International Journal of Mathematics and Computer Research

Polynomial Factorization and Primality Criterion for Fermat Numbers

Oumar FALL ${ }^{\mathbf{1}}$, Chérif Bachir DEME ${ }^{2}$
${ }^{1}$ Mathematics department, Faculty of Sciences and Technology of Eucation and Training, Cheikh Anta Diop de Dakar University, Senegal
${ }^{2}$ Alioune Diop University of Bambey, Senegal

ARTICLE INFO	ABSTRACT
Published online	Let p be a prime integer and let $k \in \mathrm{~N}$. We purpose a factorization of $X^{2 k}+1(\bmod p)$ allowing ti give
14 February 2022	a primality criterion for Fermat numbers.
Corresponding author:	Mathematics Subject Classification 2010 11A0711 A 51
Oumar FALL	
KEYWORDS: Fermat numbers, Legendre's symbol, polynomials factorization, law of quadratic reciprocity	

INTRODUCTION.

Fermat numbers were studied by many authors. We can cite J.C. Morehead, M. Mignotte, A.E. Western, G.A. Paxson, R.M. Robinson, etc...

Among them, some had to write about the criteria of primality. We have chosen here to give a primality criterion of Fermat numbers.

In section 1, we give some necessary background on Legendre's symbol used to prove our main results.

In section 2, we present the factorization of $X^{2 k}+1(\bmod$ p).

In section 3, we present a primality criterion of Fermat numbers.

1. Legendre's symbol.

Proposition 1.1. We have

$$
\left(\frac{2}{p}\right)=1 \Leftrightarrow p \equiv \pm 1 \quad(\bmod 8)
$$

Proof

Let ζ be primitive root 8 th of unity.
Then, ζ is a root of $X^{4}+1$. We
consider $K=\mathrm{F} p, K 0=K(\zeta)$ and τ
$=\zeta+\zeta^{-1} \in K^{0}$. Then
$\tau^{2}=\zeta^{2}+\zeta^{2}+2=\zeta^{-2}\left(1+\zeta^{4}\right)+2=2$.

- $\quad p \equiv 1(\bmod 8), p=8 k+1$. We have $\left|K^{?}\right|=8 k$ and $K^{?}$ is cyclic, then $\zeta \in K$ and $\tau \in K$, then 2 is square. Example : $6^{2} \equiv$ $2(\bmod 17)$.
- $\quad p \equiv-1(\bmod 8), p=8 k-1$. Then $\zeta^{p}=\zeta^{8 k-1}=\zeta^{-1} ;$ therefore $\tau^{p}=\zeta^{p}+\zeta^{p}=\tau$; thus $\tau \in K$ and 2 is square. Example $: 3^{2} \equiv 2(\bmod 7)$.
- $\quad p \equiv 5(\bmod 8), p=8 k+5$. Then $\zeta^{p}=\zeta^{k+5}=\zeta^{4} \zeta^{-1}=-\zeta$, therefore $\zeta \in 6 K$ et 2 isn't square.
- $p \equiv-5(\bmod 8), p=8 k-5$. Thus $\zeta^{p}=\zeta^{-5}=-\zeta^{-1}$; we have $\tau^{p}=-\tau$ and 2 isn't square.

Proposition 1.2. We have

- $\left(\frac{-2}{p}\right)=1 \Leftrightarrow p \equiv \pm 1(\bmod 8)$.
- $\left(\frac{-1}{p}\right)=1 \Leftrightarrow p \equiv 1(\bmod 4)$.

2. Factorization of $X^{\mathbf{2 k}}+\mathbf{1}(\bmod p)$.
2.1. Factorization for $k=1$ and $k=2$

If $-1 \equiv a^{2}$, thus $X^{2}+1=(X+a)(X-a)$.
If $2=b^{2}, X^{4}+1=\left(X^{2}+1\right)^{2}-b^{2} X^{2}=\left(X^{2}-b X+1\right)\left(X^{2}+b X\right.$ $+1)$.
If $-2=c^{2}, X^{4}+1=\left(X^{2}-1\right)^{2}-c^{2} X^{2}=\left(X^{2}-c X-1\right)\left(X^{2}+c X\right.$ $-1)$.
2.2. Factorization of $X^{2 k}+1$

Suppose that $p \equiv 1\left(\bmod 2^{k+1}\right)$ and let g be a primitive root modulo p.
Thus $z=g^{\frac{(p-1)}{2^{k+1}}}$ is a 2^{k+1} th of unity.
This is valid for $z^{2 i+1}$, where $i \in\left\{0,1,2,3, \ldots, 2^{k}-1\right\}$.
$X^{2^{k}}+1 \equiv \prod_{i=0}^{2-1}\left(X-z^{2 i+1}\right)(\bmod p)^{k}$
Therefore.

Example : Let take $p=17 ; p \equiv 1(\bmod 16)$.
If g is a primitive root modulo p, then $z=g^{\frac{(p-1)}{16}}$ is a 16th root of unity, as well as $z^{3}, z 5, z 7, z 9, z 11, z 13, z 15$.

And $X^{8}+1 \equiv{ }^{\mathrm{Q} 7}{ }_{i=0}\left(X-z^{2 i+1}\right)$ is splitting completely.
Example, $3^{4} \equiv 64 \equiv-4(\bmod 17), 3^{8} \equiv 16 \equiv-1(\bmod 17)$.
Thus $X^{8}+1=\prod_{i=0}^{7}\left(X-3^{2 i+1}\right)(\bmod 17)$.

4. Primality criterion of Fermat numbers.

Let put $P_{k}(X)=X^{2 k}+1$. Then $P_{k}(2)=2^{2 k}+1=F_{k}$ allows to obtain all Fermat numbers.

We know that $F_{k} \equiv 1\left(\bmod 2^{k+1}\right)$; if F_{k} is prime, then it exists a 2^{k+1} th root of unity z such that $P_{k}(X)$ splits completely $\bmod F_{k}$.

REFERENCES

1. J.C. Morehead, Note on Fermat's numbers, Bull. Amer. Math. Soc.,v. 11, 1905, p. 543-545.
2. M. Mignotte, Mathematics for Computer Algebra, Springer-Verlag, New York, Inc, 1992.
3. J.C. Morehead and A.E. Western, Note on Fermat's numbers, Bull. Amer. Math. Soc. 16 (1909), $n^{\circ} 1,1-6$.
4. G.A. Paxson, The compositeness of the thirteenth Fermat number, Math. Comp. 15 (1961), 420.
5. R.M. Robinson, Mersenne and Fermat numbers, Proc. Amer. Math. Soc. 5 (1954), 842-846.
6. S. Roman, Coding and Information theory; Irvine, Springer-Verlag, New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest, 1991.
