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Abstract

In the framework of discrete-time switching systems, we analyze and compare various stability
certificates relying on graph constructions. To this aim, we define several abstract expansions of
graphs (so-called lifts), which depend on the chosen family of candidate Lyapunov functions (the
template). We show that the validity of a given lift is linked with the analytical properties of the
template. This allows us to generate new lifts, and as a by-product, to obtain comparison crite-
ria that go beyond the concept of simulation recently introduced in the literature. We apply our
constructions to the case of copositive linear norms for positive switching systems, leading to novel
stability criteria that outperform the state of the art. We provide further results relying on convex
duality and we demonstrate via numerical examples how the comparison among different stability
criteria is affected by the properties of the copositive norms template.

Keywords: path-complete methods, switching systems, positive systems

1 Introduction

In this paper, we study discrete-time switching systems that evolve according to the following rule:

x(k + 1) = fσ(k)(x(k)), (1)

where the state x(k) ∈ Rn, and the mode σ(k) ∈ 〈M〉 := {1, . . . ,M} for an integer M . These systems
are commonly used to model various engineering/physical phenomena, in which the state is possibly
driven by several dynamic laws.

One of the major issues that researchers have tackled is the stability analysis of switching systems.
The most popular approach to assess the stability is by searching for a common Lyapunov function,
that is, a positive definite function that decreases along any trajectory of the system. Even though the
existence of such a function is a sufficient and necessary condition for stability (see for example [1] and
[2] for the non-linear case), it is not clear how to compute such a function in practice, see the discussion
provided, for example, in [3]. Multiple Lyapunov functions, as defined for example in [4], [5] and [6],
appear as a promising alternative to the common Lyapunov function method. Indeed, this approach
consists in looking for a set of Lyapunov functions (instead of one) whose joint behaviour guarantees the
stability. As unifying framework, [7] introduced the notion of path-complete Lyapunov functions (PCLF)
for which the Lyapunov inequalities are encoded in a directed and labeled graph. More precisely, a PCLF
is defined by two structural components: a combinatorial component that is a path-complete graph whose
labels enable to produce any word on the alphabet 〈M〉, and an algebraic component, the template, that
is, the set in which the candidate functions are selected.

The path-complete Lyapunov functions approach, despite its appealing flexibility, opens new questions
and challenges, both from a theoretical and computational point of view. Indeed, the stability of sys-
tem (1) can be established with different graphs structures and different candidate functions templates.
In recent years, an increasing attention has been devoted to the comparison of different path-complete
graphs. This leads to the introduction of order relations between graphs, where a graph is usually said
“better than another one” if it provides a more accurate approximation of the decay rate of the sys-
tem (1). In this context, [8] formalized two combinatorial operations on graphs called lifts in order to
provide arbitrarily accurate estimates of the constrained joint spectral radius (CJSR). In parallel, other
comparison techniques between path-complete graphs were proposed but only valid for some particular
settings, for example in [7]. In this paper, we unify these two efforts in a more general framework, intro-
ducing formal operations on graphs, so-called lifts, which directly exploit the properties of the template.
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This formalism allows us to recover, in a general framework, the comparison techniques proposed ad hoc
for some specific situations, as the ones in [9] for instance. Moreover, we show how the lifting approach
allows to reduce the size of the graph according to the template properties while keeping the same (or a
better) stability criterion.

We apply our results in the framework of positive switching systems, i.e. the case where {fi}i∈〈M〉
in (1) are defined by positive matrices {A1, . . . , AM}, see [10] for a thorough discussion. We consider the
template of copositive linear norms, as introduced in [11], defined as the scalar products with respect
to generic positive vectors. After having studied the analytical properties of this particular template,
we describe a specific lifting procedure for this family of functions, and show that it leads to a better
estimation and performance of the stability problem for positive switching systems, with the aid of a
numerical example.

The structure of this paper is the following: in Section 2 we recall the main results, and the concept
of comparison between path-complete criteria. In Section 3, we introduce our more general concept of
lift, and provide a particular case for templates closed under the addition -and the minimum- operation.
Finally in Section 4 we apply these lifts to study the stability of positive switching systems, showing the
effectiveness of our approach for the template of copositive norms.

