
AIMD scheduling and resource allocation in distributed
computing systems

Eleftherios Vlahakis, Nikolaos Athanasopoulos, Seán McLoone

Abstract— We consider the problem of simultaneous schedul-
ing and resource allocation of an incoming flow of requests
to a set of computing units. By representing each computing
unit as a node, we model the overall system as a multi-
queue scheme. Inspired by congestion control approaches in
communication networks, we propose an AIMD-like (additive
increase multiplicative decrease) admission control policy that
is stable irrespective of the total number of nodes and AIMD
parameters. The admission policy allows us to establish an
event-driven discrete model, triggered by a locally identifiable
enabling condition. Subsequently, we propose a decentralized
resource allocation strategy via a simple nonlinear state feed-
back controller, guaranteeing global convergence to a bounded
set in finite time. Last, we reveal the connection of these
properties with Quality of Service specifications, by calculating
local queuing time via a simple formula consistent with Little’s
Law.

I. INTRODUCTION

Distributed computing is a new paradigm emerging to
address the growing demand for extensive, real-time compu-
tations at the edge as a result of the growing number of end-
users (e.g., smart devices, sensors) connected to the edge of
the Internet. Although this emerging technology opens new
opportunities for more sophisticated applications (see, e.g.,
[1]–[3]), it presents several research challenges, especially in
the context of resource allocation and control of edge-servers
due to factors such as the need to take account of latency
constraints, limited capacity of edge-servers, and its inherent
decentralized structure.

Feedback control has been a powerful mathematical tool
for tackling management problems in the context of modern
computer systems [4]. Given a representative dynamical
model, control theory allows analytical derivation of formal
guarantees and certificates. However, modelling computer
systems is a formidable task by itself, thus, many works rely
on application-specific models obtained via system identifi-
cation methods. See for example [5]–[7]. Focusing on a more
abstract modelling paradigm agnostic to each individual
node specificities, we follow a queueing system modelling
approach that enhances scalability, naturally, at the expense
of accuracy loss. Notable works avoiding application-specific
modelling can be found in [8]–[10].

The control problem considered in this paper consists of
1) the scheduling, and 2) the resource allocation of a stream

*This work is supported by the CHIST-ERA 2018 project DRUID-
NET “Edge Computing Resource Allocation for Dynamic Networks”
https://druidnet.netmode.ntua.gr/

Authors are with the School of Electronics, Electrical Engineering
and Computer Science, Queen’s University Belfast, Northern Ireland,
UK. E-mail addresses: {e.vlahakis, n.athanasopoulos,
s.mcloone}@qub.ac.uk

of requests associated with a specific application, to a set
of computing units. Representing each computing unit as a
node and associating each node with a queue, we model
the entire scheme as a multi-queue system. We assume that
there is no interaction between nodes and computing units
are independent from each other. A central node acts as
an aggregation point, receiving all requests and dispatching
them to individual nodes. Queues in this work are consistent
with the First Come First Served (FCFS) selection policy.

Our approach to scheduling and resource allocation is
motivated by the Additive Increase Multiplicative Decrease
(AIMD) algorithm, a celebrated method in network manage-
ment. The AIMD algorithm was originally introduced in [11]
for tackling congestion phenomena in computer networks
in a robust and decentralized manner requiring minimum
interaction between nodes. Since then, it has become a funda-
mental building block of the Transmission Control Protocol
(TCP) widely used across the Internet. An excellent and
comprehensive study of the AIMD algorithm with several
extensions and applications can be found in [12].

In this paper, we introduce an AIMD-inspired simple con-
trol policy for general scheduling problems. A typical AIMD
model results in an event-driven discrete controller which is
triggered by an event associated with capacity constraints,
e.g., bandwidth constraints. Berman et al. in [13] and Shorten
et al. in [14] show that such a control scheme can be
formulated as a positive system, thus, stability and conver-
gence properties can be derived from the Perron–Frobenius
Theorem. A first challenge we face is that a positive system
formulation is not possible in our case due to the absence of a
capacity constraint in a scheduling task. Instead, we consider
a queue clearance event and manage to show stability via a
significant result in Linear Algebra (cf. [15], [16]) involving
the eigenproblem of rank-one perturbations of symmetric
matrices (Theorems 1 and 2). This formulation leads to a
new admission control algorithm with AIMD structure which
is stable irrespective of the AIMD tuning and the number of
nodes, and inherits attractive features of the standard AIMD
algorithm (e.g., fairness among nodes, tunable convergence
rate) [17]. To the best of our knowledge, this paper presents
the first admission control policy with AIMD dynamics for
scheduling tasks.

