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INTRODUCTION.  

Fermat numbers were studied by many authors. We can cite 

J.C. Morehead, M. Mignotte, A.E. Western, G.A. Paxson, 

R.M. Robinson, etc... 

Among them, some had to write about the criteria of 

primality. We have chosen here to give a primality criterion 

of Fermat numbers. 

In section 1, we give some necessary background on 

Legendre’s symbol used to prove our main results. 

In section 2, we present the factorization of X2k +1 (mod 

p). 

In section 3, we present a primality criterion of Fermat 

numbers. 

 

1. Legendre’s symbol. 

Proposition 1.1. We have 

. 

Proof 

Let ζ be primitive root 8th of unity. 

Then, ζ is a root of X4 +1. We 

consider K = Fp , K0   = K(ζ) and τ 

= ζ + ζ−1 ∈ K0. Then 

τ2 = ζ2 + ζ−2 +2 = ζ−2(1+ ζ4)+2 = 2. 

• p ≡ 1 (mod 8), p = 8k+1. We have |K?| = 8k and K? is 

cyclic, then ζ ∈ K and τ ∈ K, then 2 is square. Example : 62 ≡ 

2 (mod 17). 

• p ≡−1 (mod 8), p = 8k −1. Then ζp = ζ8k−1 = ζ−1 ; 

therefore τp = ζp + ζ−p = τ ; thus τ ∈ K and 2 is square. Example 

: 32 ≡ 2 (mod 7). 

• p ≡ 5 (mod 8), p = 8k +5. Then ζp = ζ8k+5 = ζ4ζ−1 = −ζ, 

therefore ζ ∈6 K et 2 isn’t square. 

• p ≡−5 (mod 8), p = 8k −5. Thus ζp = ζ−5 = −ζ−1 ; we 

have τp = −τ and 2 isn’t square. 

 

Proposition 1.2.  We have 

. 

 

2. Factorization of X2k +1 (mod p). 

2.1. Factorization for k = 1 and k = 2 

If −1 ≡ a2, thus X2 +1 = (X + a)(X − a). 

If 2 = b2, X4 +1 = (X2 +1)2 − b2X2 = (X2 − bX +1)(X2 + bX 

+1). 

If −2 = c2, X4 +1 = (X2 −1)2 − c2X2 = (X2 − cX −1)(X2 + cX 

−1). 

2.2. Factorization of X2k +1 

Suppose that p ≡ 1 (mod 2k+1) and let g be a primitive root 

modulo p. 

Thus th of unity. 

This is valid for z2i+1, where i ∈{0,1,2,3,...,2k −1}. 

k 

Therefore. 
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Example : Let take p = 17; p ≡ 1 (mod 16). 

If g is a primitive root modulo p, then  is a 

16th root of unity, as well as z3, z5, z7, z9, z11, z13, z15. 

And X8 +1 ≡Q7
i=0(X − z2i+1) is splitting completely. 

Example, 34 ≡ 64 ≡−4 (mod 17), 38 ≡ 16 ≡−1 (mod 17). 

Thus . 

 

4. Primality criterion of Fermat numbers. 

Let put Pk(X) = X2k + 1. Then Pk(2) = 22k + 1 = Fk allows 

to obtain all Fermat numbers. 

We know that Fk ≡ 1 (mod 2k+1); if Fk is prime, then it 

exists a 2k+1th root of unity z such that Pk(X) splits completely 

mod Fk. 
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