Notation: We define R>0 := {x ∈ R |x > 0}, R≥0 := {x ∈ R |x ≥ 0}, Rn>0 := (R>0)n, Rn≥0 := (R≥0)n.
Given M ∈ N, we define 〈M〉 := {1, . . . ,M}. The set {ei}i∈〈n〉 is the canonical basis of Rn.

2 Preliminaries

The path-complete Lyapunov functions approach has led to new and useful results in approximating the
convergence rate of discrete-time switching systems, see for instance [9] and [7] for a thorough discussion.
We briefly recall here the main ideas.

Given M ∈ N, a directed and labeled graph G = (S,E) on 〈M〉 is defined by a finite set S (the set of
nodes) and E ⊂ S × S × 〈M〉 (the set of labeled edges).

Definition 1. A graph G = (S,E) is path-complete on 〈M〉 if, for any K ≥ 1 and any word (j1 . . . jK) ∈
〈M〉K , there exists a path {(sk, sk+1, jk)}1≤k≤K such that (sk, sk+1, jk) ∈ E, for each 1 ≤ k ≤ K.

We consider F := {f1, . . . , fM} ⊂ C0(Rn,Rn) (the set of dynamics) and we define the discrete-time
switching system

x(k + 1) = fσ(k)(x(k)), (2)

where σ : N → 〈M〉 is the switching signal. We say that (2) is stable if there exists an α ∈ K∞1 such
that ‖x(k)‖ ≤ α(‖x(0)‖), for any initial condition x(0) ∈ Rn, any switching signal σ and any time k ∈ N.

Definition 2. Given F = {f1, . . . , fM} ⊂ C0(Rn,Rn), a path-complete Lyapunov function (PCLF) is
a pair (G, V ) where G = (S,E) is a path-complete graph, and V = {Vs | s ∈ S} is a set of continuous,
positive definite and radially unbounded functions such that the following inequalities are satisfied:

∀(a, b, i) ∈ E,∀x ∈ Rn : Vb(fi(x)) ≤ Va(x). (3)

If this is the case, we say that V is admissible for G and F , and we denote it by V ∈ PCLF (G, F ).

In [7] it is proved that, given any M ∈ N, any system F = {fi | i ∈ 〈M〉} and any path-complete
graph G = (S,E), if ∃V = {Vs | s ∈ S} ∈ PCLF (G, F ), then system (2) is stable. We now introduce
order relations among the set of path-complete graphs, formalizing the idea that one graph “produces
less conservative stability conditions” with respect to another.

Definition 3. Consider two path-complete graphs G1 and G2 on 〈M〉, a set of candidate Lyapunov
functions V (a template) and a family F of M -tuples of continuous vector fields.

1A function α : R≥0 → R≥0 is of class K∞ (α ∈ K∞) if it is continuous, α(0) = 0, strictly increasing and unbounded.
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(a) We say that

G1 ≤V,F G2 (4)

if, for any F ∈ F ,[
∃V ∈ V |S| s.t. V ∈ PCLF (G1, F )

]
⇒

[
∃V ∈ V |S| s.t. V ∈ PCLF (G2, F )

]
.

(b) We say that

G1 ≤V G2 (5)

if the inequality (4) is satisfied for any family F .

(c) We say that

G1 ≤ G2 (6)

if for any template V, the inequality (5) is satisfied.

In [12, Theorem 3.5], the Authors proposed a complete characterization of the general order in Item
(c) of Definition 3 relying on the combinatorial concept of simulation between graphs. Here, instead,
we want to go further with the comparison analysis, underlining the relations between the analytical
properties of the chosen template/class of systems and the conservatism of a path-complete policy with
respect to the others.

3 Template-Dependent lifts

In this section, we define several expansions of graphs, called lifts, which enable us to establish ordering
relations between graphs, as introduced in Definition 3.