As a result of the simplicity of the AIMD scheduling
policy proposed, we subsequently formulate a resource al-
location strategy defined as a decentralized globally stabi-
lizing nonlinear feedback controller. We show that under
the proposed resource allocation law, individual queues are
bounded, and, further, converge in finite time to a well-

defined interval which is invariant [18]. This effectively
permits analysis of Quality of Service (QoS) metrics, such as
queueing time. Overall, scheduling and resource allocation
lie in the same control loop leading to a simple decentralized
system which is stable, scalable, and locally configurable.

Unlike standard stochastic methods, see, e.g., [19], [20],
we follow a deterministic approach to workload modelling.
This choice simplifies the simultaneous scheduling and re-
source allocation problem, and most importantly, leads to
deterministic performance certificates.

The remainder of the paper is organized as follows. Useful
definitions and assumptions are given in Section II. The
main results of the paper, namely, the AIMD scheduling
strategy, the resource allocation control, and the calculation
of queueing time are presented in Sections III, IV, and V,
respectively. In Section VI we highlight our results via an
illustrative numerical example. Finally, Section VII discusses
our main results and future research directions.

II. DEFINITIONS AND BASIC ASSUMPTIONS

A. Single-queue system

We define a request as an individual demand for comput-
ing resources provided by a computing node. A computing
node is defined as the physical (or virtual) computing en-
vironment, consisting of hardware, software, and network
resources, whereby a request is executed. A queue is defined
as the waiting mechanism whereby requests arriving at a
node are temporarily put on hold until being selected for
service. Here, we consider queues consistent with the First
Come First Served (FCFS) selection principle.

A queueing system [21], [22] is defined as the dynamic
relationship developed between requests entering and exiting
a computing device in the presence of a queue. The number
of queued requests at time t, is defined as the difference
between arrivals and departures in interval [0, t]. Typically,
arrival and departure processes are considered as stochastic
and described by appropriate probability distributions. A
comprehensive overview of stochastic queueing systems can
be found in [21]. Here, to highlight the admission and
resource allocation control strategies proposed in the paper,
we focus on deterministic models and assume that: 1) the
arrival rate, denoted by λ (t), is constant, and; 2) requests
arriving at a queueing system are identical in terms of
computing resources required to serve them, such as, CPU
time, memory, and disk space.

B. Event-driven discretization and event generator

An event generator is introduced as the mechanism indi-
cating time instants at which a well-defined triggering condi-
tion Cε is satisfied. Condition satisfaction can be written as
Cε(tk) = true, where tk denotes the time instant at which
the kth event occurs (is generated). The evolution of time
events can be modelled as tk+1 = tk +T (k), where T (k) may
be time-varying.

In the following, we construct an aperiodic model (with
respect to time), the derivation of which is the result of two
crucial design strategies, namely: 1) the introduction of a

batch queue into the system, and; 2) the adoption of an
AIMD admission control policy. This strategic choice is now
exemplified via a simple tandem queueing system.

C. Tandem queueing system with AIMD dynamics

We consider the two-queue system (also termed tandem
queueing system) shown in Fig. 1, where λ (t) is a piece-
wise differentiable function representing workload, δ (t) is
the number of queued requests waiting at queue Q1 to be
dispatched to queue Q2 at an admission rate u(t), while w(t)
and γ(t) represent queued requests and service rate, respec-
tively. Using this notation, the continuous-time dynamics of

u(t)λ (t)

Q1

δ (t)

γ(t)

Q2

w(t)

Fig. 1: A tandem queueing system.

the two-queue system can be written in a compact form as[
δ̇ (t)
ẇ(t)

]
=

[
1 −1 0
0 1 −1

]λ (t)
u(t)
γ(t)

 . (1)

Before proceeding with the discretization of the model, we
define a triggering condition that enables the generation of
events stipulating the update of control variables (u(t), γ(t)).
Let u(t) be an admission control policy such that

