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Abstract: Mobile applications are progressively becoming more sophisticated and complex, in-1

creasing their computational requirements. Traditional offloading approaches that use exclusively2

the Cloud infrastructure are now deemed unsuitable due to the inherent associated delay. Edge3

Computing can address most of the Cloud limitations at the cost of limited available resources.4

This bottleneck necessitates an efficient allocation of offloaded tasks from the mobile devices to5

the Edge. In this paper, we consider a task offloading setting with applications of different char-6

acteristics and requirements, and propose an optimal resource allocation framework leveraging7

the amalgamation of the edge resources. To balance the tradeoff between retaining low total8

energy consumption, respecting end-to-end delay requirements and load balancing at the Edge,9

we additionally introduce a Markov Random Field based mechanism for the distribution of the10

excess workload. The proposed approach investigates a realistic scenario, including different11

categories of mobile applications, edge devices with different computational capabilities and12

dynamic wireless conditions modeled by the dynamic behavior and mobility of the users. The13

framework is complemented with a prediction mechanism that facilitates the orchestration of14

the physical resources. The efficiency of the proposed scheme is evaluated via modeling and15

simulation and is shown to outperform a well-known task offloading solution, as well as a more16

recent one.17

Keywords: Task offloading; Edge computing; Energy optimization; Resource allocation; Markov18

Random Fields19

1. Introduction20

The proliferation of telecommunications in the last decade has offered a plethora of21

new applications and features to the end-users. End-devices with cameras, navigation22

systems and embedded sensors support various augmented capabilities, while the23

introduction of new communication and network paradigms, such as the Internet of24

Things (IoT) and 5G networks, have resulted in an exponential increase of generated25

traffic volume and order of end-devices in wireless networks.26

Although the evolution of wireless communications is accompanied with computa-27

tionally powerful devices, applications still need to fully or partially offload the involved28

computational tasks. The reason is that mobile applications are becoming more complex29

and more demanding in terms of Quality of Service (QoS) and Quality of Experience30

(QoE) [1,2]. An efficient way to enable task-offloading and energy savings is to leverage31

the abundant resources available in the Cloud. This mobile-to-Cloud interconnection can32

facilitate the execution of computationally-intensive and data-driven processing tasks in33

a relatively low-cost and effective manner [3]. However, the use of Cloud Computing34

(CC) for task offloading of the end-devices, can generate two major issues: high trans-35

mission latency and capacity-demand mismatch, i.e., resource overprovisioning, which36
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leads to resource and energy waste [4]. To mitigate this, the Edge Computing (EC) ap-37

proach, which pushes computing capabilities at the Edge of the network, is being rapidly38

adopted and seems promising in terms of achieving the ambitious millisecond-scale39

latency required in various 5G and IoT applications [5].40

1.1. Motivation & Challenges41

However, despite the numerous possibilities and advantages introduced by EC42

– in contrast with the Cloud where large-scale computational and communication in-43

frastructures are the norm – the resources at the Edge are limited to micro data-centers,44

consisting of only few servers [6]. Thus, an efficient resource allocation technique is45

required for both users and infrastructure providers. On the user side, task offloading46

aims to respect the latency constraints and extend the battery lifetime. The success47

of task offloading depends mainly on the user’s mobility and the quality of wireless48

connection [1]. On the provider side, the primary goal is the minimization of the energy49

consumption of the data center, which is mainly affected by the number of active servers50

and the amount of their allocated resources [7,8]. Thus, task offloading and resource51

allocation are coupled and must be jointly addressed.52

To this end, a synergistic and distributed approach between the end-devices and53

the edge infrastructure is necessary to accommodate the dynamic demand of the ap-54

plications. The main challenge of such an approach is to estimate the amount of the55

offloaded tasks and make appropriate decisions on where the offloaded tasks should56

be executed. Taking into consideration the wireless channel conditions, the complexity57

of this resource allocation problem increases exponentially. Dynamic physical channel58

conditions and dynamic user density, due to users’ mobility in the infrastructure, require59

a proactive and dynamic resource allocation technique to select the necessary compu-60

tational and networking resources at the Edge, in an adaptive manner. This creates61

the need to investigate appropriate resource allocation strategies enhanced with user62

density prediction techniques, to further ameliorate the delay and energy savings of63

both end-devices and edge infrastructure.64

1.2. Contributions & Outline65

In order to satisfy the aforementioned requirements, we propose a novel framework,66

referred to as ENERDGE, which jointly tackles task offloading and resource allocation of67

multiple edge data centers in a distributed and energy-efficient manner. The framework68

has a gradual operation, introducing the following key contributions:69

• We propose a performance modeling approach based on Switching Systems Theory,70

to define virtual hardware profiles, i.e., flavors, for the edge infrastructure, provid-71

ing application QoS guarantees under various operating conditions. The specific72

QoS metric investigated in the proposed approach is the application’s response73

time, but other relevant metrics could have been used as well. This modeling allows74

for dynamic selection and allocation of the appropriate amount of resources for75

each application (i.e., switching between the different hardware profiles), based76

on the anticipated workload demands. Leveraging the capabilities provided by77

this switching, we design a two-stage distributed, energy aware, proactive resource78

allocation mechanism.79

• During the first stage, we extend current literature works that jointly address task80

offloading and resource allocation on a single edge site (i.e., [9]), to simultaneously81

minimize the total energy consumption of each edge site and provide guaranteed82

satisfaction of the QoS requirements of each deployed application. In order to83

accommodate the workload prediction demands at this stage, we utilise an existing84

user mobility prediction mechanism, based on the concept of the n-Mobility Markov85

Chain location prediction [10], to estimate the movement of the mobile devices86

between different sites within the edge infrastructure and subsequently the density87

of the users on each point of interest.88
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• During the second stage, we combine this approach with a novel Markov Random89

Field (MRF) mechanism that incorporates in its objective function all optimization90

criteria; this mechanism aims at redirecting tasks that cannot be executed locally91

under the given energy and QoS requirements of the first step, balancing resource92

utilization throughout the whole infrastructure. Thus, it achieves a better total93

energy management optimization through an efficient state space search in a dis-94

tributed fashion, while taking into consideration any additional network delays95

incurred. This is the first approach of such a combination, and it could potentially96

pave the way for other similar MRF designs as optimizers in relevant problems. The97

integration of the above modeling and resource allocation approaches composes a98

task offloading and energy-aware resource allocation mechanism for accommodat-99

ing dynamic spatiotemporal workload demands.100

• Finally, we provide a detailed evaluation of our approach in terms of energy con-101

sumption minimization and QoS satisfaction for both stages of the mechanism.102

Then, we compare it with a well-established study ([11]) and a more recent one103

([12]). Based on a realistic application simulation, our solution outperforms both104

approaches in terms of adaptation efficiency. In other words, our approach yields105

less energy consumption for achieving the same QoS guarantees, or equivalently, it106

achieves higher QoS guarantees for the same energy consumption.107

The remainder of the paper is organized as follows: Section 2 provides a brief108

overview of the related literature. Section 3 provides the system model along with109

a high-level description of the introduced collaborative framework. In Section 4, the110

problem formulation and proposed solution for the problem at hand are presented in111

detail. In Section 5, a thorough evaluation of the proposed framework through modeling112

and simulation is presented. Finally, Section 6 concludes the paper and describes113

potential future work.114

2. Related Work115

The problem of task offloading falls into the knapsack resource allocation category116

which is NP-hard in general [13]. Most of the proposed approaches follow a partial or117

full offloading technique, according to whether the tasks are separated or not, with the118

goal to minimize the overall latency and/or energy [14]. Furthermore, they propose119

static resource allocation schemes on the edge infrastructure. In this paper, we follow120

the design principles of [15] and propose the ENERDGE framework, a mobility-aware121

and full offloading approach in order to minimize the energy consumption of the edge122

infrastructure under specific QoS guarantees for the mobile applications hosted. In this123

context, there are three interesting and related directions in the literature: i) mobility124

prediction for task offloading, ii) single-site task offloading and resource allocation, and125

iii) multi-site task offloading and resource allocation.126

2.1. Mobility Prediction for Task Offloading127

The success of offloading decisions depends heavily on the dynamic nature of task128

behavior and user mobility. In particular, the users may move and resource prices for129

offloaded task execution may vary over time. This led the authors in [16] to propose an130

online algorithm with a logarithmic objective to minimize the resource usage of the edge131

infrastructure, while taking into account the impact of mobility in the latency. They also132

formulate a VM migration cost for the tasks that need to follow the users’ movement. A133

migration policy, however, for containers, is also formulated in [17], where the authors134

introduce an architecture in which Fog Computing services constantly move in order to135

be always close enough to the served IoT mobile devices. Utilizing neural networks and136

