Synthesis and Biological Studies of some 2-Amino-3-cyano-4-aryl-6-(2'-hydroxy-4'-n-butoxy-5'-H/nitrophenyl)pyridines[†]

M. D. ANKHIWALA

Department of Chemistry, R. R. Mehta College of Science, Palanpur-385 002

Manuscript received 30 July 1991, revised 17 February 1992, accepted 5 March 1992

exhibit Cyanopyridines various biological activities1. With a view to studying their biological activity, some new cyanopyridines (2) were 2'-Hydroxy-4'-n-butoxychalcones (1) synthesised. and malononitrile were reacted (1: 1 molar ratio) in presence of ammonium acetate to give 2-amino-3cyano-4,6-disubstituted-pyridines (2) through Michael reaction² with the elimination of water and hydrogen (Scheme 1). Previously reported chalcones were prepared³ from 2-hydroxy-4-n-butoxy-5-nitroacetophenone or 2-hydroxy-4-n-butoxyacetophenone and various araldehydes. The structure of the compounds have been supported by elemental analysis, ir and nmr spectral studies.

The compounds (2a—l) were screened for antibacterial activity at a concentration of 50 μ g ml⁻¹ in

DMF by cup-plate method against gram-positive bacteria Staphylococcus aureus and gram-negative bacteria Escherichia coli and were compared with chloromycetin and penicillin G. Most of the compounds were found less active or inactive against both the bacteria.

Experimental

All the melting points were determined in open capillaries and are uncorrected. The ir spectra of the compounds were recorded on a Perkin-Elmer 577 spectrophotometer and pmr spectra (CDCl_s: TMS as internal standard) on a XL-100A (100.1 MHz) spectrometer.

TABLE 1—PHYSICAL DATA OF COMPOUNDS (2)*					
Compd.	R	X	Mol. formula	M.p. °C	Yield %
2a b c d e f g h i j k l	Phenyl 2'-Bromophenyl 4'-Chlorophenyl 2',4'-Dichlorophenyl 2'-Methoxyphenyl 3',4'-Dimethoxyphenyl 4'-Methylphenyl 3',4-Methylenedioxyphenyl 4'-N-Dimethylaminophenyl 4'-N-Chlorophenyl 2'-Chlorophenyl 3',4',5'-Trimethoxyphenyl	NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 H H	$\begin{array}{c} C_{22}H_{20}O_4N_4 \\ C_{22}H_{10}O_4N_4Br \\ C_{22}H_{10}O_4N_4Cl \\ C_{22}H_{16}O_4Cl_2 \\ C_{22}H_{22}O_5N_4 \\ C_{24}H_{22}O_4N_4 \\ C_{23}H_{22}O_4N_4 \\ C_{23}H_{20}O_2N_4 \\ C_{24}H_{24}O_4N_5 \\ C_{24}H_{25}O_4N_5 \\ C_{22}H_{20}O_2N_3Br \\ C_{22}H_{20}O_2N_3Br \\ C_{25}H_{27}O_5N_3 \end{array}$	165 190 200 227 170 178 205 168 185 205 195	35 45 46 50 30 37 42 40 35 38 40 33
*]	Elemental analyses found satisfact	ory.			

$$\begin{array}{c} OH & 0 \\ CH & CH \\ CH-R & + CH_2(CN)_2 \\ (1) & CH_3COONH_4 \\ 100^{\circ}, 8-10 \text{ h} \\ OH & NH_2 \\ N-C_4H_9O & X \\ (2) & X=NO_2/H, R=Aryl \end{array}$$

2-Amino-3-cyano-4,6-disubstituted pyridines (2): A mixture of chalcone (0.1 mol), malononitrile (0.1 mol) and ammonium acetate (0.8 mol) was refluxed in ethanol (30 ml) for 8—10 h on a water-bath. The cooled contents were then poured on ice with constant stirring and the resulting yellow solid was

Scheme 1

washed with water and the residue was crystallised from ethanol (Table 1): v_{max} 3 300—3 462 (NH₂), 3 450—3 560 (OH) and 2 220—2 225 cm⁻¹ (C \equiv N), δ 7.1—7.4 (ArH of pyridine nucleus), 7.2—7.8 (br s, NH₂) and 4.8—5.2 (s, OH).

Acknowledgement

The author is grateful to the authority of R. R. Mehta College of Science for facilities.

References

- 1. V. Scott and E. Joseph, Jap. Pat. 7 998 338/1979 (Chem. Abstr., 1980, 92, 82428); J. J. Baldwin, E. L. Engelhardt, R. Hirschmann, G. S. Ponticello, J. G. Atkinson, B. K. Wasson, S. S. Sweet and A. Scriabine, J. Med. Chem., 1980, 23, 65; C. M. Carson, R. J. Ehr and R. B. Rogers. Chem. Abstr., 1980, 92, 6537; N. Latif, N. Mishriky and N. S. Girgis, Indian J. Chem., Sect. B, 1981, 20, 147; H. H. Moussa and L. M. Chabaka, Egypt. J. Chem., 1983, 26, 267; D. E. Mcclure, J. J. Badwin, W. C. Randall, T. F. Lyon, K. Mensler, G. F. Lundell, A. W. Raab, D. Gross and E. A. Risley, J. Med. Chem., 1983, 26, 649; H. Takahata, T. Nakajima and T. Yamazaki, Chem. Pharm. Bull., 1984, 32, 1958.
- A. SAKURAI and H. MIDORIKAWA, Bull. Chem. Soc. Jpn., 1968, 41, 430.
- M. D. ANKHIWALA and H. B. NAIK, J. Indian Chem. Soc., 1989, 66, 482.
- F. KAVANAGH, "Analytical Microbiology", Academic, New York, 1963, p. 125.