δ (tk) = 0, (2)

i.e., all the requests that have arrived at queue Q1 by time
tk have been admitted to queue Q2. Hence, in this regard,
Q1 instantaneously becomes empty at tk. To ensure that
condition (2) can always be satisfied at a finite time for a
constant λ (t) > 0, we design the admission rate u(t) as an
AIMD controller as follows. Let

u(t−k) = lim
t→tk
t<tk

u(t), u(t+k) = lim
t→tk
t>tk

u(t), (3)

where tk is the instant at which the kth event occurs. Since
δ (t+k) = 0, we let

u(t+k) = βu(t−k), (4)

where 0 < β < 1 is called the backoff parameter. Intuitively,
this means that by the time queue Q1 becomes empty, the
admission control u(t) instantaneously shrinks to a fraction
of u(t−) according to (4). This is called the Multiplicative
Decrease (MD) phase. Since u(t+k)< u(t−k), queue Q1 starts
growing. Right after the MD phase, the admission rate u(t)
increases in a ramp fashion as

u(t) = βu(t−k)+α(t− tk), t ≥ tk, (5)

where the slope of the ramp α > 0 is called the growth rate.
Since u(t) is strictly increasing in t, there exists a time tk+1 >
tk such that δ (tk+1) = 0. We call T (k) = tk+1− tk the inter-
event period, and the interval (t+k , t−k+1) the Additive Increase
(AI) phase.

Denoting time instants tk+1, tk by integers k+ 1, k, with
k≥ 0, an event-driven discrete model of the system shown in
Fig. 1, associated with the AIMD admission policy described
above, is derived as[

w(k+1)
u(k+1)

]
=

[
w(k)+(βu(k)+ α

2 T (k)− γ(k))T (k)
βu(k)+αT (k)

]
, (6)

where u(k) is an AIMD controller with triggering condition
δ (k+1) = δ (k) = 0. Next, we generalize the AIMD admis-
sion control approach to a system with multiple queues, and
examine the properties of the AIMD algorithm and its effect
on the entire system dynamics.

III. AIMD ADMISSION CONTROL

We consider a set of n computing nodes represented by
a multi-queue system as depicted in Fig. 2. Each node is
modelled by a queue combined with a (physical or virtual)
computing environment. We assume that a constant workload
λ enters the system via a batch queue, which is independent
of the computing nodes. The workload is manifested as a
flow of requests that are dispatched to n computing units
(nodes) according to an admission control policy ui(t), i =
1, . . . , n. We denote the number of queued requests that have
not yet been admitted at time t by δ (t), and the number of
admitted requests waiting to be selected for service by node-
i at time t by wi(t). The service rate of node-i is denoted
by γi(t), i = 1, . . . , n. Next, we adopt the AIMD admission
control policy and the event-driven formulation described in
Sections II-B and II-C.

∑ui(t)λ

δ (t)

γ1(t)
u1(t)

w1(t)

γ2(t)
u2(t)

w2(t)

γn(t)
un(t)

wn(t)

Fig. 2: A multi-queue system with AIMD admission
control policy.

The number of queued, thus unadmitted, requests at the
beginning of the (k+1)th event is given by

δ (k+1) = δ (k)+λT (k)−
∫ tk+1

tk
∑ui(t)dt. (7)

We recall that at each event k, k+1, . . ., we have

δ (k) = δ (k+1) = · · ·= 0. (8)

We now show that our admission control yields an exact
formula for the inter-event period T (k), thus, permitting
a closed form of the aggregate admission control system.
During the AI phase, the ith admission rate ramps up as
follows,

ui(t) = βiui(tk)+αi(t− tk), i = 1, . . . ,n, (9)

which is a continuous-time controller for t ∈ [tk, tk+1).
Based on condition (8), the event-driven dynamics of the
ith admission controller is written as:

ui(k+1) = βiui(k)+αiT (k), i = 1, . . . ,n. (10)

In view of the triggering condition (8) and using (10) in
(7), we get λT (k) = ∑

n
i=1(2βiui(k) +αiT (k))

T (k)
2

1 or λ =

∑
n
i=1(βiui(k)+

αi
2 T (k)), from which, the inter-event period

is defined as
T (k) =

λ −∑
n
i=1 βiui(k)

∑
n
i=1

αi
2

. (11)

From (11), we may write that ui(k + 1) = βiui(k) +
αi

λ−∑
n
i=1 βiui(k)

∑
n
i=1

αi
2

. Defining u(k) = (u1(k), . . . ,un(k)), ᾱ =

1
∑

n
j=1 α j

(α1, . . . ,αn), B= diag(β1, . . . ,βn), β =(β1, . . . ,βn) the
aggregate admission control system can be expressed as

u(k+1) = Φu(k)+2ᾱλ , (12)

where Φ=B−2ᾱβ ′, with 1′ᾱ = 1, 1=(1, . . . ,1)∈Rn. Next,
we show that system (12) is stable, thus, u(k) converges to
a unique equilibrium point u∗. We first present the following
result, which appears in several works in the context of
Linear Algebra, see, e.g., [16, Theorem 1], [15, Section 5].