Markov chains, Labriji et al. [18] presented a mobility prediction algorithm to proactively137

and online migrate computation services (VMs) for vehicular 5G networks.138

Since the mobility of the users can significantly impact the latency and increase139

the migration cost, the authors in [19] introduced a prediction mechanism to ameliorate140
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the offloading performance. A similar approach is followed in [20], where the most141

popular services are proactively installed in the Edge servers located in the positions142

that the users will most probably visit, thus reducing the network delay during task143

offloading. Another approach, denoted as MAGA and introduced in [21], is based on144

frequent moving patterns of the users and a genetic algorithm to partially offload tasks145

to edge servers. However, in the preceding works the authors assume static resource146

allocation at the edge, in terms of amount of resources utilized.147

2.2. Single-site Offloading & Resource Allocation148

In case of task offloading, a single edge site is usually available in close proximity149

to the users. The main focus in this type of resource allocation problem lies in the150

latency and energy minimization. For example, the authors in [22] investigate the task151

offloading of augmented reality applications emphasizing on the computation intensive152

tasks (i.e., object recognition and position tracking). A successive convex approximation153

approach is proposed to minimize energy consumption under latency constraints, while154

emphasizing on both the available computation and communication resources at the155

Edge. Another energy-efficient based approach is presented in [13], following a mixed156

discrete-continuous optimization approach along with a low-complexity heuristic based157

on Johnson’s algorithm. Elgendy et al. [23] try to minimize the total consumed energy158

by solving an optimization problem to compute near-optimal offloading decisions for159

each mobile IoT user, however, for a single edge server and without considering the160

mobility of the users.161

Regarding latency, authors in [4] study the admission control and resource alloca-162

tion problem of computationally intensive IoT applications at the Edge. A Lyapunov163

dynamic stochastic optimization approach is used with the goal to reduce the end-to-164

end delay, while improving the overall throughput. Similarly, [24] investigates the165

mobile-edge computing offloading problem with the goal to minimize the latency in a166

multi-user scenario with joint communication and computational resources. The solution167

is based on the Lagrange multiplier method. However, such centralized task offloading168

approaches usually fail to apply to realistic scenarios of larger edge infrastructures with169

multiple, geographically distributed sites.170

2.3. Multi-site Offloading & Resource Allocation171

In case of multiple edge sites in close proximity to the devices, task offloading172

includes both the resource allocation of the tasks and the selection of the right admin-173

istrative domain (i.e., edge infrastructure). In this context, an edge orchestrator can174

be used to assign the tasks to the appropriate domain, with the goal to maximize the175

number of successfully assigned task requests [25]. Sonmez et al. [26], proposed a fuzzy176

workload orchestrator for multiple Edge and Cloud infrastructures. For each offloaded177

request, a set of fuzzy rules determined the destination computational unit within a178

hierarchical multi-site architecture. However, the authors empirically defined the fuzzy179

rule sets, while assuming static resource provisioning on the edge servers, which might180

not be applicable to real conditions where services typically bear different workload181

characteristics.182

Another goal can be the balancing of the load between edge servers, while mini-183

mizing the application response time. In [11], over-utilized edge servers redirect part of184

their incoming workflow to resource-rich or under-utilized servers, using a minimum185

cost max flow algorithm towards achieving total balance in terms of average application186

response time in the whole edge infrastructure. An extension to this work is presented187

in [27], where a genetic algorithm is exploited for a distributed load balancing of traffic,188

yielding a solution that converges to the minimization of maximum task response time189

through gene mutations. A slightly different approach is followed in [12], where the190

authors developed a load balancing technique for distributed edge servers, using a191

game theoretic approach, and proposed a state-based distributed learning algorithm to192
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obtain the optimal action at each reachable state. The existence of recurrent state Nash193

equilibrium was proven by using the potential game theory.194

The ENERDGE framework simultaneously addresses energy consumption mini-195

mization and distributed load balancing, while respecting the applications’ QoS require-196

ments. Initially, we simulate a wireless protocol to extract the instantaneous throughput197

under dynamic wireless network conditions, and we predict the density of the users198

around a point of interest, with the use of an n-Mobility Markov Chain location predic-199

tion method. Based on this prediction, we leverage pre-computed profiles of virtual200

machines (VMs) to enable proactive and dynamic resource allocation at each edge site,201

ensuring the QoS constraints of any deployed application. Containers can also be con-202

sidered as the virtualization units without any change in the modeling. Finally, we203

introduce a novel load balancing technique based on Markov Random Fields (MRF) and204

load redirection, to appropriately redistribute the excess workload among the available205

edge sites, towards the minimization of the total energy consumption. To the best of our206

knowledge, this is the first research effort that takes into consideration holistically these207

task offloading objectives in distributed EC infrastructures.208

3. System Model209

3.1. Edge Infrastructure & Applications210

To facilitate the extensive modeling employed in this work, Table 1 summarizes211

the key notation used throughout the article. We model our physical infrastructure as a212

group of wireless access points, each directly connected with a cluster of homogeneous213

servers, as illustrated in Figure 1. These physical resources altogether form an edge data214

center, which hereafter is referred to as site sk, with S = {sk}n
k=1 being the set of sites, for215

n sites in total. This set forms a graph, where each site corresponds to a node and the216

edges to the interconnections between them through routers, used only for forwarding217

purposes (i.e., backhaul network). Furthermore, we consider that the servers of the edge218

infrastructure located in different sites are heterogeneous. This implies differentiation219

on processing capabilities and service completion time among sites.220

For the access layer, we assume the existence of various and heterogeneous end-221

devices (e.g., IoT, mobile devices) each associated with one of M specific mobile applica-222

tions (i.e., augmented reality and wearables). Each application m ∈ {1, . . . , M} comes223

with specific requirements in terms of QoS (e.g., average response time) that will guide224

the allocation of the resources.225

Figure 1. Example of Envisioned Edge Infrastructure.
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Table 1. Summary of the Key Notation.

Symbol Interpretation

sk Site k
S Set of sites, n = |S| sites in total
M Number of applications
θm Acceptable response time for App. m
ϕm VM flavor of application m
cm Cores requested by VM flavor ϕm
µm Throughput guaranteed by VM flavor ϕm

Sercpu Server’s CPU capacity
Pser Server’s power consumption
Pmax Server’s max. power consumption

P(ϕm) Power consumption of VM flavor ϕm
zi A feasible VM formation
Zk Set of feasible VM formations at site sk
N Size of zi VM formation

Cser
k Servers’ CPU cores threshold at site sk

PA Edge infrastructure’s power consumption
Pk Power consumption of site sk
fi Number of servers with zi VM formation

Ek Number of available servers in site sk
pi Power consumption of VM formation zi
rm

i Max. workload served by VM formation zi
L̃k = [L̃m

k ] Predicted workload for site sk
Nsk Neighborhood of site sk

wk = [w(k)
m ] Excess workload for App. m at site sk

bk = [b(k)i ] Number of servers of type i at site sk
P(bk) Power consumption of bk

Xk = {Wk, Bk}n
k=1 Random field

V(ω) MRF potential function
C1, C2, C3, ∆1, ∆2 Properly selected MRF constants

L, K, x0 Parameters of reflected sigmoid function
t Visiting epoch of MRF
w MRF sweep index

T(w) MRF temperature at sweep w

3.2. Task Offloading226

As depicted in Figure 1, each end-device running an application m offloads its227

computational intensive processes to the Edge to reap the benefits of the more powerful228

computational resources. In this work, we assume an IEEE 802.11ac access network to229

offload the tasks from the devices. Following the work of [28], we model the access230

network using an indoor TGnAC Channel B, suitable for large open space and office231

environments [29]. Along the same lines, in order to capture the dynamic nature of232

the wireless channel, the transmission rate of the devices is adjusted according to an233

enhanced version of the Minstrel algorithm [30]. In this manner, the devices are able234

to change the modulation and coding scheme (MCS) used, and thus the transmission235

rate, conforming to the varying channel conditions and interference from nearby devices236