Definition 4. Given M ∈ N, we denote with GraphsM the set of directed and labeled graphs on 〈M〉.
We say that L : GraphsM → GraphsM is a valid lift with respect to a template V if

1. G path-complete implies L(G) is path-complete,

2. G ≤V L(G), for all path-complete graph G.

Similarly, L is a valid lift with respect to a template V and a family F ⊂ (C0(Rn,Rn))M , if Item (2) is
replaced by

(2)’ G ≤V,F L(G), for all path-complete graph G.

Remark 1. Note that, given a path-complete graph G and a valid lift with respect to a template V, the
inequality (2) in Definition 4 holds for every path-complete and strongly connected component of the lifted
graph L(G). The same remark can be made for a valid lift with respect to a template V and a family F .

Similar examples of abstract lifts have already been introduced in [8], such as the M -path-dependent
lift and the T -product lift. However, both these lifts (see [8, Definitions 2,3]), even if introduced in
the framework of quadratic multinorms, satisfy Definition 4 with respect to any arbitrary template. In
the following, we introduce lifts that are not valid with respect to arbitrary templates, but only if the
template satisfies some properties. This approach is motivated by our ultimate goal, i.e. to provide
a characterization for order relations (4) and (5), and thus going further the analysis provided in [12],
where only the relation (6) is studied.

Assumption 1. The path-complete graphs considered herein have one strongly connected component and
are such that if we remove any edge, the graph is not path-complete.

This assumption is not restrictive since our aim is to compare stability conditions: we suppose that the
inequalities of the form (3) encoded in the graphs are sufficient conditions for stability (path-completeness)
without having redundant/unnecessary inequalities.
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3.1 The T -sum lift

We say that a template V ⊂ C0(Rn,R) is closed under addition if for any V1, V2 ∈ V we have V1 +V2 ∈ V.
Many templates commonly considered in control theory are closed under addition, for example: quadratic
functions, convex functions, Sum-Of-Squares, etc. We now introduce a lift which takes into account this
property, exploring the decrease properties of sums of candidate Lyapunov functions, which correspond
to nodes in the path-complete Lyapunov framework. Given a set S and T ∈ N, we will denote with
MultiT (S) the set of multi-sets with elements in S of cardinality T , where a multi-set is defined as a set
with possible repetitions, see [13] for the formal definition. For example, {a, a, b, b, b} is a multi-set with
elements in {a, b} of cardinality 5.

Definition 5. Given T ∈ N and a graph G = (S,E) on the alphabet 〈M〉, the T -sum lift is a graph
GTsum = (STsum, E

T
sum) defined as follows :

1. For each {b1, . . . , bT } ∈MultiT (S) whose nodes b1, . . . , bT can be reached with the same label, i.e.
∃i1 ∈ 〈M〉,∃a1, . . . , aT ∈ S such that for j = 1, . . . , T,

(aj , bj , i1) ∈ E,

and they can all be left with the same label, i.e. ∃ i2 ∈ 〈M〉,∃c1, . . . , cT ∈ S such that for j =
1, . . . , T,

(bj , cj , i2) ∈ E,

a new node denoted by b1 ⊕ · · · ⊕ bT is added in STsum;

2. For each multi-set of edges of E of the form {(a1, b1, i), . . . , (aT , bT , i)} such that a1⊕ · · · ⊕ aT and
b1 ⊕ · · · ⊕ bT ∈ STsum, a new edge (a1 ⊕ · · · ⊕ aT , b1 ⊕ · · · ⊕ bT , i) is added in ETsum.

Note that in Definition 5 we consider only the multi-sets of cardinality T of nodes for which we can
reach and leave each node with the same label: this ensures that all the nodes of GTsum have at least one
incoming and one outgoing edge. On the other hand, observe that GTsum might not satisfy Assumption 1,
even if G does, i.e. GTsum is possibly composed by more than one strongly connected and path-complete
component, as illustrated in the subsequent Example 1. In practice, we will consider each of these
components independently, recall Remark 1.

Proposition 1. The T -sum lift is a valid lift with respect to any template closed under addition.