Theorem 1 Let C = D+ρzz′, where D ∈ Rn×n is diagonal,
ρ ∈R, and z∈Rn. Let d1 ≤ d2 ≤ . . .≤ dn be the eigenvalues
of D, and c1 ≤ c2 ≤ . . .≤ cn be the eigenvalues of C. Then,

i.) d1 ≤ c1 ≤ d2 ≤ c2 ≤ . . .≤ dn ≤ cn if ρ > 0,
ii.) c1 ≤ d1 ≤ c2 ≤ d2 ≤ . . .≤ cn ≤ dn if ρ < 0.

We are in a position to state the first main result, namely,
the stability of the AIMD scheduling policy.

Theorem 2 Let vectors ᾱ = (ᾱ1, . . . , ᾱn), β = (β1, . . . , βn),
where 0 ≤ ᾱi ≤ 1, 0 < βi < 1, ∀i = 1, . . . , n, and 1′ᾱ = 1,
with 1 = (1, . . . , 1). Let also B = diag(β1, . . . ,βn). Then,

Φ = B−2ᾱβ
′, (13)

is a Schur matrix.

Proof: Matrix Φ can also be written as

Φ = (I−2A)B, (14)

where A = ᾱ1′ is a rank-one matrix with σ(A) =
{1′ᾱ,0, . . . ,0}, and 1′ᾱ = 1 by definition. In the sequel, we
denote by σ(Φ) = {φ1, . . . ,φn} the spectrum of Φ. Clearly,
σ(B)= {β1, . . . ,βn}. Also, it is easy to show that σ(I−2A)=
{−1, 1, . . . ,1}. We can also write that det(Φ) = φ1φ2 . . .φn,
and det(Φ) = det(B)det(I−2A). Thus,

φ1φ2 · · ·φn =−β1β2 · · ·βn. (15)

Let now Â = diag(ᾱ1, . . . , ᾱn), and Φ̂ = B
1
2 Â−

1
2 ΦÂ

1
2 B−

1
2 .

Clearly, matrices Φ and Φ̂ are similar, and therefore have
identical eigenvalues. Note also that Φ̂ can be written as

1the integral on the right side of (7) is the sum of areas of n trapezoids
due to the AIMD dynamics of ui, i = 1,. . . , n.

Φ̂ = B− 2zz′, which is clearly a symmetric matrix, where
z = (

√
ᾱ1β1, . . . ,

√
ᾱnβn). Without loss of generality, let

b1 ≤ . . . ≤ bn, and φ1 ≤ . . . ≤ φn. Then, from Theorem 1,
and since all elements of z are nonzero, we may write that

φ1 ≤ β1 ≤ φ2 ≤ β2 ≤ . . .≤ φn ≤ βn. (16)

From (15) and (16), we can conclude that 0 <
φ2, φ3, . . . , φn < 1, and φ1 is a negative real number. From
(16), we have that

φ2φ3 · · ·φn ≥ β1β2 · · ·βn−1. (17)

However, due to (15), (17) implies that |φ1| ≤ βn, i.e., −βn ≤
φ1 < 0. Thus, all the eigenvalues of Φ̂ (hence Φ), strictly lie
inside the unit circle (specifically on the real axis between
−1 and 1). This proves the theorem.

The main deductions that follow from the analysis pre-
sented in this section are as follows:

1) AIMD parameters can be individually selected at the
node level. Thus, under the reasonable assumption that
each node is aware of when an event occurs, i.e., when
δ (t) = 0, the proposed admission control policy (10) is
fully decentralised.

2) In view of Theorem 2, the aggregate system (12) is
stable regardless of the choice of AIMD parameters.

3) The ith AIMD admission rate converges to u∗i =
αi

1−βi
T ∗,

where T ∗ = ∑
n
j=1(

α j
2

1+β j
1−β j

)−1λ .

IV. RESOURCE ALLOCATION CONTROL

Resource allocation in queueing systems pertains to strate-
gies ensuring that computing nodes provide application re-
quests with adequate resources so that queueing time is
bounded as more requests are added to the system. Stability,
minimizing queueing times and computing costs, as well as
maximizing system throughput are essential objectives. Here,
we focus on stability as a fundamental qualitative property,
in the absence of which, any other desirable objective of a
queueing scheme may be impossible to attain.