(Signal to Interference & Noise Ratio - SINR). This procedure allows us to create a realistic237

dataset containing tuples of <number of users, offloading request rate of each user>, which238

is publicly available1, and utilize it to translate the predicted number of users to the239

anticipated request rate, for a specific edge site. Specifically, we assume that each user240

1 https://github.com/maravger/netmode-cloudsim/blob/master/task_offloading_ds_verbose.xlsx

https://github.com/maravger/netmode-cloudsim/blob/master/task_offloading_ds_verbose.xlsx
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constantly offloads at his/her maximum achievable data rate, and, considering a fixed241

offloaded task size, we are able to produce the anticipated workload volume for the242

estimated number of users.243

We assume that each end-device needs to fully offload its requests on edge servers244

following a VM/container-based provisioning method. Depending on the user’s loca-245

tion, the offloaded tasks are initially assigned to the site where the wireless transmission246

occurs. Each VM/container of the site’s servers serves the offloaded requests of the247

application m that it was assigned to. We note here that, for the sake of simplicity, we248

focus on scenarios and settings where the user’s movement is typically limited close249

to the site of interest during the whole offloading procedure. Therefore, the offloading250

procedure for a single task is assumed to be completed within the same site that it251

was initiated in and, consequently, no handover processes and costs are considered.252

The most important QoS requirement of the offloaded tasks of an application m is the253

acceptable response time θm value, which is application-specific. Under this setting, the254

end-device accelerates the execution of computationally intensive tasks and extends its255

battery lifetime.256

3.3. VM Flavor Design257

On each edge site, it is essential to facilitate the proactive dynamic resource allo-258

cation due to the varying number of the offloading requests received. We denote the259

VM (or container) flavor for every deployed application, which describes the relation260

among the application’s response time, the allocated CPU cores and the number of the261

offloaded requests. The computation of these VM flavors is based on switching systems262

from the System Theory. The advantage of the VM flavor design is two-fold; firstly,263

this modeling approach allows for accurately capturing the dynamic behavior of the264

application-specific VMs, under various operating conditions. Secondly, calculating a265

multitude of VM flavors, allows us to quickly adjust the edge infrastructure to different266

pairs of workloads and applications, while providing a level of guarantee for the QoS267

specifications.268

We define the VM (or container) flavor ϕm ∈ Φ of an application m as a tuple that269

includes the QoS specifications of the hosted application, the requested resources for the270

VM that will provide the QoS guarantees and the maximum throughput of offloaded271

requests, for which the VM will be able to achieve these guarantees, ϕm : < θm, cm, µm >.272

Specifically, parameter θm denotes the average response time that the VM of flavor ϕm273

guarantees to achieve with cm CPU cores allocated to it and for a maximum throughput274

of µm offloaded requests per time unit. We assume that the response time consists of275

two terms: (a) transmission time and (b) service completion time. The transmission276

time includes the time to transmit/upload the application’s request through a wireless277

link. In particular, since we have modelled our wireless link through the IEEE 802.11ac278

protocol, we are able to calculate this delay by leveraging the information of throughput279

achieved and the application’s task size. Regarding, the time to download the response280

from the server, since the size of the output is generally much smaller than the input, this281

delay can be usually omitted [31]. Service completion time includes the VM/container282

startup time, as well as the queuing and processing time of the application tasks at the283

assigned servers. A flavor could also define the memory requested by the VM. However,284

it is omitted from the problem formulation due to the following reasons: Firstly, memory285

power consumption is negligible compared to CPU power consumption [32]. Secondly,286

following the paradigm set by well-known edge computing frameworks like MAUI [33]287

and ThinkAir [34], we concentrate on the offloading of CPU-intensive tasks.288

In principle, the performance of an application hosted on a VM is non-linear and289

cannot be described analytically. However, adopting linear modeling allows for an290

easier identification of the system, without significant loss of accuracy, and enables291

the implementation of various optimization and control methodologies. In order to292

extract the VM flavors for each application deployed on a site, we modify the modeling293
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approach of [9]; for each application and for each flavor ϕm of this applications’ VMs, we294

identify a scalar, discrete Linear Time-Invariant (LTI) system. In particular, we mainly295

differentiate the VM flavors based on the number of CPU cores they require, which also296

constitutes the switching criterion of our mechanism. Thus, during this identification297

phase, for each application and for each different CPU core allocation, the operation of298

the corresponding VM is described by a discrete linear system of the following form,299

θ(τ + 1) = aθ(τ) + bµ(τ), (1)

where θ(τ) represents the average response time for the deployed application, within300

a time period τ and µ(τ) the number of offloaded requests within the specific time301

period. The coefficients a ≥ 0 and b ≥ 0 are known scalars which can be estimated by302

the Recursive Least Square algorithm [35].303

Physically, a VM with cm allocated cores can only serve up to µm offloaded requests304

of the deployed application while guaranteeing an average response time of θm for the305

specific time period. This constitutes the physical interpretation of a flavor ϕm and306

generally, for each such switching system, a set of feasible VM flavors of this kind can be307

computed, according to certain performance criteria and input constraints. In our case,308

these feasible VM flavors are computed by solving the following linear programming309

problem with the goal to maximize the number of the offloaded requests:310

max
θm ,cm

µm (2a)

subject to θm = aθm + bµm (2b)

θmin ≤ θm ≤ θmax (2c)

µmin ≤ µm ≤ µmax (2d)

The first constraint dictates that each flavor must also be an equilibrium point of the discrete311

linear system, which will guarantee its stability and confinement in a specific operating312

area around it. The second constraint implies that the average response time must lay313

between a minimum (θmin) and a maximum value (θmax), set by the application’s QoS314

requirements, while the last constraint refers to the offloaded requests varying within315

the applications anticipated throughput range. This problem is solved only once, in316

an offline manner, using the GLPK solver2,thus its computational complexity is a fixed317

factor paid only once, at the very beginning of the operation of our framework. We do318

not consider it in the steady state of the framework’s operation, since it can be considered319

amortized in the long-run.320

By having a set of VM flavors corresponding to different core allocations and321

maximum throughput, we provide better level of accuracy than using a single LTI322

model for the whole operation. In such a way, the extracted VM flavors correspond to323

realistic operating conditions and constitute the fundamental elements for the ENERDGE324

resource allocation mechanism.325

3.4. Power Modeling326

When fully offloading tasks, the total computational and energy burden is shifted327

away from the devices. However, reviewing this shift from a complete network-wide328

view, one can easily understand that the problem is simply pushed at the Edge. Thus,329

in this work, we also consider the minimization of power consumption at the edge330

infrastructure. This includes switching physical devices on and off and optimizing the331

computational resource usage during the offloading.332

2 https://www.gnu.org/software/glpk/

https://www.gnu.org/software/glpk/
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Usually, for the server power dissipation, an almost linear relationship between the333

power consumption of a server and its CPU utilization exists. The following model, can334

accurately predict the servers’ power consumption Pser with an error below 5% [32]:335

Pser = γ · Pmax + (1− γ) · Pmax · u, (3)

where Pmax is the maximum power consumed when the server is fully utilized, γ is the336

percentage of power consumed by an idle server (usually around 60% [36]) and u is the337

current CPU utilization.338

In order to extract the power consumed by a VM of flavor ϕm (VM for application339

m) provisioned in a server, the above equation is transformed as follows:340

P(ϕm) =

γ · Pmax + (1− γ) · Pmax · cm
Sercpu

, if u = 0,

(1− γ) · Pmax · cm
Sercpu

, otherwise,
(4)

where Sercpu is the total amount of the available computational resources in a server, i.e.,341

CPU cores. Hence, for the first VM provisioned at a server the power consumption will342

include activating the server and the power consumption added by the particular VM.343

For the rest of the VMs only their power consumption is taken into consideration. It is344

worth mentioning, that we assume an isolcpus technique [37], where we isolate and pin345

the requested CPU resources to the VM. This is a common technique for performance346

optimization when virtualizing x86 servers. Thus, each VM will have access only to its347

share of CPU resources consuming as well the corresponding power.348

3.5. User Density and Workload Prediction349

As discussed in the previous subsections, each site hosts a group of IoT/mobile350

applications and serves the offloaded requests that are generated by the devices within351

the range of its wireless access point. However, in both mobile and IoT applications,352

dynamic user density in the coverage area is a key feature and must be considered by the353

offloading decision and resource allocation mechanism, as it creates dynamic network354

conditions. Towards the optimal resource allocation policy, an accurate prediction of this355

is necessary.356

In order to address this issue, we implement a variation of the n-Mobility Markov357

