alpha(d(-x))$ for all $x, y \in I$. Replacing y by ny, where $n \in \mathcal{N}$ in the last expression and using it again, we arrive at $\alpha(d(-x)) \in Z(\mathcal{N})$ for all $x \in I$. Since α is an automorphism of \mathcal{N} , we obtain $d(-x) \in Z(\mathcal{N})$ for all $x \in I$. i.e. $d(-I) \subseteq Z(\mathcal{N})$ and \mathcal{N} is a commutative ring by Lemma 7.

Note that we can be obtain [1, Theorem 3.5] and [7, Theorem 2.10] from Theorem 2 by choosing $\alpha = id_{\mathcal{N}}$.

The following example shows that one cannot discard the 3-primeness hypothesis in Theorems 1 and 2.

Example 3. Let S be a 2-torsion free zero-symmetric near-ring which is not abelian.

Let us defined \mathcal{N}, I and $d, \alpha, \beta : \mathcal{N} \to \mathcal{N}$ by:

$$\mathcal{N} = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & y \\ 0 & 0 & 0 \end{pmatrix} \middle| x, y \in S \right\}, \quad I = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & y \\ 0 & 0 & 0 \end{pmatrix} \middle| y \in S \right\},$$

$$d \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & y \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & y \\ 0 & 0 & 0 \end{pmatrix},$$

$$\alpha \begin{pmatrix} 0 & 0 & 0 \\ x & 0 & y \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ y & 0 & x \\ 0 & 0 & 0 \end{pmatrix} \text{ and } \beta = id_{\mathcal{N}}.$$

It is clear that \mathcal{N} is a 2-torsion free non 3-prime near-ring and I is a nonzero semigroup ideal of \mathcal{N} . Moreover, d is a nonzero (α, β) -derivation of \mathcal{N} satisfying the conditions:

$$[A, B]_{\alpha,\beta}, [d(A), B]_{\alpha,\beta}, (A \circ B)_{\alpha,\beta}, (d(A) \circ B)_{\alpha,\beta} \in Z(\mathcal{N})$$
 for all $A, B \in I$,

but \mathcal{N} is not a commutative ring.

4 Commutativity conditions and generalized (α, β) -derivations

In this section, \mathcal{N} is assumed to be a zero symmetric near-ring and $\alpha, \beta : \mathcal{N} \to \mathcal{N}$ are automorphisms.

The next theorem is a generalization of [7, Theorem 3.1].

Theorem 3. Let \mathcal{N} be a 3-prime near-ring and I is a nonzero semigroup ideal. If \mathcal{N} admits a generalized (α, β) -derivation F associated with a nonzero (α, β) -derivation d such that $F([x, y]) = [d(x), \beta(y)]$ for all $x, y \in I$, then \mathcal{N} is a commutative ring.

Proof. Assume that

$$F([x,y]) = [d(x), \beta(y)] \quad \text{for all } x, y \in I.$$

Replacing y by yx in (9), we get

$$[d(x), \beta(yx)] = F([x, yx]) = F([x, y]x) \quad \text{for all } x, y \in I.$$

Moreover, since $[d(x), \beta(x)] = 0$ for all $x \in I$. So

$$[d(x), \beta(yx)] = [d(x), \beta(y)]\beta(x) = F([x, y])\beta(x) \quad \text{for all } x, y \in I.$$
 (11)

From (10) and (11), we get

$$F([x,y]x) = F([x,y])\beta(x) = F([x,y])\beta(x) + \alpha([x,y])d(x), \quad \text{for all } x,y \in I.$$

So $\alpha([x,y])d(x)=0$ for all $x,y\in I$. But α is an automorphism, so

$$([x,y])\alpha^{-1}(d(x)) = 0 \text{ for all } x, y \in I.$$
 (12)

Substituting zy for y in (12), where $z \in \mathcal{N}$, and use it to get

So $[x,z]I\alpha^{-1}(d(x))=0$ for all $x\in I, z\in \mathcal{N}$. It follows that

$$x \in Z(\mathcal{N}) \text{ or } d(x) = 0 \text{ for all } x \in I.$$
 (13)