We follow a bottom-up approach for designing a de-
centralized resource allocation control strategy as follows.
Let (αi, βi) be the AIMD parameters, and γi(k) denote the
service rate at the kth event, respectively, associated with
node-i. Recall that between the kth and (k+1)th events,

ui(τ) = βiui(k)+αiτ, τ ∈ [0, T (k)], (18)

is the rate at which requests are admitted to node-i, while

wi(τ) = wi(k)+βiui(k)τ +
αi

2
τ

2− γi(k)τ, τ ∈ [0, T (k)],
(19)

is the number of queued requests waiting in node-i. We define
by

yk
i (τ) = wi(τ)+ γi(k)τ, and zk

i (τ) = γi(k)τ, (20)

the total number of requests that have been admitted, and the
number of requests that can be served at most, respectively,
in (tk, τ] with τ ∈ (tk, T (k)). Let also γ̂i(k) be the slope of
a line segment starting from the origin and being tangent to

parabola yk
i (τ) (see O∆ in Fig. 3). By letting γi(k) = γ̂i(k),

thus selecting zk
i as the line segment tangent to yk

i (τ) at
point tk

z ∈ [0, T (k)], as shown in Fig. 3, we effectively
guarantee that the maximum number of requests that can
be served between events never exceeds the actual number
of admitted requests, thus, avoiding node under-utilization,
or respectively, over-provisioning of resources. In Theorem
3 below, we also show that this resource allocation choice is
stabilizing. Note also that if γi(k)> γ̂i(k) (see red dashed line
in Fig. 3) there is always a nonzero interval that the queue of
node-i remains empty, i.e., resources may be unreasonably
over-provisioned. Similarly, by letting 0 < γi(k)< γ̂i(k) (see
blue dashed line in Fig. 3) there is no an obvious stability
guarantee indicating that the ith queue remains bounded.

time

yk
i (τ), zk

i (τ)

O

wi(k)

T (k)tk
z

B

Γ

∆

wi(k+1)
yk

i (τ)

zk
i (τ)

A

Fig. 3: Arrivals and departures in node-i.

We now show how to obtain a closed formula for γ̂i(k).
We first find the intersection point B, as shown in Fig. 3,
where

yk
i (t

k
z) = zk

i (t
k
z), (21)

dyk
i

dtk
z
=

dzk
i

dtk
z
. (22)

From (22), we get tk
z =

γ̂i(k)−βiui(k)
αi

, while, using the latter in
(21), after a few calculations, we have

γ̂i(k) = βiui(k)+
√

2αiwi(k), (23)

which is an event-driven, nonlinear state-feedback controller.
Finally, using (23), we have tk

z =
√

2wi(k)
αi

. We are now in a
position to state the proposed resource allocation strategy
along with its stability properties.

Theorem 3 Let

wi(k+1) = wi(k)+(βiui(k)+
αi

2
T (k)− γi(k))T (k), (24)

with wi(0)≥ 0, be the queue dynamics of node-i, where (αi,
βi) are AIMD parameters, and T (k) is the inter-event period.
Consider the resource allocation policy

γi(k) = βiui(k)+
√

2αiwi(k). (25)

Then, the following hold.
i.) System (24)-(25) is nonnegative for all wi(k)≥ 0.

ii.) The set Wi(k) = [0, ai
2 T (k)2] is invariant with respect to

system (24)-(25).

iii.) For wi,0 /∈ Wi(k), there is an integer k? > 0 such that
wi(k?) ∈Wi(k).

Proof: i.) In the proof, we denote
dφ

dx
by φ ′(x).

Substituting (25) in (24), we write

wi(k+1) = wi(k)+
αi

2
T (k)2−

√
2αiwi(k)T (k), (26)

and we show that f (wi(k)) = wi(k+ 1) is convex in wi(k).
Indeed, f (wi(k)) is convex with respect to wi(k) since it
is a sum of the affine function wi(k) +

αi
2 T (k)2 and the

convex function −
√

2αiwi(k)T (k). Note also that f (wi(k))
is convex for all T (k) ≥ 0. Since, f (wi(k)) is continuously
differentiable and convex for wi(k) ≥ 0, the unique mini-
mizer is attained by setting f ′(wi(k)) = 0, which results in
1−

√
2αiT (k)

2
√

wi(k)
= 0, or w∗i (k) =

αiT (k)2

2 . Taking into account

that f (w∗i (k)) = 0, it holds that f (wi(k)) ≥ 0 ∀ wi(k) ≥ 0,
T (k)≥ 0.