Chains (n-MMC) location prediction method described in [10]. In a nutshell, this method358

incorporates the two previous visited sites of a mobile device and a Mobility Markov359

Chain in order to probabilistically predict the device’s next location. As a prerequisite,360

this method requires a transition matrix available, containing all the feasible transitions361

of a device between the sites, associated with their probability of occurring.362

In order to create this transition matrix, we used the Melbourne Museum dataset363

[38], which comprises 158 complete real visitor pathways, in the form of time-annotated364

sequences of visited exhibit sites. After processing the data, each path was assigned a365

probability based on its frequency of occurrence. This resulted in a transition matrix366

whose rows represent the three last visited sites and its columns represent the next site367

to be visited. In this way, predicting the next location of a visitor is simple. We trace their368

three most recently visited sites, search the row in the transition matrix that corresponds369

to this trace and find the column with the maximum probability of transition for this370

row. The site of this column is the predicted next location. Finally, having available the371

collective statistics regarding the predicted locations of the users for the upcoming time372

period, we acquire the predicted offloaded workload, L̃k = [L̃m
k ], for the respective site373

sk and application m, as described in Subsection 3.2.374

4. Resource Allocation & Workload Redistribution375

Leveraging the Switching System modeling approach introduced in the previous376

section, in this section we propose a 2-stage distributed, energy-aware, proactive resource377

allocation mechanism. In the first stage, an initial resource allocation optimization378
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takes place locally at each site of the edge infrastructure, which balances between379

energy consumption minimization and QoS satisfaction. In the second stage, a novel380

distributed technique is applied to redirect the excess workload to under-utilized sites,381

thus balancing the resource utilization and achieving a better energy management.382

4.1. Stage 1 – Resource Allocation Optimization383

In order to accommodate a proactive and dynamic resource allocation, we follow384

the work in [9] where time is considered slotted. In this stage, at the beginning of each385

system slot, a decision is made on the VM topology to be implemented on each site,386

which will enable it to handle the projected offloaded workload. This topology defines387

the number of edge servers to be activated in each site along with the VM formation to388

be placed in each edge server, i.e., the number and flavor of the VMs.389

Feasible VM formations are the ones where the sum of the CPU cores requested390

from the co-hosted VMs’ flavors does not exceed a predefined threshold. For instance,391

assume two applications App1 and App2. A VM running App1 and instantiated in a392

flavor that requests two CPU cores, along with a VM running App2 and instantiated in a393

flavor that requests one allocated CPU core, is a feasible VM formation for a single edge394

server, as the cumulative number of allocated CPU cores does not exceed the threshold395

of three cores (75% of the server’s total available CPU capacity, Sercpu = 4).396

The set of all feasible VM formations for edge servers in site sk is defined as,397

Zk := {zi =
(

ϕ
(j)
m , . . . , ϕ

(N)
m

)
, m ∈ [1, M], j ∈ [1, N] :

N

∑
j=1

c(j)
m ≤ Cser

k }, (5)

where i ∈ [1, |Zk|] is the index of the VM formation, ϕ
(j)
m is the VM flavor, c(j)

m the number398

of cores requested by the flavor of VM j of application m, M is the number of applications399

available at site sk, N is the total number of VMs contained in formation zi and Cser
k is400

the CPU cores threshold set for each edge server of sk. Due to the fact that the edge401

servers within a single site are considered homogeneous in terms of their resources, Cser
k402

has the same value for all of them that are tied to a site sk.403

We define the system cost as the power consumption of the edge infrastructure.404

Since in this stage of the resource allocation mechanism no exchange of workload405

takes place between the sites, minimizing locally the power consumption, Pk, of each406

individual site, sk, results in minimizing the total power consumption, PA = ∑n
k=1 Pk,407

where n stands for the total number of sites in the infrastructure. This can be achieved408

by optimizing the amount of edge resources that will be activated in each slot to serve409

the total predicted workload. Consequently, the corresponding optimization problem410

can be defined as:411

min
fi ,pi

{Pk} (6a)

subject to fi ≥ 0, i = 1, . . . , |Zk| (6b)
|Zk |

∑
i=1

fi ≤ Ek (6c)

Pk =
|Zk |

∑
i=1

fi pi (6d)

|Zk |

∑
i=1

firm
i ≥ L̃m

k , ∀m ∈ {1, . . . , M}, (6e)
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where the positive integer variables fi denote how many servers need to be activated412

with the zi VM formation of set Zk, assuming the total number of formations of edge413

servers in site sk is |Zk| and the total number of the available edge servers is Ek. Then,414

the sum of the fi variables cannot be greater than Ek (constraint (6c)). Constraint (6d)415

requires that a site’s power consumption is equal to the sum of the power consumption416

of its activated edge servers.417

As discussed in Subsection 3.4, the power consumption of each VM is proportional418

to its flavor size, i.e., the number of allocated CPU cores. As a result, power consumption419

pi of one edge server activated with the zi VM formation is calculated as follows:420

pi := p(zi) =
N

∑
j=1

P(ϕ(j)
m ), m ∈ {1, . . . , M}. (7)

Finally, the last M constraints of (6e) denote that the total predicted workload for each421

application at sk, L̃m
k , for the next system slot, is satisfied by the activated edge servers in422

each site. Again, as discussed in Subsection 3.3, the workload guaranteed to be served423

by one edge server with the zi VM formation is:424

rm
i := rm(zi) =

N

∑
j=1

µ
(j)
m , m ∈ {1, . . . , M}. (8)

Problem (6a) is solved in a distributed fashion, locally in each site and proactively at the425

beginning of each system slot, after collecting all the required information (i.e., available426

resources and predicted workload). An overview of this process is depicted in Figure 2.427

As evidenced by the above, the problem solved here is a combinatorial one, expressed as428

a mixed integer linear program (MILP). For treating this MILP, the GLPK solver is used429

once again. The problem under consideration is generally NP-hard, and the lower bound430

of the computational complexity of the branch-and-cut algorithm used to find a solution431

is exponential [39]. However, it should be noted that, following common considerations432

in the literature [9], we assume that the total number of available edge servers in a site is433

Figure 2. Resource Allocation Optimization Overview (Stage 1).
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relatively small, thus the overall computation complexity of the optimization process is434

kept minimum, allowing the problem to be solved online.435

4.2. Stage 2 – Inter-site Redistribution of Excess Workload436

In edge infrastructures the wireless network traffic, and therefore the offloading437

requests, exhibit considerable variation. On the one hand, there may be cases where the438

total predicted workload for a site exceeds its total available resources, in which case439

the problem in (6a) has no feasible solution. In this situation, all the site’s edge servers440

are activated with a fixed zmax formation, where zmax stands for the VM formation that441

accommodates the maximum possible number of offloaded requests for each application.442

Even so, a portion of the predicted workload will remain unserved (overloaded site). On443

the other hand, it is also common that the total predicted workload for a site is lower444

than the predefined threshold that dictates whether the energy cost of activating the445

site’s edge servers is worth serving it. Again, a portion of the predicted workload will446

remain unserved (underloaded site). We denote the aggregation of the remaining predicted447

workload of each of these sites as the excess workload wk of site sk, and we handle this448

through the novel approach that follows.449

In this second stage, we aim towards better balancing the previous resource manage-450

ment decisions, so that excess workload requests of a site are redistributed in neighboring451

(or even farther apart) sites. The excess workload is handled in such a way that it does452

not allow sites to become operational for a number of requests lower than a threshold of453

their total capacity, which will ensure eventually better energy efficiency, as explained454

in previous subsections. To achieve this, we employ the theory of Markov Random455

Fields (MRFs) [40], mainly due to their agile design and straightforward implementation,456

which allows simple distributed decision-making, while achieving results very close to457

the optimal ones (and frequently the optimal ones) with very low convergence times.458

The unfamiliar reader can refer to the Appendix A for a quick introduction to the MRF459

concept and basic notation.460

In this work, we consider the sites sk ∈ S. A neighborhood system N = {Nsk}sk∈S461

is defined on S, while Nsk denotes the neighborhood of site sk and includes the nodes462

within single hop distance. Assume wk = [w(k)
m ] is the vector indicating the amount of463

excess workload for application m at each site sk and bk = [b(k)i ] the vector indicating the464

number of selected servers of type i, to be additionally activated at site sk. Considering465

ek, the number of available servers per site sk, which is obtained from the solution of the466

initial resource optimization problem (6a), bk is such that467

bk =
[
b(k)i , . . . , b(k)|Zk |

]
,
|Zk |

∑
i=1

bi ≤ ek. (9)

