


Modern ICT/Automation Approaches for Smart Grids and Industrial Environments

Thomas I. Strasser 👨

Center for Energy – Electric Energy Systems AIT Austrian Institute of Technology, Vienna, Austria

LAMBDA Summer School – SINERGY Session, June 15-16, 2021, online

Content

- > Background and Motivation
- > From Passive to Active Power Grids
- > Smart Grid ICT and Automation
- > Selexted Examples

Background and Motivation

> Challenges and drivers

- Climate change
- Deep decarbonisation
- Energy transition

- Industrial competitiveness
- Business Innovation
- Digitalisation

- Urban Transformation
- Infrastructure needs
- Societal changes

Background and Motivation

Global policy

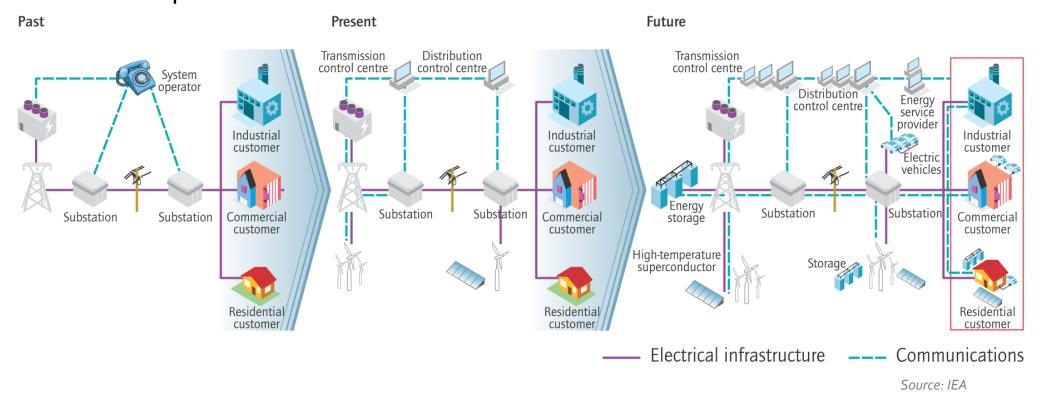
- > Paris Agreement (COP21): long-term, limit temperature increase to 1.5°C
- > UN Sustainable Development Goals: pathway for future research and innovation activities
- > Mission Innovation: global initiative to accelerate clean energy innovation


> Europe policy

- > European Green Deal: climate-neutrality by 2050
- > EC Roadmap Low-Carbon Economy 2050: EU GHG emissions towards an 80% domestic reduction
- > EC Hydrogen Strategy and Sector Integration: renewable hydrogen electrolysers

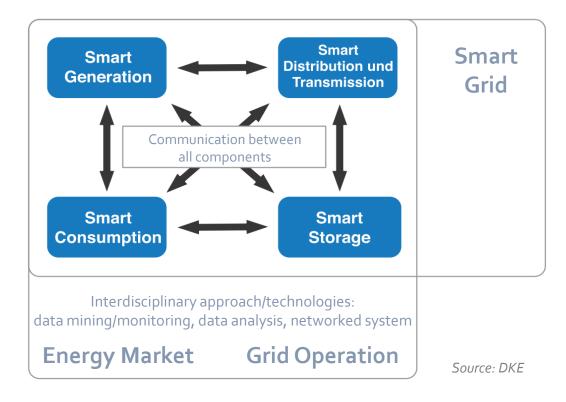
Background and Motivation

- > Planning and operation of the energy infrastructure becomes more complex
 - Large-scale integration of renewable sources (PV, wind, etc.)
 - Controllable loads (batteries, electric vehicles, heat pumps, etc.)
- > Trends and future directions
 - › Digitalisation of power grids
 - Deeper involvement of consumers and market interaction
 - Linking electricity, gas, and heat grids for higher flexibility and resilience