ii.) The condition wi(k + 1) ≤ wi(k) holds if wi(k) +
αi
2 T (k)2−

√
2αiwi(k)T (k)≤ wi(k), i.e., wi(k)≥ αi

8 T (k)2.
Let Ŵi(k) =

{
w ∈ R : w≥ αi

8 T (k)2
}

. Since Ŵi(k) ∩
Wi(k) = [αi

8 T (k)2, αi
2 T (k)2], we need only to verify wi(k+

1) ≤ wi(k) ∀wi(k) ∈ [0, αi
8 T (k)2). Since f (wi(k)) is convex

with minimum at αi
2 T (k)2 it follows that f (0)≥ f (wi(k)) for

any wi(k)∈ [0, αi
2 T (k)2]. Since f (0) = αi

2 T (k)2, it holds that
0 ≤ f (wi(k)) ≤ αi

2 T (k)2 for all wi(k) ∈ Wi(k). This proves
part ii.).

iii.) Consider function g(wi(k)) = wi(k)− f (wi(k)). Then,
g′(wi(k)) = 1− f ′(wi(k)) =

√
2αiT (k)

2
√

wi(k)
> 0 since T (k) > 0

for all k ≥ 0. Moreover, g(αi
2 T (k)2) = αi

2 T (k)2. Thus,
∀k > 0, and ∀wi(k) ≥ αi

2 T (k)2, we have g(wi(k)) ≥
αi
2 T (k)2, or f (wi(k)) ≤ wi(k) − αi

2 T (k)2. We now claim
that for any wi(0) ≥ αi

2 T (0)2, ∃ k∗ such that wi(k∗) ≤
αi
2 T (k∗)2. Indeed, wi(k∗) ≤ wi(0) − ∑

k∗−1
j=0

αi
2 T (j)2. To

enforce the claim, we have wi(0) − ∑
k∗−1
j=0

αi
2 T (j)2 ≤

αi
2 T (k∗)2, i.e., wi(0)− ∑

k∗
j=0

αi
2 T (j)2 ≤ 0, which is satis-

fied if wi(0)− (αi
2 min j=0,...,k∗ T (j)2)(k∗+ 1) ≤ 0, or, k∗ ≥⌈

2wi(0)
αi min j=0,...,k∗ T (j)2 −1

⌉
, which can always be found.

It is worth highlighting some appealing characteristics of
the proposed resource allocation scheme:

1) System (24) under the resource allocation policy (25) is
globally attracted to Wi(k) = [0, ai

2 T (k)2] in finite time.
2) Policy (25) is decentralised as only local information

is required. Moreover, it is scalable with respect to the
number of computing nodes.

3) Stability properties of (24)-(25) are independent of the
particular tuning of AIMD parameters αi, βi.

V. QUEUING TIME CALCULATION

In the following, we use a standard definition of queueing
time consistent with Little’s Law, see, e.g., [21, Chapter 2].
We define the total queueing time associated with requests
dispatched to node-i as

Qi(k) = Qδi(k)+Qwi(k), (27)

where Qδi(k) corresponds to queueing time in the batch
queue, while Qwi(k) corresponds to queueing time in node-i.
The average admission rate associated with node-i is defined
as uav

i (k) = 1
T (k)

∫ tk+1
tk ui(t)dt, where T (k) = tk+1 − tk, and

ui(t) is given by (9). Solving the integral above yields

uav
i (k) = βiui(k)+

αi

2
T (k). (28)

Substituting T (k) in (28) from (11), we get
n

∑
i=1

uav
i (k) = λ , ∀ k ≥ 0. (29)

In view of (29), we can write that uav
i (k)T (k) corresponds to

the fraction of the total arrivals at the batch queue, namely,
∑

n
i=1 uav

i (k)T (k) = λT (k) associated with node-i.
We define δi(τ) = uav

i (k)τ − βiui(k)τ − αi
2 τ2, with 0 ≤

τ ≤ T (k), as the number of queued requests waiting in
the batch queue before being dispatched to node-i. Note
that ∑

n
i=1 δi(τ) = δ (τ), and δi(tk) = 0 for all i = 1, . . . ,n.