Vectors wk, bk are stochastic, since their values depend on the instantaneous system state468

and user activity. We define the collection of random variables Xk = {Wk, Bk}n
k=1, as a469

collection of random vectors Wk = wk, Bk = bk, ∀ k ∈ [1, n], defining the state of each site470

and cumulatively the state of the system with respect to excess workload and available471

servers at each site sk. The random field X = {Xk}n
k=1 takes values {Xk = xk}n

k=1 in472

Λ =W ×B, which is the product space of phase spaces wk ∈ W , bk ∈ B, respectively.473

The configuration ω = {xk : xk ∈ Λ, ∀sk ∈ S} corresponds to one of all possible states of474

the system state and Λ denotes the configuration space.475

Due to the distributed topology of the sites, the above random field X can be476

considered an MRF, and based on the Hammersley-Clifford theorem, we consider the477

potential function V(ω), which can be decomposed in clique potentials:478

V(ω) = ∑
C∈C

VC(ω) = ∑
sk∈S

V(1)
{sk}

(ω) + ∑
sg∈Nsk

V(2)
{sk ,sg}(ω), (10)
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where C is the set of all cliques in the formed topology of sites (a clique denotes a subset479

of nodes, all of which are connected to each other). Depending on the characteristics480

of each topology, cliques of different sizes are formed and the potential function is481

computed over such cliques. The potential function is the objective function that we482

seek to minimize, and it will be used as a quantitative measure of the success of each483

system state to fulfil the optimization criteria, namely the reduction of the total power484

consumption of the Edge infrastructure. The lower the potential function, the more485

desired the corresponding system state will be. Due to the topology formed by the sites in486

this specific application (i.e., the access points), only one-clique (cliques consisting of one487

node - corresponding to the wireless access devices themselves) and two-cliques (cliques488

consisting of pairs only - pairs of wireless access devices) exist, so that the potential489

function is eventually decomposed in singleton V(1)
{sk}

(ω) and doubleton (pairwise)490

V(2)
{sk ,sg}(ω) terms, respectively. Each singleton term is defined as follows:491

V(1)
{sk}

(xk) =



C1 · P(bk)

[
1 + ∑

m
sig(w(k)

m )

]
+ C2 · d · ak, if ∃ bk

∑
|Zk |
i=1 b(k)i rm

i > w(k)
m ,

∀m,

∆1 > 0, otherwise,

(11)

where C1 and C2 are empirically selected constants and ∆1 > 0 is a constant with very492

high value. The power consumption of formation bk is P(bk) = ∑
|Zk |
i=1 b(k)i pi. Function493

sig(·) = L− L
1+exp−K(x−x0)

is the reflection of the sigmoid function with respect to the494

vertical axis through the inflection point x = x0. The parameters of the reflected sigmoid495

function are L, the maximum value, K, the gain and x0, the inflection point. By giving the496

inflection point a value equal to 0.5 rm
i , the inclusion of this reflected sigmoid function497

tends to grow singleton terms that describe states where edge servers are under-utilised498

(i.e., when they serve less than 50% of their nominal workload capacity), close to the499

maximum value (undesired system state). The intuition behind this design is that the500

singleton terms express the goal of each site individually for lower energy consumption.501

Each site strives to reduce its consumption as much as possible, which in turn will502

drive its singleton term to lower values. At the same time, the term d · ak tends to drive503

the system towards a solution which keeps the total additional delay, induced by the504

workload redirections, as low as possible; d stands for the single hop network delay in505

ms while ak corresponds to the ingress workload (i.e., how much additional workload506

the edge site sk will accommodate, compared to the original).507

The doubleton terms are defined as follows:508

V(2)
{sk ,sg}(xk, xg) =



C3wk ·wg + C4P(bg)
[
1 + ∑m sig(w(g)

m )
]
, if ∃ bg

∑
|Zk |
i=1 b(g)

i rm
i > w(g)

m ,
∀m

∆2 > 0, otherwise,
(12)

where C3 and C4 are empirically selected constants and ∆2 > 0 is again a constant with509

very high value. The intuition behind the design of the doubleton terms is that as far510

as the interactions of the neighboring sites are concerned, ideally we want to drive511

the system to states where neighboring sites exchange the remaining workload so that512

it is concentrated in specific sites, thus avoiding having to maintain multiple active513
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sites for a small value of excess workload. It is also important to point out that the514

MRF activates servers with the appropriate VM flavors as described in Subsection 3.3.515

This way, the excess workload is served while respecting the QoS requirement of the516

maximum acceptable response time. An overview of the MRF-based load redistribution517

process is depicted in Figure 3.518

Figure 3. MRF Inter-Site Load Redistribution Overview (Stage 2).

Each site seeks to minimize its contribution to the cumulative potential function519

by minimizing its local neighborhood potential function comprised of the sum of its520

singleton and doubleton (pairwise) potentials with its one-hop neighbors. The state521

of each site depends only on the states and the information of its neighbors. Gibbs522

sampling [41] can be applied by each site individually, reaching global optima through523

local sampling. Cumulatively, this distributed sampling converges to global optimizers524

of the system. This approach has a very low computational overhead, O(n), with n being525

the number of sites, while reaching asymptotically the global optimal resource allocation526

solutions, frequently yielding the optimal ones. Furthermore, the signaling overhead527

is rather small, since each site sk is only required to exchange system state information528

locally with its one-hop neighbors only.529

The sequential Gibbs sampling method proceeds as follows. Consider a logarithmic530

annealing schedule of the form T(w) = c0
ln(1+w)

, where c0 is a constant (equal to 2531

in our experiments) and T(w) is called the “temperature” of the w-th annealing step.532

Also, consider a sequential visiting scheme of all sites, where at each epoch t (mini-533

slot in a sweep) within a step w, only one site updates its value (Figure 4 depicts the534

relations of the system slots, sweeps and update epochs). Starting with an arbitrary535

Figure 4. Relation of System Slots, Sweeps and Update Epochs.
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initial configuration X(w = 0), at epoch t of w, let ω = X(t) and denote by ωxk the536

configuration that has value xk at site sk and agrees with ω everywhere else. The update537

(decision to transition to a new state) at site sk takes place according to the distribution:538

P(Xk(t) = xk|Xg(t) = xg, g ̸= k) =

exp (− 1
T(w) ∑

C:sk∈C
VC(ω

xi ))

∑
xk∈Λ

exp (− 1
T(w) ∑

C:sk∈C
VC(ωxs))

, (13)

where C is the set of the cliques formed by the sites (here only one-clique and two-cliques539

are formed in the graph). With probability determined by (13), a site sk will choose xk as540

its state in sweep w + 1. The site states are updated sequentially within a sweep w. The541

annealing schedule represents a decreasing rate of system temperature T(w), where w542

stands for the index of the w-th sweep (i.e., the system temperature is updated at the end543

of each sweep). The w-th annealing step is equivalent to the w-th sweep, and consists of544

n visiting epochs (denoted by t in the above), one for each site. Since sampling begins545

at high temperatures, where the local characteristics are practically uniform, it permits546

transitions to higher-potential function configurations, thus avoiding getting trapped in547

local minima. Thus, in each sweep the configuration (system state determined by the548

state of each site) changes. The resulting system states form an inhomogeneous Markov549

Chain that converges to the uniform distribution on the set of global potential function550

minimizers. This means that the Markov Chain essentially samples uniformly the whole551

search space of the problem and thus, convergence means the global optimum has been552

found. Of course, convergence to the global optimum is guaranteed in infinite time, i.e.,553

the Markov Chain converges in infinite time in the global optimum. In our case, where554

the number of sweeps is finite, the obtained optimum is in principle suboptimal, but555

expected to be very close to the global optimum. As shown later, the system indeed556

exhibits good convergence behavior even for employing a finite number of sweeps.557

Figure 5 showcases an example of the effect of the MRF-based excess workload558

redistribution, for two applications in an Edge infrastructure of nine sites, by comparing559

the starting and final system state (after a finite number of sweeps) where the MRF560

has converged. As the starting formation for each site, the set of edge servers with the561

minimum number of allocated resources is selected in order to serve the excess workload562

locally. It can be observed that in the final state, the MRF yields a rather desired solution563

where it has redistributed all the excess requests, wk, to a single site, thus minimizing the564

associated energy consumption of the topology, while serving properly the remaining565

requests, within the capacity bounds imposed in each site. Specifically, Table 2 shows566

the selected VM formation for the particular site, with three activated servers.567

Table 2. VM Formations Selected by the MRF Mechanism.