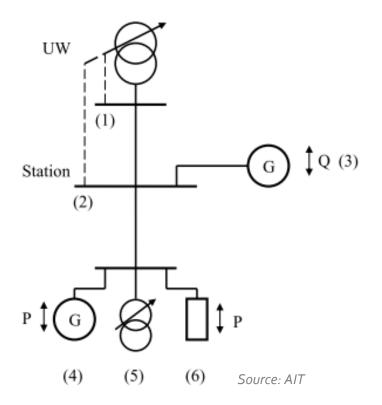
This project has received funding from the H2020

programme of the European Union under GA No. 952140



> Historical development and future trends

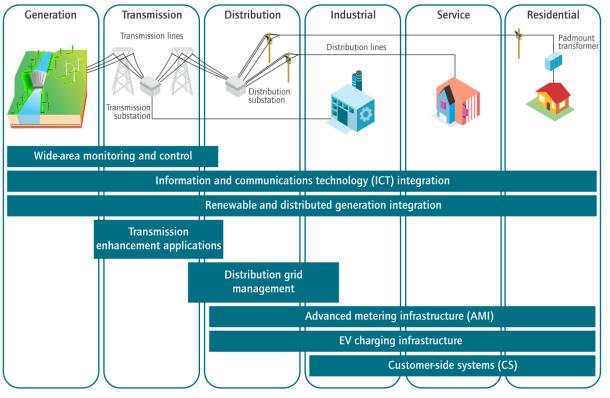
- > Interaction between different players
 - Information exchange
 - Integration of different players/devices
 - Interaction between different players/devices



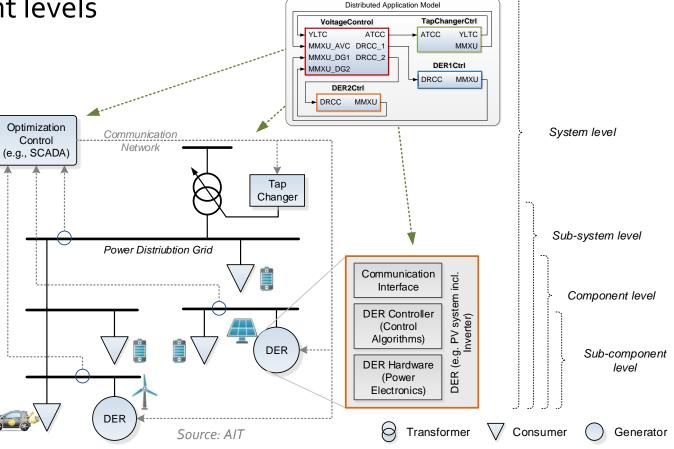
- > Smart grids on different levels
 - > Transmission system (e.g., Trans-European demand/supply matching)
 - → Super Grids (offshore wind farms in northern Europe hydro storages in the Alps large scale solar/PV systems in southern Europe/Africa)
 - > Medium Voltage (MV)/Low Voltage (LV) distribution system
 - → Smart Grids (active distribution grids, integration of distributed generators and storage systems)
 - > Local energy system (e.g., for buildings or small areas; low voltage systems)
 - → Micro Grids (islanding, grid-connected)

- > What can be influenced in smart power distribution grids?
 - > On-load Tap Changer (OLTC) (1,2)
 - Generators (3,4)
 - Adjustable transformers (low voltage) (5)
 - > Demand Side Management (DSM) (6)

> Automation functions of smart grids


Function	Description
Self-healing	Automatic restoration of grid operation in case of faults/errors
Self-optimization	Ability to optimize the grid operation due to fluctuating renewables
Self-monitoring and diagnostics	Advanced monitoring and state estimation capability
Condition dependent maintenance	Preventive maintenance using component condition and life-time
Automatic grid (topology) reconfiguration	Automatic adjustment of the grid topology for grid optimization
Adaptive protection	Automatic adaption of protection equip. settings due to grid condition
Demand response support	Advanced energy management using distributed generation and controllable loads
Distributed management	Distributed control with automatic decision finding process and
Distributed generators with ancillary services	Possibility to use ancillary services (e.g., voltage/frequency control)
Advanced forecasting support	Forecasting of generation and load profiles for grid optimization

- > Necessary technologies
 - Internet of Energy
 - > Energy grids/infrastructure + ICT Network
 - > Bi-directional energy and communication flow
 - > Operation of Smart Grids requires innovative ICT technologies
 - Advanced automation concepts and algorithms
 - Advanced communication concepts
 - > Intelligent grid components (inverters, controllers, meters, etc.)
 - > Interoperability of systems and components (most important requirement!!!)