Proof. Consider a path-complete graph G = (S,E). The path-completeness of GTsum is direct since G is
a strongly connected component of GTsum. Indeed, each node a ∈ S admits an outgoing and an incoming
edge thanks to the Assumption 1. This implies that the node a ⊕ · · · ⊕ a ∈ STsum, and then for every
edge (a, b, i) ∈ E, the edge (a⊕ · · · ⊕ a, b⊕ · · · ⊕ b, i) ∈ ETsum. Now, consider a template V closed under
addition and any family of vector fields {fi}i∈〈M〉. Suppose that there exists a PCLF for the initial graph
G with the functions {Vs | s ∈ S} ⊂ V, and, for any a = (a1 ⊕ · · · ⊕ aT ) ∈ STsum define

Va := Va1 + · · ·+ VaT ∈ V. (7)

The Lyapunov inequalities (3) of GTsum are satisfied because, for every edge (a, b, i) ∈ ETsum, we have

Vb (fi(x)) = (Vb1(fi(x)) + · · ·+ VbT (fi(x))) ,

≤ (Va1(x) + · · ·+ VaT (x)) = Va(x),

for all x ∈ Rn since (a1, b1, i), . . . ,(aT , bT , i) ∈ E by Definition 5 (possibly after a re-ordering of a and
b).

Example 1. Consider the path-complete graph G1 = (S1, E1) on 〈M〉 = {1, 2} in Figure 1a. We apply
Definition 5 to G1 and construct the corresponding 2-sum lift as presented in Figure 1b. The graph
(G1)2sum has two strongly connected and path-complete components: one isomorphic to G1 itself, and
the other isomorphic to the common Lyapunov function graph G0 := ({z}, {(z, z, i)i∈〈M〉}). Considering
any template V closed under addition, by definition we have that G1 ≤V (G1)2sum. Moreover, recalling
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(a) The graph G1 = (S1, E1) in Example 1.

(b) The 2-sum-lift (G1)2sum

Figure 1: Example of a 2-sum-lifted graph

Remark 1, we obtain in particular the relation G1 ≤V G0. Furthermore it can be easily shown that
G0 ≤ G for any path-complete graph G (indeed, G0 is the most conservative graph, since it represents
the common Lyapunov function case). In other words, we have proven that, for a template closed under
addition, the inequalities encoded in G1 are as conservative as the ones encoded in G0. We can conclude
that for this type of templates, the path-complete policy of G1 is somehow a “poor choice”, since we are
increasing the number of inequalities (i.e. edges), without reducing the conservatism with respect to G0.

3.2 The min lift

We say that a template V ⊂ C0(Rn,R) is closed under minimum if for any V1, V2 ∈ V we have that
V (x) := min{V1(x), V2(x)} (pointwise-minimum function) satisfies V ∈ V. We introduce in what follows
a lift which exploits this closure property.

Definition 6. Given a graph G = (S,E) on the alphabet 〈M〉, the min-lift is a graph Gmin = (Smin, Emin)
defined as follows:

(1) The set of nodes Smin is defined by

Smin := {S′ ⊂ S | S′ 6= ∅}.

(2) An edge (A,B, i) ∈ Emin with A,B ∈ Smin and i ∈ 〈M〉 if and only if for all a ∈ A, there exists at
least one b ∈ B such that (a, b, i) ∈ E.

A combinatorial construction similar to Definition 6, the so-called co-observer graph, was introduced
in [14, Definition 5.29] in order to prove the existence of an explicit common Lyapunov function from a
path-complete Lyapunov function. Here, instead, we leverage the same construction in order to exhibit
a novel lift for which the lifted nodes (i.e. the lifted Lyapunov functions) are associated to pointwise
minima of initial functions. Note that the min-lift, as well as the T -sum lift, can have more than one
strongly connected and path-complete component, as the subsequent Example 2 will underline.

Proposition 2. The min lift is a valid lift with respect to any template closed under minimum.

Proof. The proof is similar to the proof for Proposition 1. Path-completeness is trivial. Now, consider a
template V closed under minimum and any family of vector fields {fi}i∈〈M〉. Suppose that there exists
a PCLF for the initial graph G of the form {Vs | s ∈ S} ⊂ V. Given any A ∈ Smin the corresponding
Lyapunov function VA ∈ V is defined by

VA(x) := min
a∈A

Va(x). (8)

Given (A,B, i) ∈ Emin, we have

VB(fi(x)) = min
b∈B

Vb(x) ≤ min
a∈A

Va(x) = VA(x),

for any x ∈ Rn, since, by Definition 6, for all a ∈ A there exists at least a b ∈ B such that Vb(fi(x)) ≤
Va(x), concluding the proof.
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(a) The graph G2 = (S2, E2) in Example 2.