Server (bk) App1 VMs App2 VMs

1 1 ×medium 1 × small
2 1 ×medium 1 × small
3 1 ×medium -

Site Workload Capacity
(∑
|Zk |
i=1 b(k)i rm

i )
81 82

We observe that this site formation fits to accommodate the workload. The total568

power consumption, P(bk), is 5200W, which is around half of the 10000W power con-569

sumption of the initial site formations selected, had the excess workload been executed570

locally. The number of available servers per site ek, is also depicted. Also, local execution571

would lead to some requests being rejected, as there is one site that has no available572
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(a) Starting State.

(b) Final State.
Figure 5. Workload Redistribution Example: Starting and Final States.

servers to accommodate its excess workload. Consequently, the MRF based mechanism573

emerges as rather effective in increasing the energy efficiency of the whole approach.574

4.3. ENERDGE Core Algorithm575

In this subsection, the core algorithm of a full ENERDGE deployment in an edge576

infrastructure, as well as its importance, are summarized. At first, the required datasets577

are produced and the VM flavor design procedure is performed offline. Then, as shown578

in Algorithm 1, the initial optimization and the distributed resource allocation for each579

site of the edge infrastructure take place, as explained in the previous sections.580
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Algorithm 1: ENERDGE Core Algorithm.
Data: Trajectory Dataset
Result: Optimal VM placement in Edge Infrastructure

begin
// Offline
1: create the Task Offloading Dataset, Sec. (3.2)
2: while τ ≤ identi f icationPhaseDuration do

for m ∈ M do
for c ∈ Cser do

// Identify VM flavors
ϕm ←− solve Eq. (2)

end
end

end
3: create the Transition Matrix, Sec. (3.5)

// Online
4: track last position of users, Sec. (3.5)
5: for sk ∈ S do // Stage 1 - Optimization
Zk ←− calculate VM formations, Eq. (5)
for m ∈ M do

L̃m
k ←− predict workload, Sec. (3.5)

end
L̃k = [L̃m

k ]

place VMs by solving, Eq. (6)
end
6: for sk ∈ S do // Stage 2 - MRF Redistribution

wk ←− calculate excess workload, Sec. (4.1)
repeat

bk ←− calculate additional servers, Eq. (10)
until converges
activate extra servers, Sec. (4.2)

end
wait until next system slot
go to 4

end

During this online phase, in Stage 1, the density of users and devices is predicted581

using the n-MMC method. The incoming workload at each site of the infrastructure is582

estimated for the current system slot. The resource allocation optimization produces an583

initial solution subject to QoS and energy constraints for a given predicted workload at584

each site. Then, in Stage 2, for each site, the excess predicted workload or workload that585

cannot be served, along with the available resources, are computed. The excess workload586

is redistributed between the extra servers activated in under-loaded sites, according to587

the MRF solution, achieving the minimization of the energy consumption for the edge588

infrastructure.589

Precisely estimating the needed resources for an edge infrastructure can be a great590

challenge, as users’ behavior and thus offloaded workload can vary in different con-591

ditions. In this context, the proposed two-stage solution brings significant benefits in592

the problem at hand. In particular, the offline analysis helps at creating a throughput593

(or offloading request rate) heatmap and a user density heatmap for the infrastructure,594

based on experienced network conditions and user density patterns. Then, the first stage,595

which is based on the outcome of this analysis, gives a first, rough resource allocation596

solution. However, the behavior of the users or the network conditions cannot always597
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be predicted; in this case this first-stage planning will fail, which may cause severe598

impact in the perceived QoS. Thus, the second stage helps to refine the first solution599

and to account for the inequalities between the predicted requirements and the actual600

needs. This can further guarantee the QoS requirements of the applications, while also601

minimizing the energy consumption at the Edge infrastructure.602

5. Performance Evaluation603

In this section, the performance of the proposed resource allocation and excess604

load redistribution mechanism is presented via modeling and simulation. The results605

illustrate the success of our approach in minimizing the energy consumption while606

guaranteeing the stability of the application’s QoS (i.e., response time) within an ac-607

ceptable margin. We highlight the optimization of the resource allocation in terms of608

the power consumption of the activated edge servers and the VM flavors used to serve609

the incoming workload. The benchmarking is conducted using CloudSim Plus [42], a610

Java-based simulator suitable for Edge and Cloud environment experimentation. Then,611

a comparison with one well-established study in the literature and additionally with a612

more recent one follows.613

5.1. Smart Museum Experiment Setting614

To demonstrate the operation of an ENERDGE real-world application, we emulate615

the environment of a smart museum. The museum accommodates different categories of616

interactive exhibits, and it is equipped with a large number of IoT sensors and edge de-617

vices with heterogeneous computational capabilities. Furthermore, the dynamic network618

conditions are modeled by the dynamic behavior and density of the users. In particu-619

lar, our physical infrastructure consists of nine interconnected interactive exhibits-sites620

resembling to a smart museum floor plan. Each site hosts an edge data center which621

includes three edge servers. The applications deployed in the museum are classified in622

two categories with different characteristics and requirements:623

624

Interactive Exhibit Apps: On the one hand, we consider the museum leveraging Aug-625

mented Reality (AR) and Virtual Reality (VR) settings to provide rich and detailed626

access to artwork and artifacts, bring life to works of art and allow visitors to engage627

in adaptable visual guided tours by using their mobile devices. In order to achieve the628

high QoS requirements of these types of applications, mobile devices can offload some629

workload by sharing video decoding tasks to the more powerful edge devices. User630

density is highly dynamic in these applications, as visitors move from one exhibit to the631

other.632

633

Sensor Monitoring Apps: On the other hand, IoT is making it possible to deploy low-634

cost, automated monitoring of collections and museum facilities, e.g., static sensors for635

temperature, humidity, counting number of visitors, etc. Such applications exhibit low636

delay requirements, i.e., the processing can be performed in a delay tolerable manner,637

sending data and information after a completion of an activity. However, they produce638

numerous requests to the edge servers.639

640

We assume one application of the Interactive Exhibit type, denoted as App1, and641

one of the Sensor Monitoring type, denoted as App2, co-hosted in each site. This means642

that VMs of both application types are able to run simultaneously in the edge servers,643

receiving offloading requests from their counterparts in the visitors’ mobile devices and644

the IoT sensors, respectively. For demonstration purposes, we also assume that both645

apps are based on image recognition processes, thus their acceptable response time (QoS)646

is set at 3sec, which lies within the margins of a typical image recognition service time647

[43] and provides a satisfying Edge Computing AR application experience to the user648

[44]. As the design of our framework and modeling of the applications are independent649



Version February 2, 2022 submitted to Journal Not Specified 19 of 29

Table 3. Identified VM Flavors.