> Technology areas

Source: IEA

- > Intelligence on different levels
 - System
 - > Sub-system
 - Component
 - > Sub-component

> Important ICT-based standards (IEC view)

IEC 62357

- Reference Architecture SOA
- Energy Management Systems, Distribution Management Systems

IEC 61970/ IEC 61968

- CIM (Common Information Model)
- EMS, DMS, DA, SA, DER, AMI, DR, E-Storage

IEC 61850

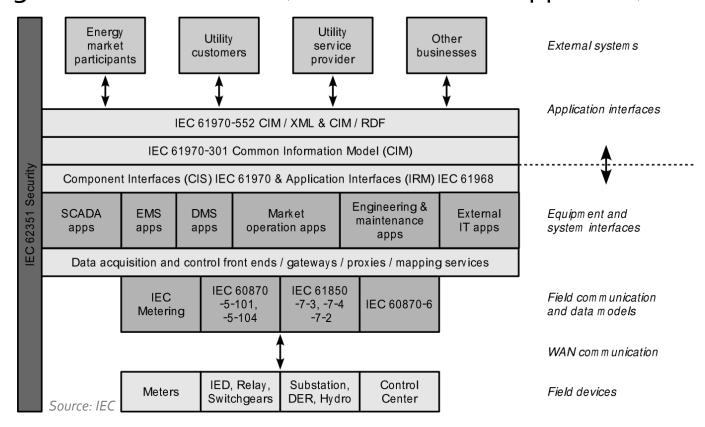
- Substation Automation, Power Utility Automation
- EMS, DMS, DA, SA, DER, AMI

IEC 62351

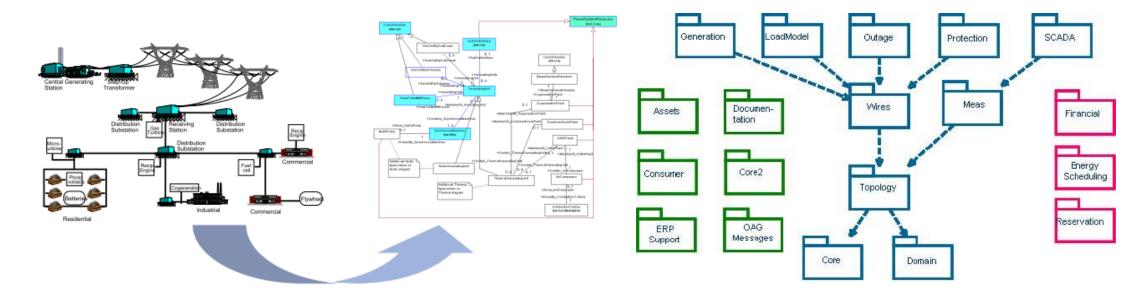
Security

IEC 62056

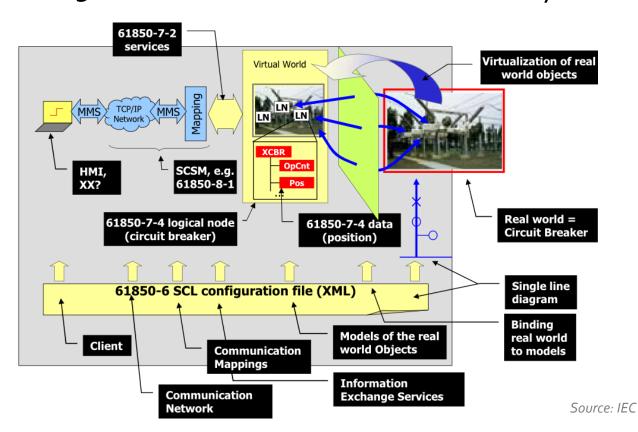
• Data exchange for meter reading, tariff and load control