(b) The min-lift (G2)min

Figure 2: Example of a min-lifted graph

Example 2. Consider the graph G2 = (S2, E2) in Figure 2a, path-complete on 〈M〉 := {1, 2}. If we
apply the min-lift procedure as introduced in Definition 8, we obtain (G2)min represented in Figure 2b.
We see that (G2)min has two strongly-connected and path-complete components: one isomorphic to G2
itself (the subgraph induced by {a} and {b}); and one induced by {a, b}, which is isomorphic to G0, as
defined in Example 1 (the common Lyapunov function case). We can conclude that

G2 ≤V G0,

for any template V closed by minimum, or, in other words, the graph G2 is as conservative as G0 (the
“worst” graph, see Example 1) for this kind of templates.

Remark 2. It can be seen that, simply exchanging the quantifiers in Item (2) of Definition 8, one can
obtain a definition of max-lift (denoted with Gmax) which would be valid for templates closed under
maximum. The definitions and characterization of this and other possible template-dependent lifts can
be studied with tools similar to the ones used in this section, and it is indeed an open route for future
research.

4 Application to Positive Systems

In this section we apply the ideas previously developed in studying stability of positive switching systems
of the form

x(k + 1) = Aσ(k)x(k) (9)

where σ : N→ 〈M〉, and A := {A1, . . . , AM} ⊂ Rn×n≥0 is a set of positive matrices.

4.1 Copositive Norms: Definition and Properties

We introduce two particular templates of Lyapunov functions, which are used in studying stability of
system (9).

Definition 7. Given v ∈ Rn>0, we define the primal and dual copositive norms induced by v on Rn≥0 by

‖x‖v := v>x, and (10)

‖x‖?v := max
i

{
xi
vi

}
, (11)

for all x ∈ Rn≥0. We denote with P and D the set of all primal and dual copositive norms, respectively.

In the context of positive switching systems, primal norms as in (10) were considered in [11, 10, 15].
The definition of copositive dual norms in (11) is obtained by convex-functions duality (see [16, A.1.6]),
since an equivalent definition is given by

∀x ∈ Rn≥0, ‖x‖?v = sup
y∈Rn

≥0
,‖y‖v=1

{y>x}. (12)
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It follows from Definition 7 that, given any v ∈ Rn>0, the functions ‖ · ‖v, ‖ · ‖?v : Rn≥0 → R are positive
definite and radially unbounded, and thus P andD represent legitimate templates when studying stability
of (9). In order to apply the lifts introduced in Section 3, we need to demonstrate the closure properties
mentioned above for the template of copositive norms. For this, we introduce the following auxiliary
notation.

Definition 8. Given v, w ∈ Rn>0, define v ∨ w ∈ Rn>0 as

v ∨ w :=
∑
i

min{vi, wi}ei, (13)

i.e. the componentwise minimum between v and w.

Proposition 3. Given any v, w ∈ Rn>0, any A ∈ Rn×n≥0 , any x ∈ Rn≥0, any λ > 0 we have

1. ‖x‖v+w = ‖x‖v + ‖x‖w;

2. ‖x‖λv = λ‖x‖v;

3. ‖x‖v∨w = inf x1+x2=x,
x1,x2∈Rn

≥0

‖x1‖v + ‖x2‖w.

4. ∀x ∈ Rn≥0, ‖Ax‖v ≤ ‖x‖w ⇔ A>v ≤c w.