Suppose there is $x_0 \in I$ such that $x_0 \in I \cap Z(\mathcal{N})$, then from (9), it is clear that $0 = F([x_0, y]) = [d(x_0), \beta(y)]$ for all $y \in I$. So $d(x_0)\beta(y) = \beta(y)d(x_0)$ for all $y \in I$. Since β is an automorphism, then $d(x_0)y = yd(x_0)$ for all $y \in I$ which implies that $d(x_0)$ centralizes I and $d(x_0) \in Z(\mathcal{N})$ by Lemma 1(iii). According to (13), we conclude that $d(I) \subseteq Z(\mathcal{N})$, and hence \mathcal{N} is a commutative ring by application of Lemma 7.

Take F = d in Theorem 3, we obtain the following corollary:

Corollary 1. Let \mathcal{N} be a 3-prime near-ring and I is a nonzero semigroup ideal. If \mathcal{N} admits a nonzero (α, β) -derivation d such that $d([x, y]) = [d(x), \beta(y)]$ for all $x, y \in I$, then \mathcal{N} is a commutative ring.

If we put $\beta = id_{\mathcal{N}}, F = d$ in Theorem 3, we obtain the following result:

Corollary 2. Let \mathcal{N} be a 3-prime near-ring and I is a nonzero semigroup ideal. If \mathcal{N} admits a nonzero $(\alpha, 1)$ -derivation d, such that d([x, y]) = [d(x), y] for all $x, y \in I$, then \mathcal{N} is a commutative ring.

Note that if we take $\alpha = \beta = id_{\mathcal{N}}$ in Theorem 3, we get [7, Theorem 4.1]. The next theorem is a generalization of [7, Theorem 3.2].

Theorem 4. Let \mathcal{N} be a 3-prime near-ring and I is a nonzero semigroup ideal. If \mathcal{N} admits a generalized (α, β) -derivation F associated with a nonzero (α, β) -derivation d such that $d([x, y]) = [F(x), \beta(y)]$ for all $x, y \in I$, then \mathcal{N} is a commutative ring.

Proof. As in the proof of Theorem 3, we get $[x, z]I\alpha^{-1}(d(x)) = 0$ for all $x \in I$ and $z \in \mathcal{N}$. Therefore

$$x \in Z(\mathcal{N}) \text{ or } d(x) = 0 \text{ for all } x \in I.$$
 (14)

Suppose there exists $x_0 \in I \cap Z(\mathcal{N})$, then $F(x_0) \in Z(\mathcal{N})$ and $F(x_0^2) \in Z(\mathcal{N})$. So $F(x_0^2) = F(x_0)\beta(x_0) + \alpha(x_0)d(x_0) \in Z(\mathcal{N})$. But $\alpha(x_0), \beta(x_0)$ and $F(x_0)$ are in $Z(\mathcal{N})$ for all $x \in I \cap Z(\mathcal{N})$. Thus by lemmas 8 and 9, we get $\alpha(x_0)d(x_0) \in Z(\mathcal{N})$. By Lemma 1 (ii), we obtain either $\alpha(x_0) = 0$ or $d(x_0) \in Z(\mathcal{N})$. Since α is an automorphism, then (14) becomes $d(x) \in Z(\mathcal{N})$ for all $x \in I$. So $d(I) \subseteq Z(\mathcal{N})$ and \mathcal{N} is a commutative ring by Lemma 7.

Not that if we take $\alpha = \beta = id_{\mathcal{N}}$ in Theorem (4), we obtain [7, Theorem 4.2]. We now concentrate practically equivalent to conditions including anticommutators $x \circ y$. Our next theorem is a generalization of [7, Theorem 3.3].

Theorem 5. Let \mathcal{N} be a 2-torsion free 3-prime near-ring and I a nonzero semigroup ideal. Then \mathcal{N} admits no generalized (α, β) -derivation F with associated an (α, β) -derivation d such that $d(Z(\mathcal{N})) \neq \{0\}$ and $d(x \circ y) = F(x) \circ \beta(y)$ for all $x, y \in I$.