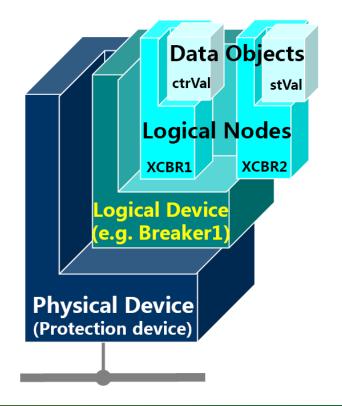

IEC 61508

 Functional safety of electrical/electronic/programmable electronic safety-related systems

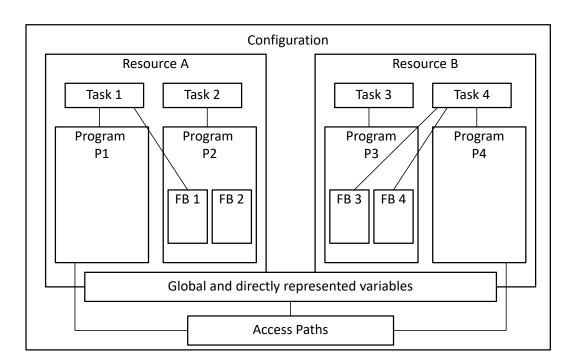


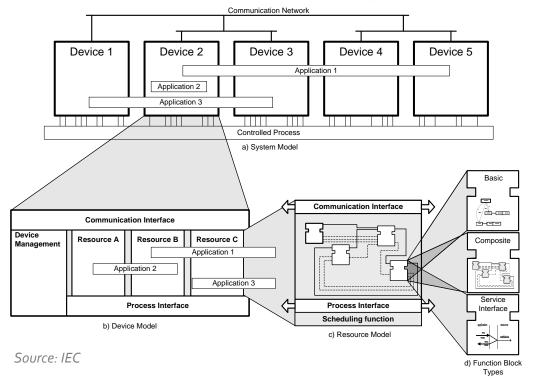
> IEC seamless integration architecture (service-oriented approach)




- > IEC 61970/61968 Common Information Model (CIM)
 - > Object-oriented information model of the power system
 - > Kind of domain ontology

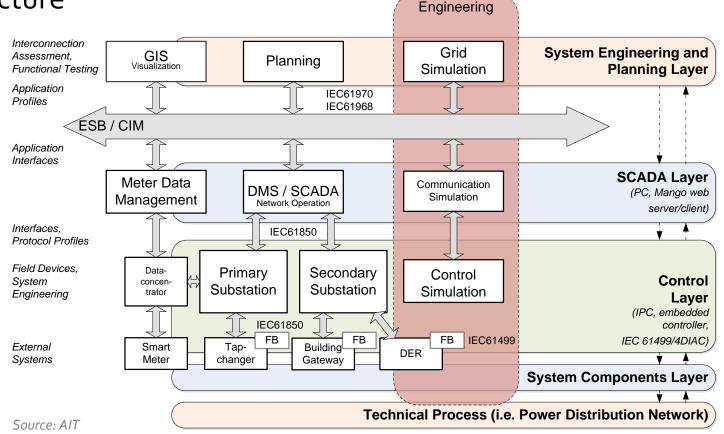
> IEC 61850 - communication networks and systems for power utility automation



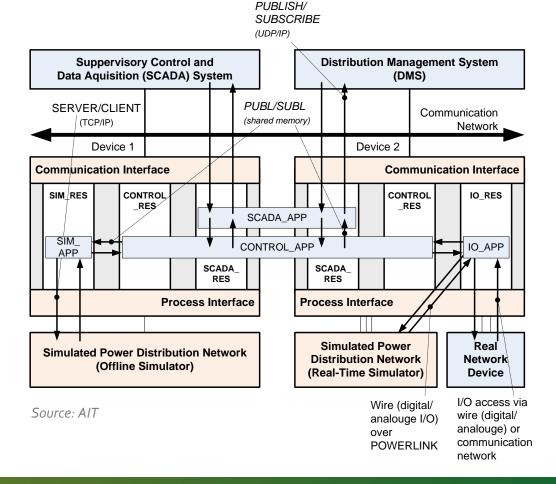


> IEC 61131 and IEC 61499 – implementation of control code

IEC 61131 Programable Logic Controller (PLC)