Proof. Items (1), (2) and (4) are trivial. For Item (3), given v ∈ Rn>0 we denote with Bv := {x ∈
Rn≥0 | ‖x‖v ≤ 1} the unit ball of the corresponding primal copositive norm. Given v, w ∈ Rn>0, the
function f : Rn≥0 → R≥0 defined by

f(x) := inf
x1+x2=x,
x1,x2∈Rn

≥0

‖x1‖v + ‖x2‖w,

is called the infimal convolution of ‖ · ‖v and ‖ · ‖w, see [17, Theorem 5.4], where it is also proved that its
unit ball is defined by B = conv{Bv ∪ Bw}. We thus need to prove that Bv∨w = conv{Bv ∪ Bw}, then
the result follows from the correspondence between norms and their unit balls, see [17, Corollary 16.4.1].
(⊂): Without loss of generality, consider x ∈ Bv∨w such that ‖x‖v∨w = 1, i.e.

∑
i min{vi, wi}xi = 1.

Define the index sets
Iv : = {i ∈ {1, . . . , n} | vi < wi},
Iw : = {i ∈ {1, . . . , n} | wi ≤ vi}.

Now define x1 :=
∑

i∈Iv xiei∑
i∈Iv xivi

and x2 :=
∑

i∈Iw xiei∑
i∈Iw xiwi

. Note that, by definition, ‖x1‖v = 1 and ‖x2‖w = 1.

Consider the positive scalar λ =
∑
i∈Iv xivi, we have that 1 − λ =

∑
i∈Iw xiwi, since

∑
i∈Iv xivi +∑

i∈Iw xiwi =
∑
i xi min{vi, wi} = 1. Now, computing, we have λx1 + (1 − λ)x2 = x, proving that

x ∈ conv{Bv ∪Bw}.
(⊃) The inclusions Bv ⊂ Bv∨w and Bw ⊂ Bv∨w are trivial. Consider thus y ∈ Bv, z ∈ Bw (i.e.∑
i viyi ≤ 1 and

∑
i wizi ≤ 1) and any λ ∈ [0, 1]. Computing∑

i

min{vi, wi}(λyi + (1− λ)zi) ≤
∑
i

viλyi + wi(1− λ)zi)

= λ
∑
i

viyi + (1− λ)
∑
i

wizi ≤ 1,

concluding the proof.

We can now study which lifts defined in Section 3 are valid, when considering primal norms. We
need the following preliminary result.

Lemma 1. If v1, w1, v2, w2 ∈ Rn>0 and A ∈ Rn×n≥0 . Then

(∀x ∈ Rn≥0, min{‖Ax‖v2 , ‖Ax‖w2
} ≤ min{‖x‖v1 , ‖x‖w1

})
⇓

(∀x ∈ Rn≥0, ‖Ax‖v2∨w2
≤ ‖x‖v1∨w1

).
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Proof. We recall that levels sets of a pointwise-minimum function f := min{fa, fb} are union of levels
sets of fa and fb. We thus need to prove that x ∈ Bv1 ∪ Bw1

⇒ Ax ∈ Bv2 ∪ Bw2
implies x ∈

Bv1∨w1
⇒ Ax ∈ Bv2∨w2

. Consider x ∈ Bv1∨w1
, recalling proof of Item (3) in Proposition 3, we know

that x ∈ conv{Bv1∪Bw1
} i.e. there exist x1, x2 ∈ Bv1∪Bw1

, and λ ∈ [0, 1] such that x = λx1+(1−λ)x2.
Computing

Ax = Aλx1 +A(1− λ)x2 = λAx1 + (1− λ)Ax2.

Since Ax1, Ax2 ∈ Bv2 ∪ Bw2 , we have proved that Ax ∈ conv(Bv2 ∪ Bw2) = Bv2∨w2 , concluding the
proof.

Theorem 1. Consider G = (S,E) a path-complete graph on 〈M〉, any n ∈ N and any T ∈ N. Denote
by P the template of primal norms on Rn≥0 and by L the set of all the M -tuples of positive matrices in

Rn×n≥0 . We have

� G ≤P GTsum,

� G ≤P,L Gmin,

Sketch of the proof: The first relation follows from Proposition 1 and recalling Item (1) of Proposi-
tion 3, which establishes that the template of primal norms is closed under addition. The second relation
follows from Proposition 2 and Lemma 1. Note that the template of primal copositive norms is not
closed under minimum, but the construction proposed in Proposition 2 is still possible by Lemma 1,
which requires the linearity of the subvector fields. We can thus conclude G ≤P,L Gmin, but not, in
general, G ≤P Gmin. �

Remark 3. By duality, it is possible to develop similar arguments (as in Proposition 3 and Theorem 1)
for the template of dual copositive norms D, as defined in (11) in Definition 7. These arguments are
omitted due to space constraint, and the analysis of the duality relation between graphs is a possible
direction for future work.