We calculate Qδi(k) =
∫ T (k)

0 δi(τ)dτ

uav
i (k)T (k) , and see that integral∫ T (k)

0 δi(τ)dτ is the unshaded area enclosed by parabola ABΓ

and the line segment AΓ, in Fig. 3. Similarly, we calculate

Qwi(k) =
∫ T (k)

0 wi(τ)dτ

βiui(k)T (k)+ 1
2 αiT (k)2 , where integral

∫ T (k)
0 wi(τ)dτ is

the shaded area in Fig. 3, and βiui(k)T (k) + 1
2 αiT (k)2 =

uav
i (k)T (k) due to (28). Adding the two aforementioned areas

and dividing by uav
i (k)T (k) clearly yields the queueing time

associated with node-i. In other words, Qi(k) is equal to the
area enclosed by the trapezium AΓ∆O divided by uav

i (k)T (k),
i.e.,

Qi(k) =
wi(k)+wi(k+1)

2uav
i (k)

. (30)

Remark 1 The total queueing time of node i can be defined
by means of local information without any information
pertinent to the batch queue. Also, letting wav

i (k) = (wi(k)+
wi(k + 1))/2 be the average number of queued requests
between two successive events, (30) becomes Qi(k) =

wav
i (k)

uav
i (k) ,

which is clearly consistent with Little’s Law.

VI. NUMERICAL EXAMPLE

We consider requests entering a system of four computing
nodes at a constant rate λ . Each node admits requests accord-
ing to (10), and alters its service rate via (25). Simulation
results are presented in Fig. 4-6 for the setup parameters
shown in Table I.

λ αi βi ui(0) i
100 5i 0.5 (i−1)5 {1,2,3,4}

W1(k) W2(k) W3(k) W4(k) wi(0)
[0, 4.44] [0, 8.88] [0, 13.33] [0, 17.77] (2i−1)7

TABLE I: Simulation parameters / Invariant sets

As can be seen from Fig. 4(left), the inter-event period
converges to T ∗= 1.33 [sec]. Viewing Fig. 5(left), admission
rates also converge to u∗i =

αi
1−βi

T ∗, i = 1, . . . ,4, verifying the

0 2 4 6 8 10 12 14 16 18 20

Events

0

0.5

1

1.5

2

2.5

3

3.5

Inter-event Period

0 2 4 6 8 10 12 14 16 18 20

Events

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Queueing time

node-1

node-2

node-3

node-4

Fig. 4: Left: Inter-event period. Right: Queueing time.

0 2 4 6 8 10 12 14 16 18 20

Events

0

10

20

30

40

50

60

70

80

Maximum admission rates

node-1

node-2

node-3

node-4

0 5 10 15 20 25 30

Time [sec]

0

10

20

30

40

50

60

70

80
Admission rates

node-1

node-2

node-3

node-4

Fig. 5: Left: Admission rates at events. Right: Admission
rates at time t.

validity of Theorem 2. Fig. 5(right) illustrates typical AIMD
behaviour with convergence occurring after approximately 10
events. Faster convergence may be attained if αi, i= 1, . . . ,4,
are selected more aggressively. Service rates are depicted in
Fig. 6(left). It is evident that γi(k) are strongly related to
uav

i (k). Queue profiles are shown in Fig. 6(right), where it
is seen that queues are bounded highlighting the stability
properties of Theorem 3. Invariant sets Wi(k) for T (k) = T ∗

are given in Table I. Overall, stable operation is obvious
and guaranteed for all computing nodes regardless of the
tuning of individual AIMD parameters. We refer interested
readers to [23] for further simulation scenarios with arbitrary
numbers of nodes and random arrival processes.

VII. CONCLUSION

We study the problem of simultaneous scheduling and re-
source allocation of requests entering a system of computing
nodes. Inspired by the well-established AIMD algorithm,
we present a new admission control policy for general
scheduling problems. We provide stability guarantees, inde-
pendent of the overall system dimension and AIMD tuning.
Following a bottom-up approach, we then propose a globally
stabilizing resource allocation strategy defined as an event-
driven decentralized nonlinear feedback controller. This ef-

0 2 4 6 8 10 12 14 16 18 20

Events

0

10

20

30

40

50

60

70

Service and average admission rates

node-1

node-1

node-2

node-2

node-3

node-3

node-4

node-4

0 5 10 15 20 25 30

Time [sec]

0

5

10

15

20

25

30

35

40

45

50
Queued Requests

node-1

node-2

node-3

node-4

Fig. 6: Left: Service rates (solid lines) and average
admission rates (dashed lines). Right: Queued Requests.

fectively guarantees that individual queues are bounded con-
verging in finite time to an interval. Finally, we associate
these properties with Quality of Service specifications. Our
method is simple, scalable, and locally configurable. Two
important challenges, namely, non deterministic workload
and the presence of resource constraints will be addressed
in future work.

REFERENCES

[1] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A Survey of Research
on Cloud Robotics and Automation,” IEEE Trans. on Automat. Science
and Engineering, vol. 12, no. 2, pp. 398–409, 2015.