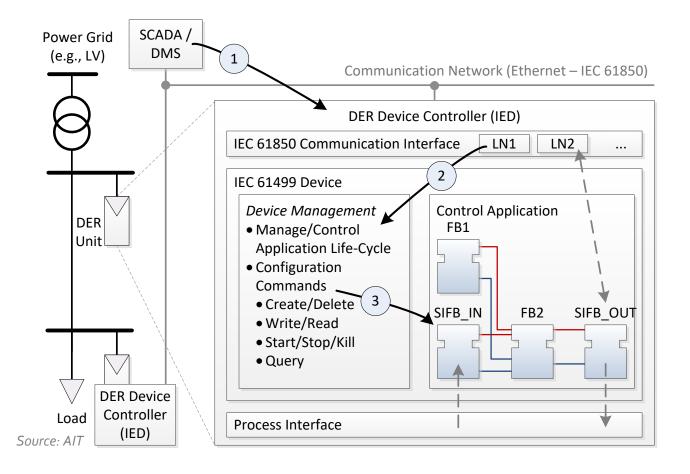

IEC 61499 Distributed Control System (DCS)

18



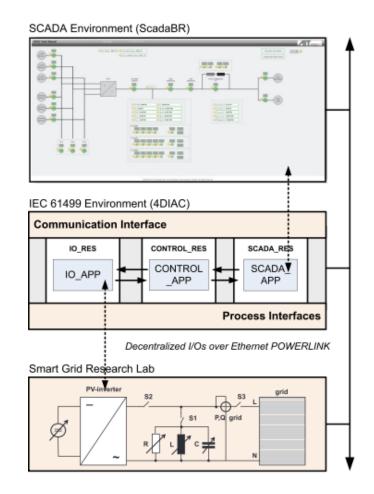
- > ICT-based integration architecture
 - > IEC standard-compliant
 - Virtual environment+ real devices

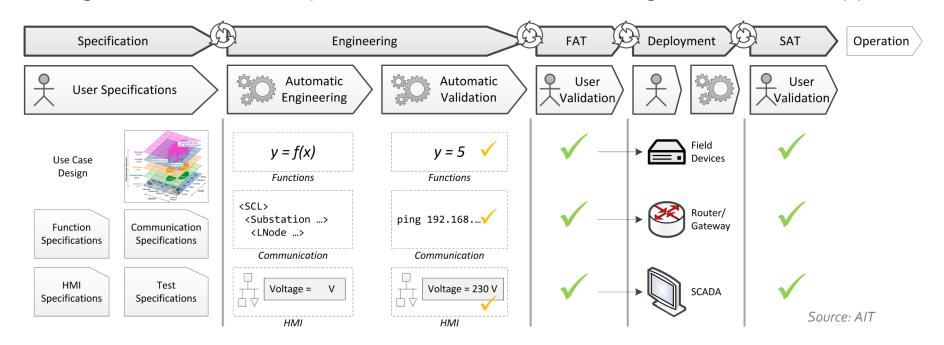
- > ICT-based integration architecture
 - > IEC 61850/IEC 61499 system architecture and generic communication interfaces
 - Multiple systems (SCADA/DMS, controllers, simulators)
 - Independent applications (control application(s), communication application(s))