4.2 Numerical Example

In this section, we consider a planar positive switching system, already introduced in [10, Remark 2].

Example 3. We consider the positive switching system (9) with

A1 =

[
0 1
2
3

1
30

]
, A2 =

[
1
2 1
0 1

3

]
. (14)

We want to estimate the infimum γ ≥ 0 (denoted with γ?) for which the switching system defined by

Aγ := {A1/γ, A2/γ} (15)

is stable. The scalar γ? represents the decay rate of the system (9) (also called joint spectral radius (JSR)
of A = {A1, A2}) (see [1] for further information). As already proven in [10], a common copositive
Lyapunov function for Aγ exists if and only if γ ≥ 1. Considering a common quadratic Lyapunov
function, i.e. choosing V (x) = x>Px with P > 0, and verifying A>i PAi − γ2P ≤ 0 for i ∈ {1, 2}
provides an upper bound for the JSR of (9) of γ = 0.913. In what follows we show how the estimation
of the JSR can be improved considering a PCLF in the template of primal copositive norms, and how
the template-dependent lifts can provide a useful tool in improving the stability analysis. Let us consider
the path-complete graph G3 = (S3, E3) in Figure 3a. The smallest value γ ≥ 0 such that the Lyapunov
inequalities (3) encoded by G3 are satisfied for the system (9) with the set of matrices (15) is γ = 1.
In other words, this graph does not allow us to improve our estimation of the JSR with respect to the
common copositive Lyapunov norm case. To refine our approximation, we can consider the min-lift of
G3, as introduced in Definition 6. More specifically, we consider a particular strongly connected and
path-complete component of (G3)min given by G4 in Figure 3b, which satisfies, by Theorem 1, G3 ≤P,L G4.
As it turns out, this graph allows to improve the approximation of the joint spectral radius, since the
inequalities are feasible for γ = 0.903, and the obtained solution corresponding to this bound is given by
v{a,b,d} = [1.000, 2.4219]> and v{a,c} = [1.7881, 1.1968]>.
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(a) The graph G3 = (S3, E3) in Example 3
(b) G4 = (S4, E4), the strongly connected and path-
complete component of (G3)min considered in Example 3

Figure 3: The path-complete graphs G3 and G4 in Example 3

This example highlights that, given a particular path-complete structure, the lifting approach can
provide better estimation of the joint spectral radius while decreasing the number of Lyapunov inequal-
ities (half in the example). It also shows that we can provide a better approximation with a multiple
Lyapunov function in the template of copositive norms than a common quadratic/copositive Lyapunov
function. More specifically, the example illustrates a possible generalization of the technique proposed
in [10]: considering path-complete Lyapunov functions in the template of copositive norms we reduce
the conservatism of the stability analysis, without resorting to LMIs but simply relying on a set of linear
inequalities encoded in a path-complete graph.

5 Conclusion

The path-complete approach is an appealing tool for stability analysis of switching systems because
it provides a way of building ad-hoc, nonstandard, Lyapunov stability criteria while alleviating the
combinatorial explosion of classical optimization techniques. In this paper, we studied the problem of
establishing relations among different path-complete structures, with the goal of optimizing this structure,
while at the same time controlling the computational cost. We have demonstrated the strong connections
between templates of candidate Lyapunov functions and the ordering relations between graph-based
conditions.

We proposed novel graph-lifts, whose validity depends on the properties of the chosen template. We
illustrated our approach in the context of positive systems and copositive functions, for which we showed
that our techniques indeed outperform the state of the art. This work has opened the way for a much
larger research avenue, such as the generalization of this approach to a wider class of templates/systems,
(notably the quadratic functions cases).
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