Flavor Small Medium Large
App1 App2 App1 App2 App1 App2

Cores 1 1 2 2 4 4
QoS (sec) 3 3 3 3 3 3

Maximum
Requests/Slot 11 38 27 82 59 173

of the level of the applications QoS requirements, applications that require lower (or650

higher) response times are naturally supported. Following the modeling approach651

explained in Subsection 3.3, we identify the VM flavors shown in Table 3, tuned towards652

achieving the above QoS requirement. It should be noted here that App1 requests need653

considerably heavier computations to achieve this response time than the ones of App2.654

This limits the maximum number of requests of the application App1 to one third of655

those that can be served by the App2 for equally sized VMs. Sixty visitors are assumed656

to roam the museum at each given time, offloading requests for App1, while twenty657

static sensors are assumed to be deployed, producing offloading requests for App2 at658

a much higher rate. The system slot is arbitrarily set at 30sec and the experiments last659

for a period of 1 hour, or 120 system slots. The simulation code alongside any related660

dataset used in this section is publicly available3.661

5.2. Resource Allocation Evaluation662

In this subsection, we present the evaluation of the resource allocation algorithm.663

At first, the impact of the selected user density prediction method is assessed and then664

a summary of the core optimization results for Stages 1 and 2 is provided. Finally, a665

comparison of the whole mechanism with two works on the field is demonstrated.666

5.2.1. User Density Prediction Impact667

As described in Subsection 4.3, predicting the visitors’ positions in the next system668

slot is the first step of optimizing the allocation of the edge resources in each site. This669

provides an estimation on the projected workload. To quantify the impact of the user670

density prediction accuracy, a sensitivity analysis is performed as illustrated in Figure671

6; this assesses the impact of the prediction error on satisfying the required application672

QoS, both in terms of the average response time (ART) per request and the percentage673

of the violations occurred in respecting the QoS. A logarithmic scale is used to better674

visualize both impacts in a combined fashion.675

We opted for showcasing the impact analysis at the end of both Stages of the676

resource allocation mechanism, separately, so as to highlight the significant effect the677

MRF-based workload redistribution has on alleviating the disruptions caused by the678

prediction error. The results are collected from running the simulation for 10, 000 system679

slots, for various topologies, and averaging the stats in batches of 10. Thus, the x axis680

of Figure 6 represents the range of the prediction error. The dataset used is again the681

Melbourne Museum one [38].682

Underestimating the real incoming workload leads to under-provisioning of re-683

sources and subsequently to slight degradation of the response time. In detail, we notice684

that both the ART and the violations grow almost linearly with the prediction error. It is685

also clear that the application of the MRF-based redistribution in each system slot has686

a great impact on respecting the QoS requirements, with the redirection of the excess687

projected workload from overutilised sites to underutilised ones. Specifically, when the688

MRF is applied, the ART lies around 2sec and the QoS violations do not exceed 10% of the689

3 https://github.com/maravger/netmode-cloudsim

https://github.com/maravger/netmode-cloudsim
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Figure 6. ART & QoS Violations Sensitivity to Prediction Error.

offloaded requests, when the prediction error is less than 10%. The ART grows to around690

3sec, which is still acceptable for both applications, and the violations to 20%, when the691

error is less than 20%. Beyond the point of a 30% prediction error, we notice that our692

solution’s results converge to those of the naive one, as the extra unpredicted workload693

puts excessive strain on the mechanism. However, this should not be a problem, as694

selecting an appropriate prediction mechanism, like the n-MMC used here and in other695

comparable works, e.g., [45], leads to an average prediction accuracy of 70− 95%.696

5.2.2. Stage 1 Evaluation – Response to Dynamic Network Conditions697

In this subsection, we closely examine how the resource allocation optimization698

reacts to the dynamic workload demands caused by the visitors’ dynamic density on699

each site, in terms of edge servers activated and the VMs placed in them. Figure 7700

showcases the scalability of the proposed technique, as a response to the population of701

the visitors’ devices and the fluctuations in the sensors’ offloading rate. We present the702

behavior of a single site, which is equipped with three servers of four cores each, and703

this acts as a baseline for the rest of the evaluation. With regard to power consumption,704

for demonstration purposes, we assume that the average maximum power consumption705

of an edge server is 2000W, in accordance to [46].706

Figure 7a shows the predicted workload per system slot, as calculated in the pre-707

vious step, while Figures 7b-d demonstrate how the resource optimizer adapts to the708

fluctuations. In particular, they depict how the optimizer selects the appropriate topol-709

ogy in terms of number of active edge servers and their allocated cores, in order to meet710

the demands for the selected site. For instance, when the predicted requests are high, e.g.,711

at system slots {3, 46, 86}, with {206, 182, 181} predicted requests respectively for both712

applications (red-colored marks), our optimization results in three activated edge servers713

and seven cores allocated among them. On the other hand, when the incoming request714

prediction is considerably lower, as in system slots {9, 38, 76}, with {84, 83, 84} predicted715

requests respectively (green-colored marks), only one server with three allocated cores is716

activated. The results corroborate the total power consumption, as shown in Figure 7d.717

Exploring further, we demonstrate an example regarding the specific VM formations718

selected for the above activated servers, at system slot 3. The total of 206 predicted719

requests consisted of 17 requests for App1 and 189 requests for App2. Table 4 shows720

the selected VM formation for the three activated servers for this system slot. We see721



Version February 2, 2022 submitted to Journal Not Specified 21 of 29

Figure 7. Dynamic Resource Allocation: Allocated Cores, Activated Edge Servers, Power Con-
sumption and ART as a Response to the Predicted Requests, for a Single Site.

that this VM formation fits to accommodate the predicted workload. The site’s power722

consumption, in this slot, is 5000W.723

While our approach adapts very well against the various predicted incoming work-724

loads in terms of allocated resources, satisfying the QoS for these applications is chal-725

lenging. This is due to the fact that the VM topology to serve these requests is selected726

based on the predicted workload which is potentially fallacious, as explained in the727

Table 4. VM Formations in Slot 3.

Server App1 VMs App2 VMs Allocated Cores

1 1 × small 1 ×medium 3
2 1 × small 1 ×medium 3
3 - 1 × small 1

Site Workload
Capacity 22 202
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previous subsection, and this leads to violations in the QoS. For instance, as shown728

in Figure 7e, in system slots {42, 63, 68} (yellow-colored marks), the average response729

time for both applications was slightly above 4sec, or approximately 35% larger than the730

reference value, set at 3sec. This is an indication of under-provisioning due to incoming731

workload underestimation. Violations like this took place 17 times in this site, or 14%732

in a total of 120 system slots. We consider this to be an acceptable margin of error733

for the satisfaction of the perceived QoS. Finally, it should be pointed out that for this734

experimentation, the average service completion time mainly affected the measured735

response time. The average transmission time is negligible, due to the use of the IEEE736

802.11ac standard, which provides high throughput for requests of application types737

used in this experiment.738

5.2.3. Stage 2 Evaluation – MRF-based Excess Workload Redistribution Analysis739

In this subsection, initially we demonstrate the convergence behavior of the MRF740

approach for a standard (medium-size) and a larger topology. Figure 8 demonstrates the741

variation of the cumulative potential function of the MRF (Eq. (10)) for a complete set of742

sweeps corresponding to an execution of the MRF in the beginning of a system slot. The743

results of this evaluation have been averaged over 100 different topologies, both for a744

9-site (Medium) and a 36-site (Large) Edge infrastructure.745

It is observed that the Gibbs sampler converges rather quickly and it succeeds746

in reducing the variability of the potential value rapidly. This is because the sampler747

is a uniform global optimizer of the state space, and it is able to identify the local748

neighborhood of desired solutions relatively fast, within the first five sweeps, and then749

fine-tune the search, eventually selecting one solution among the global minimizers750

of the potential function. As expected the larger topology exhibits greater variability751

of the cumulative potential function in the first sweeps (due to a larger state space),752

but eventually convergence is smooth and within the maximum number of designated753

sweep iterations (here employing a maximum of 50 sweeps).754

To evaluate the efficiency of this second stage of our mechanism, as discussed in755

Section 4.2, we identify two cases of excess workload at the end of the first stage. Regard-756

ing the workload coming from overloaded sites, Figure 9 depicts the improvement in the757

QoS satisfaction that comes with the application of the MRF-based redistribution (in a758

logarithmic scale). We observe that, while both the ART and the violations metrics grow759

almost linearly with the average excess workload (in requests per site), by applying the760

MRF-based redistribution, our mechanism achieves to provide better QoS guarantees761

Figure 8. MRF-based Workload Redistribution Convergence.
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Figure 9. MRF QoS Improvements for Various Excess Workloads in Overloaded Sites.