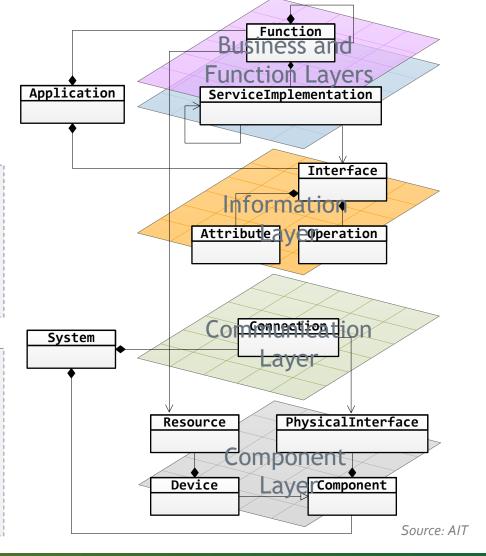
This project has received funding from the H2020

programme of the European Union under GA No. 952140


- > DER device controller
 - > IEC 61850 communication interface
 - > IEC 61499 implementation of control algorithms
 - Usage of IEC 61850/IEC 61499 configuration interfaces for on-line adaptation of functions


- > Smart grid lab automation
 - > AIT SmartEST laboratory

- > Engineering and validation support system
 - Model-based framework
 - > Supports engineers in the development and validation of smart grid automation applications



- > Engineering and validation support system
 - Main element:
 Power System
 Automation
 Language (PSAL)
 - Domain-specific Language (DSL) mainly based on CIM, IEC 61850 and IEC 61499

```
application VoltageControl {
  function VoltVArCtrl at DSOComputer.VoltVAr {
    requests Field.Controls fieldControls
  }
  module Field {
    interface Controls {
      attribute float32 activePowerSetpoint
}}
```

```
system DistributionSystem {
  device DSOComputer {
    ethernet eth0 {ip = "10.0.0.1"}
    resource VoltVAr
  }
  router StationRouter
  generator DER

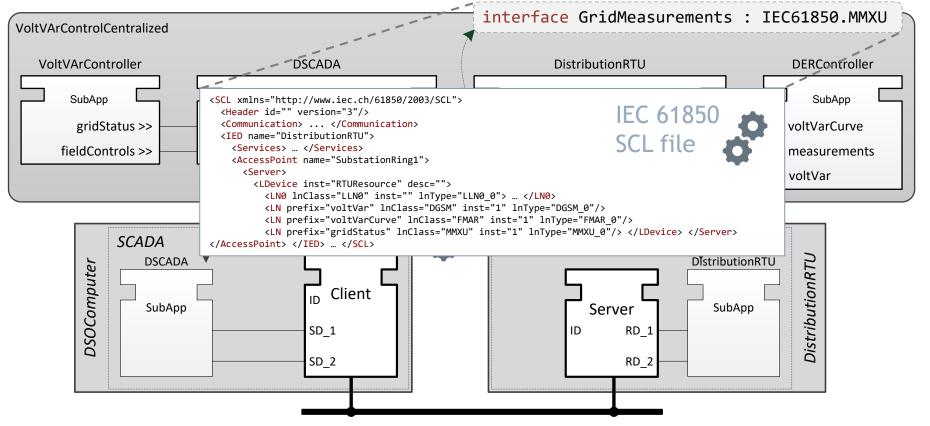
  connect DSOComputer.eth0 with StationRouter
}
```


- > Engineering and validation support system
 - Application example

```
application VoltVArControlCentralized {
  function DERController at DERController.AncillaryServices {
    provides Measurements.GridMeasurements measurements
    requests DERCtrlInterfaces.DERDirectControls derDirectControls
  function VoltVArController {...}
  function DSCADA {...}
  function DistributionRTU {...}
  function DERGenerator {...}
  function TransformerMonitor {...}
  function BusMonitor {...}
  function EndOfLineMonitor {...}
  module Measurements {
    interface GridMeasurement {...}
    eventtype AggregatedMeasurement {...}
  module DERCtrlInterfaces {...}
  connect DERController.derDirectControls
             with DERGenerator.directControls
```

```
DSO Computer
                                   Component
                 Volt-VAr
  D-SCADA
                 Controller
                                        laver
                     Router
Distribution
   RTU
                                      DĖR
         Transformer
                                                End-of-Line
                                    Controller
           Monitor
                     Bus Monitor
                                                  Monitor
         Distribution
                                      DER
                                                Customer
```