[2] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on
Architecture and Computation Offloading,” IEEE Communications
Surveys and Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[3] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile Edge
Computing: A Survey,” IEEE IoT Journal, vol. 5, pp. 450–465, 2018.

[4] C. Karamanolis, M. Karlsson, and X. Zhu, “Designing controllable
computer systems,” in Proc. of 10th Workshop on Hot Topics in
Operat. Sys. Berkeley: USENIX Association, 2005, pp. 9–15.

[5] Z. Wang, X. Zhu, and S. Singhal, “Utilization and SLO-based control
for dynamic sizing of resource partitions,” in 16th IFIP/IEEE Ambient
Networks international conference on Distributed Systems: Operations
and Management. Springer Verlag, 2005, pp. 133–144.

[6] D. Dechouniotis, N. Leontiou, N. Athanasopoulos, A. Christakidis,
and S. Denazis, “A control-theoretic approach towards joint admission
control and resource allocation of cloud computing services,” Intern.
Journal of Network Management, vol. 25, no. 3, pp. 159–180, 2015.

[7] M. Avgeris, D. Dechouniotis, N. Athanasopoulos, and S. Papavas-
siliou, “Adaptive resource allocation for computation offloading: A
control-theoretic approach,” ACM Transactions on Internet Technol-
ogy, vol. 19, no. 2, pp. 1–20, 2019.

[8] M. Maggio, H. Hoffmann, M. D. Santambrogio, A. Agarwal, and
A. Leva, “Controlling software applications via resource allocation
within the Heartbeats framework,” in Proceedings of the IEEE Con-
ference on Decision and Control, 2010, pp. 3736–3741.

[9] E. Kalyvianaki, T. Charalambous, and S. Hand, “Adaptive resource
provisioning for virtualized servers using kalman filters,” ACM Trans-
actions on Autonom. and Adaptive Syst., vol. 9, no. 2, pp. 1–35, 2014.

[10] E. Makridis, K. Deliparaschos, E. Kalyvianaki, A. Zolotas, and
T. Charalambous, “Robust Dynamic CPU Resource Provisioning in
Virtualized Servers,” IEEE Transactions on Services Computing, 2020.

[11] D. M. Chiu and R. Jain, “Analysis of the increase and decrease
algorithms for congestion avoidance in computer networks,” Computer
Networks and ISDN Systems, vol. 17, no. 1, pp. 1–14, 1989.

[12] M. Corless, C. King, R. Shorten, and F. Wirth, AIMD Dynamics and
Distributed Resource Allocation. Society for Industrial and Applied
Mathematics, 2016.

[13] A. Berman, R. Shorten, and D. Leith, “Positive matrices associated
with synchronised communication networks,” Linear Algebra and Its
Applications, vol. 393, no. 1-3, pp. 47–54, 2004.

[14] R. N. Shorten, D. J. Leith, J. Foy, and R. Kilduff, “Analysis and design
of AIMD congestion control algorithms in communication networks,”
Automatica, vol. 41, no. 4, pp. 725–730, 2005.

[15] G. Golub, “Some Modified Matrix Eigenvalue Problems,” SIAM
Review, vol. 15, no. 2, pp. 318–334, 1973.

[16] J. R. Bunch, C. P. Nielsen, and D. C. Sorensen, “Rank-one modifica-
tion of the symmetric eigenproblem,” Numerische Mathematik, vol. 31,
no. 1, pp. 31–48, 1978.

[17] R. Shorten, F. Wirth, and D. Leith, “A positive systems model of TCP-
like congestion control: Asymptotic results,” IEEE/ACM Transactions
on Networking, vol. 14, no. 3, pp. 616–629, 2006.

[18] F. Blanchini and S. Miani, Set-Theoretic Methods in Control, ser.
Systems & Control: Foundations & Applications. Birkhäuser, 2015.

[19] S. Maguluri and R. Srikant, “Scheduling jobs with unknown duration
in clouds,” in Proc. - IEEE INFOCOM, 2013, pp. 1887–1895.

[20] S. Maguluri, R. Srikant, and L. Ying, “Heavy traffic optimal resource
allocation algorithms for cloud computing clusters,” Performance
Evaluation, vol. 81, pp. 20–39, 2014.

[21] L. Kleinrock, QUEUEING SYSTEMS, Volume I: Theory. Wiley, 1975.
[22] C. G. Cassandras and S. Lafortune, Introduction to discrete event

systems. Springer US, 2008.
[23] [Online]. Available: https://github.com/lefterisvl83/cdc21