Proof. Assume that

$$d(x \circ y) = F(x) \circ \beta(y) \quad \text{for all } x, y \in I.$$
 (15)

Let $z \in Z(\mathcal{N})$ such that $d(z) \neq 0$. Replace y by zy in (15), so we obtain

$$(F(x) \circ \beta(y))\beta(z) = d((x \circ y)z) \quad \text{for all } x, y \in I.$$
 (16)

So we get

$$d(x \circ y)\beta(z) = d((x \circ y)z)$$

= $d(x \circ y)\beta(z) + \alpha(x \circ y)d(z)$ for all $x, y \in I$

So that $\alpha(x \circ y)d(z) = 0$ for all $x, y \in I$. But $d(z) \in Z(\mathcal{N}) - \{0\}$, then $\alpha(x \circ y) = 0$ for all $x, y \in I$ i.e $x \circ y = 0$ for all $x, y \in I$, so with tensionless this contradicts with [7, Lemma 2.8].

The following theorem is a generalization of [7, Theorem 3.5].

Theorem 6. Let \mathcal{N} be a 2-torsion free 3-prime near-ring and I a nonzero semigroup ideal. Then there exists no generalized (α, β) -derivation F with associated nonzero (α, β) -derivation d such that $[d(x), \beta(x)] = 0$ and $d(x) \circ \beta(y) = F(x \circ y)$ for all $x, y \in I$.

Proof. Assume that

$$[d(x), \beta(x)] = 0 \text{ and } d(x) \circ \beta(y) = F(x \circ y) \text{ for all } x, y \in I.$$
 (17)

Replacing y by yx in (17), we get

$$d(x) \circ \beta(yx) = F((x \circ y)x) \quad \text{for all } x, y \in I.$$
 (18)

Since $F((x \circ y)x) = F((x \circ y))\beta(x) + \alpha((x \circ y))d(x)$ for all $x, y \in I$. So (17) and (18) yields

$$\begin{aligned} d(x) \circ \beta(yx) &= (d(x) \circ \beta(y))\beta(x) \\ &= (d(x) \circ \beta(y))\beta(x) + \alpha((x \circ y))d(x) \end{aligned}$$

Which reduces to

$$xy\alpha^{-1}(d(x)) = -yx\alpha^{-1}(d(x)) \quad \text{for all } x, y \in I.$$
 (19)

Replacing y by zy in (19), where $z \in \mathcal{N}$, and use it to get

$$-xzy\alpha^{-1}(d(x)) = zyx\alpha^{-1}(d(x))$$
$$= z(-xy\alpha^{-1}(d(x)))$$
$$= z(-x)y\alpha^{-1}(d(x)) \text{ for all } x, y \in I, z \in \mathcal{N}$$

which implies that

$$[-x, z]I\alpha^{-1}(d(x)) = \{0\}$$
 for all $x \in I, z \in \mathcal{N}$.

It follows that

$$-x \in Z(\mathcal{N}) \text{ or } d(x) = 0 \text{ for all } x \in I.$$
 (20)

Suppose there exists $x_0 \in I$ such that $-x_0 \in Z(\mathcal{N})$. Using our hypothesis, we obtain $d(x_0) \circ \beta(x_0^2) = F((x_0 \circ x_0)x_0)$ which implies that

$$(d(x_0) \circ \beta(x_0))\beta(x_0) = F(x_0 \circ x_0)\beta(x_0) + \alpha(x_0 \circ x_0)d(x_0).$$

Using (17) it is easy to get $\alpha(x_0 \circ x_0)d(x_0)$. By 2-torsion freeness together with the fact that α is an automorphism of \mathcal{N} , we can conclude that $x_0^2\alpha^{-1}(d(x_0))=0$. Since $-x_0 \in Z(\mathcal{N})$, it is clear that $(-x_0)^2=x_0^2$ it follows that $(-x_0)^2\alpha^{-1}(d(x_0))=0$, so $(-x_0)\mathcal{N}(-x_0)\mathcal{N}\alpha^{-1}(d(x_0))=\{0\}$. By 3-primeness of \mathcal{N} , it is obvious that $\alpha^{-1}(d(x_0))=0$ and therefore $d(x_0)=0$. In all cases d(x)=0 for all $x\in I$ which is a contradiction with our assumption.