Source: AIT


- > Engineering and validation support system
 - System example

```
requests DERCtrlInterfaces.DERDirectControls derDirectControls
system DistributionSystemVV {
                                                                                               function VoltVArController {...}
                                                                                              function DSCADA {...}
  @DER @Field
                                                                                               function DistributionRTU {...}
                                                                                               function DERGenerator {...}
  device DERController {
                                                                                               function TransformerMonitor {...}
     ethernet eth0 {ip = "10.0.0.1"}
                                                                                               unction EndOfLineMonitor {...
    ethernet eth1 {ip = "192.168.0.2"}
                                                                                              module Measurements {
     resource AncillaryServices
                                                                             DSO Computer
                                                                                                         Component
  device DSOComputer {...}
                                                                                        Volt-VAr
                                                                         D-SCADA
  device DistributionRTU {...}
                                                                                        Controller
                                                                                                              laver
   router StationRouter
  device TransformerMonitor {...}
                                                                                            Router
  device BusMonitor {...}
  device EndOfLineMonitor {...}
                                                                       Distribution
  generator ExternalSystem {...}
                                                                           RTU
  busbar MVBus {...} ...
  generator DERGenerator {
                                                                                                             DÉR
                                                                                                                       End-of-Line
                                                                                Transformer
    ethernet eth0 {ip = "192.168.0.1"}
                                                                                                          Controller
                                                                                  Monitor
                                                                                            Bus Monitor
                                                                                                                        Monitor
     terminal LVBus2
     resource DERResource
  connect DERController.eth1 with DERGenerator.eth0
  connect DERGenerator.LVBus2 with LVBus2.DERGenerator
                                                                                 Distribution
                                                                                                            DER
                                                                                                                       Customer
```

function DERController at DERController.AncillaryServices

- > Engineering and validation support system
 - Generation of IEC 61850 specifications
 - Generation of IEC 61499 code fragments

References

- [1] T. Strasser, F. Andren, J. Kathan, C. Cecati, C. Buccella, P Siano, P Leitao, G. Zhabelova, V. Vyatkin, P Vrba, V. Marik: "A Review of Architectures and Concepts for Intelligence in Future Electric Energy Systems"; IEEE Transactions on Industrial Electronics, Volume 62 (2015), Issue 4; 2424 2438.
- [2] F. Andren, R. Bründlinger, T. Strasser: "IEC 61850/61499 Control of Distributed Energy Resources: Concept, Guidelines, and Implementation"; IEEE Transactions on Energy Conversion, Volume 29 (2014), Issue 4; 1008 1017.
- [3] F. Pröstl Andren, T. Strasser, W Kastner: "Engineering Smart Grids: Applying Model-Driven Development from Use Case Design to Deployment"; Energies, 10 (2017).
- [4] T. Strasser, F. Andren, F. Lehfuss, M. Stifter, P. Palensky: "Online Reconfigurable Control Software for IEDs"; IEEE Transactions on Industrial Informatics, Vol. 9, August 2013 (2013), No. 3; 1455 1465.
- [4] M. Faschang, S. Cejka, M. Stefan, A. Frischenschlager, A. Einfalt, K Diwold, F. Pröstl Andren, T. Strasser, F. Kupzog: "Provisioning, deployment, and operation of smart grid applications on substation level: Bringing future smart grid functionality to power distribution grids"; Computer Science Research and Development, Special Issue Paper (2016), 1 14.
- [5] J. Resch, B. Schuiki, S. Schöndorfer, C. Brandauer, G Panholzer, F. Pröstl Andren, T. Strasser: "Engineering and validation support framework for power system automation and control applications"; e & i Elektrotechnik und Informationstechnik, issue 8 (2020), Volume 137; 470 475.

www.erigrid2.eu/lab-access

Privatdoz. DI Dr. Thomas Strasser

Senior Scientist
Center for Energy – Electric Energy Systems

AIT Austrian Institute of Technology GmbH
Giefinggasse 2 | 1210 Vienna | Austria
T +43(0) 50550-6279 | F +43(0) 50550-6390
thomas.strasser@ait.ac.at | http://www.ait.ac.at