(i.e., ART ≈ 3sec and violations ≈ 10%). This comes as a natural result, since the over-762

loaded sites are alleviated from the excess workload, which is redistributed throughout763

the infrastructure.764

On the other hand, regarding the underloaded sites, Figure 10 demonstrates the765

effect of the MRF-based excess workload redistribution on the total energy consumption766

of the infrastructure, by comparing it to the case where no redistribution of any kind767

takes place. During the latter, as the average excess workload increases, the power768

consumption increases radically, as underloaded edge servers are activated in each site769

in order to accommodate the low volume of excess requests locally. From that point770

on, power consumption increases moderately, as larger VMs are provisioned to meet771

the increasing workload demands, until the point where all the resources are allocated772

in each site and the maximum power consumption of the infrastructure is reached. In773

contrast, when the MRF-based redistribution is employed, power consumption adjust-774

Figure 10. MRF Energy Savings for Various Excess Workloads in Underloaded Sites.
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Figure 11. MRF Workload Redistribution-Induced Delay Minimizing for Various Excess Work-
loads.

ment is more fine-grained, as only the minimum combination of activated servers and775

installed VMs flavors are deployed in each case.776

Finally, Figure 11 illustrates the impact of the delay minimizing term in the MRF-777

based workload redistribution. It is clear that the delay-related term in the MRF-based778

solution minimizes the redirection-induced overhead per request (≈ 10ms average),779

when compared to an MRF-solution without it (≈ 26ms average), in a medium sized780

edge infrastructure. It should be also noted that the inclusion of this term has an impact781

on the average additional delay being far more stable throughout the average excess782

workload increase.783

5.3. Two-Stage Approach Comparison784

Following, we present a comparative evaluation of the overall resource allocation785

of ENERDGE with two works, presented in [11] and [12] respectively. This comparison786

highlights the ability of our two-stage approach to minimize energy consumption in the787

edge infrastructure, while guaranteeing a certain level of QoS. Similar to our study, Jia et788

al. in [11] present a setting of dispersed and interconnected clusters of computers, namely789

cloudlets, which form a wireless metropolitan area network. Contrary to ENERDGE, each790

cloudlet has a static VM provisioning method to serve offloaded requests. This study791

focuses on identifying over-utilized cloudlets and redirecting part of their incoming792

workload to under-utilized ones in order to achieve better resource utilization. On793

the other hand, in [12], Zhang et al. present a system of multiple distributed and794

interconnected intelligent edge servers (IESs), located in an urban region. Again, in this795

work, the computing resources are statically allocated to serve the offloaded requests796

coming from mobile devices and the focus is placed on balancing this load between the797

IESs through workload redistribution, using a novel game theoretic perspective together798

with a state-based distributed learning algorithm. For both works, instead of having799

an estimation of the incoming workload, it is considered known for each cloudlet/IES800

and for each system slot. Also, the offloaded workload served at each cloudlet/IES is801

bounded by its service rate capabilities, while the rest of it is rejected and redirected back802

to the mobile device for local execution.803

In order to highlight the importance of dynamic resource allocation towards simul-804

taneously guaranteeing the QoS requirements and minimizing energy consumption, we805

compare our method with two differently oriented resource provisioning settings of [11]806

and [12], resulting in two sets of experiment. For the first one (Experiment A), all three807
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(a) QoS Violations. (b) Energy Consumption.
Figure 12. QoS Violations and Energy Consumption during Experiment A.

works attempt to minimize energy consumption, while in the second one (Experiment808

B), the effort is put on satisfying the QoS constraints. To make the comparison fair, we809

simulated the exact same nine-site edge infrastructure, described in Subsection 5.1, for810

all three methods. The generated workload traffic is the same for all methods as well.811

Regarding Experiment A, we chose a frugal static resource allocation for both [11]812

and [12], so that they would approximately match the total energy consumption of813

ENERDGE (Figure 12b). QoS violations were calculated for all methods based on the814

SLA threshold for the response time of the offloaded requests, set at 3sec, as in Subsection815

5.2.2. In one hour of experimentation, the ENERDGE sites reported 207 violations, or 9%816

of the offloaded requests, compared to the 470 violations or 22% of the requests in [11]817

and 660 violations or 29% of the requests in [12], as shown in Figure 12a.818

On the contrary, in the Experiment B, resource-abundant static allocations were819

selected for the other two works, in order to match the QoS satisfaction of ENERDGE820

(Figure 13a). In this case, as shown in Figure 13b, energy consumption for one hour in [11]821

was roughly 41kWh and in [12] 36kWh, or more than 54% and 35% bigger, respectively,822

when compared to the 26.5kWh of our method. In addition to the previous results,823

it is clear that even a static resource provisioning method enhanced with workload824

redirection mechanisms is incapable of finding a balance between QoS satisfaction and825

infrastructure energy consumption minimization, the way ENERDGE does.826

Finally, as the work in [12] incorporates a game theoretic solution and a decen-827

tralised learning algorithm, an opportunity arises for comparing the convergence be-828

havior of the MRF solution with it. In Figure 14, the potential function values for both829

solutions are illustrated in a logarithmic scale, with respect to each algorithm’s iterations,830

after averaging over 1000 executions of a random 9-site infrastructure and similar of-831

floaded workload for both. The results reveal that the proposed MRF solution converges832

(a) QoS Violations. (b) Energy Consumption.
Figure 13. QoS Violations and Energy Consumption during Experiment B.
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rapidly compared to the solution proposed in [12], which also has a direct effect on our833

mean execution times being significantly lower.834

Figure 14. Comparison of the Workload Redistribution Convergence.

6. Conclusion835

This article introduced the ENERDGE framework that addresses jointly the full836

task offloading and resource allocation problems in a multi-site setting. We proposed a837

holistic energy-aware resource optimization approach, based on the design of the VM838

flavors complemented with an innovative load redistribution technique based on MRFs,839

with the penultimate goal to minimize the total energy consumption without sacrificing840

the QoS in terms of latency. To minimize the inverse impact of the dynamic presence841

of users, ENERDGE considers the dynamic wireless conditions of the access network842

and supports a mobility prediction scheme to better guide the allocation solution during843

task offloading. Numerical results showed that the prediction mechanism accurately844

predicts the mobile behavior of the users, while the ENERDGE resource optimizer845

outperforms two well-established load balancing techniques in terms of both latency846

and energy consumption. Finally, we have shown that the MRF scheme converges847

rapidly to minimum energy solutions, thus allowing further energy optimizations in an848

efficient manner.849

Our future work will concentrate on the interplay between the Edge and Cloud. As850

IoT and cellular device volumes continue to increase, a collaboration between the Edge851

and Cloud infrastructures may constitute a viable solution for large-scale deployment852

scenarios. Furthermore, integrating machine learning techniques in our user density853

prediction approach will enable addressing errors in the predictions of the dynamically854

estimated values of the position and number of end-user devices.855
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Appendix A871

Assume a finite set S, |S| = n, with elements s ∈ S referred to as sites or nodes.872

These correspond to access points of the considered infrastructure. Every site s is873

associated with a random variable Xs that expresses its state. In our case, the state of874

each site will depend on the excess workload and number of assigned servers. Let the875

phase space Λ be the set of possible states of each s ∈ S, i.e., Xs takes a value xs ∈ Λ.876

The collection X = {Xs, ∀s ∈ S} of random variables with values in Λ consists of a877

Random Field (RF) on S with phases in Λ. A configuration ω = {xs : xs ∈ Λ, ∀s ∈ S}878

corresponds to one of all possible states of the system and the product space Λn, ω ∈ Λn
879

denotes the configuration space. A neighborhood system on S is defined as a family880

N = {Ns}s∈S of subsets Ns ⊂ S, such that for every s ∈ S, s ̸∈ Ns and r ∈ Ns if and881

only if s ∈ Nr. Ns is called the neighborhood of site (node) s. The RF X is called a882

Markov Random Field (MRF) with respect to N , if for every site s ∈ S,883

P(Xs = xs | Xr = xr, r ̸= s) = P(Xs = xs | Xr = xr, r ∈ Ns). (A1)

A RF X is called a Gibbs Random Field (GRF) if it satisfies:884

P(X = ω) =
1
Z

e−
U(ω)

T , (A2)

where Z := ∑ω∈Λn e−
U(ω)

T is the partition function and T is the temperature of the885

system. U(ω) is called the potential function and represents a quantitative metric of the886

current state of the configuration ω. The potential function is not unique. A very useful887

class of potential functions, which we will employ in our approach, is one in which888

U(ω) is decomposed into a sum of clique (maximally connected subgraph) potential889

functions, as U(ω) = ∑c∈C Vc(ω), where C is the set of the cliques formed by the sites890

and each clique potential Vc depends only on the states of the cliques formed in the891

underlying system graph. The Hammersley-Clifford theorem [40] asserts that a GRF892

with distribution P(X = ω) = 1
Z e−

U(ω)
T and potential function expressed in terms of893

clique potentials leads to an MRF with conditional probabilities P(Xs = xs | Xr = xr, r ̸=894

s) = P(Xs = xs | Xr = xr, r ∈ Ns) and vice-versa. This property is also employed for the895

design of the potential function and the implementation of distributed decision-making896

via Gibbs sampling.897
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