The following example shows that the 3-primeness hypothesis in Theorems 3–6 cannot be discarded.

Example 4. Let S be a 2-torsion free zero-symmetric near-ring which is not abelian. Let us defined \mathcal{N}, I and $d, F, \alpha, \beta : \mathcal{N} \to \mathcal{N}$ by:

$$\mathcal{N} = \left\{ \begin{pmatrix} 0 & x & 0 \\ 0 & 0 & 0 \\ 0 & y & 0 \end{pmatrix} \middle| x, y \in S \right\}, \quad I = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & y & 0 \end{pmatrix} \middle| y \in S \right\},$$

$$F = d, \quad d \begin{pmatrix} 0 & x & 0 \\ 0 & 0 & 0 \\ 0 & y & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & y & 0 \end{pmatrix},$$

$$\alpha = id_{\mathcal{N}} \quad \text{and} \quad \beta \begin{pmatrix} 0 & x & 0 \\ 0 & 0 & 0 \\ 0 & y & 0 \end{pmatrix} = \begin{pmatrix} 0 & y & 0 \\ 0 & 0 & 0 \\ 0 & x & 0 \end{pmatrix}.$$

It is clear that \mathcal{N} is a 2-torsion free non 3-prime near-ring, I a nonzero semigroup ideal of \mathcal{N} and F is a generalized (α, β) -derivation associated with a nonzero (α, β) -derivation d such that:

$$F([A, B]) = [d(A), \beta(B)], \quad d([A, B]) = [F(A), \beta(B)], \quad [d(A), \beta(A)] = 0,$$

 $F(A \circ B) = d(A) \circ \beta(B), \quad d(A \circ B) = F(A) \circ \beta(B),$

for all $A, B \in I$, but \mathcal{N} is not a commutative ring.

References

 A. Y. Abdelwanis: Applications of two-sided α-generalized derivations to 3-prime near rings. Comm. Algebra 45 (11) (2017) 4631–4645.

- [2] M. Ashraf and S. Ali: On (σ, τ) -derivations of prime near-rings II. Sarajevo J. Math. 4 (16) (2008) 23–30.
- [3] M. Ashraf, A. Ali and S. Ali: (σ, τ) -derivations on prime near-rings. Arch. Math. (Brno) 40 (3) (2004) 281–286.
- [4] M. Ashraf and A. Shakir: On (σ, τ) -derivations of prime near-rings. In: Trends in Theory of Rings and Modules, Anamaya Publishers, New Delhi (2005) 5–10.
- [5] M. Ashraf and M. A. Siddeeque: On (σ, τ) -n-derivations in near-rings. Asian–Eur. J. Math. 6 (4) (2013) 1350051, 14 pp.
- [6] H. E. Bell: On derivations in near-rings II. In: Nearrings, Nearfields and K-Loops, Mathematics and its Applications 426, Kluwer Academic Publishers, Dordrecht (2013) 191–197.
- [7] H. E. Bell, A. Boua and L. Oukhtite: Semigroup ideals and commutativity in 3-prime near-rings. Comm. Algebra 43 (5) (2015) 1757-1770.
- [8] Ö. Gölbaşi: Notes on prime near-rings with generalized derivation. Southeast Asian Bull. Math. 30 (1) (2006) 49–54.
- [9] Ö. Gölbaşi and N. Aydin: On near-ring ideals with (σ, τ) -derivation. Arch. Math. (Brno) 43 (2) (2007) 87–92.
- [10] S. Huang and Ö. Gölbaşi: Notes on prime near-rings with generalized (σ, τ) -derivations. Southeast Asian Bull. Math. 36 (3) (2012) 353–361.

Received: April 23, 2019

Accepted for publication: May 14, 2019 Communicated by: Eric Swartz