Hrytsak Myroslava V., Popovych Dariya V., Badiuk Nataliya S., Hrytsan Ivanna I., Zukow Xawery. Comparative study of the effects on the EEG of drinking monotherapy with Naftussya water and therapy supplemented with "Myroslava" and "Khrystyna" mineral eISSN of Education. 2022;12(2):141-150. DOI waters. Journal Health and Sport. 2391-8306. http://dx.doi.org/10.12775/JEHS.2022.12.02.016 https://apcz.umk.pl/JEHS/article/view/JEHS.2022.12.02.016 https://zenodo.org/record/6081297

The journal has had 40 points in Ministry of Education and Science of Poland parametric evaluation. Annex to the announcement of the Minister of Education and Science of December 21, 2021. No. 32343. Has a Journal's Unique Identifier: 201159. Scientific disciplines assigned: Physical Culture Sciences (Field of Medical sciences and health sciences); Health Sciences (Field of Medical Sciences)

Punkty Ministerialne z 2019 - aktualny rok 40 punktów. Załącznik do komunikatu Ministra Edukacji i Nauki z dnia 21 grudnia 2021 r. Lp. 32343. Posiada Unikatowy Identyfikator Czasopisma: 201159. Przypisane dyscypliny naukowe: Nauki o kulturze fizycznej (Dziedzina nauk medycznych i nauk o zdrowiu); Nauki o zdrowiu (Dziedzina nauk medycznych i nauk o zdrowiu)

© The Authors 2022:

© The Authors 2022; This article is published with open access at Licensee Open Journal Systems of Nicolaus Copernicus University in Torun, Poland Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author (s) and source are credited. This is an open access article licensed under the terms of the Creative Commons Attribution Non commercial license Share alike. (http://creativecommons.org/licenses/by-nc-sa/4.0) which permits unrestricted, non commercial use, distribution and reproduction in any medium, provided the work is properly cited. The authors declare that there is no conflict of interests regarding the publication of this paper.

Received: 01.02.2022. Revised: 14.02.2022. Accepted: 14.02.2022.

Comparative study of the effects on the EEG of drinking monotherapy with Naftussya water and therapy supplemented with "Myroslava" and "Khrystyna" mineral waters

Mvroslava V. Hrytsak<sup>1,2</sup>, Dariya V. Popovych<sup>3</sup>, Nataliya S. Badiuk<sup>1,4</sup>, Ivanna I. Hrytsan<sup>1,4</sup>, Xawery Zukow<sup>5</sup>

<sup>1</sup>SE Ukrainian Research Institute for Medicine of Transport, Odesa, Ukraine badiuk ns@ukr.net

<sup>2</sup>Scientific group of Balneology of Hotel&Spa Complex "Karpaty", Truskavets', Ukraine hrytsak.myroslava@gmail.com ira barschyk@ukr.net

<sup>3</sup>IY Horbachevs'kyi National Medical University, Ternopil', Ukraine darakoz@yahoo.com

<sup>4</sup>International Medical University, Odesa, Ukraine

<sup>5</sup>Medical University of Bialystok, Bialystok, Poland <u>xaweryzukow@gmail.com</u>

### Abstract

**Background.** Earlier we showed that the newly created sulfate-chloride sodium-magnesium drinking mineral waters of Truskavets' spa have favorable effects on metabolism and neuroendocrine-immune complex of patients with their dysfunction. This report analyzes the effect of balneotherapy on the parameters of the electroencephalogram of the same contingent of patients. Materials and Methods. The object of clinical-physiological observation were 34 men aged 23-70 years, who underwent rehabilitation treatment of chronic cholecystitis and pyelonephritis in remission in the Truskavets' spa. The examination was performed twice, before and after a 7-10-day course of balneotherapy. All patients received bioactive water Naftussya, however, 11 men additionally drank water "Khrystyna", and the other 11 men water "Myroslava". The subject of the study were the parameters of the electroencephalogram. Results. The complex balneotherapy by interval use of sulfate-chloride sodium-magnesium mineral waters with Naftussya water causes significant changes in the constellation of EEG parameters, which are different from the effects of Naftussya water monotherapy. Own effects of mineral waters are estimated by modeling. Two patterns of neurotropic effects have been identified - activating and inhibitory. In general, the neuromodulating effects are physiologically favorable. Conclusion. The newly created sulfate-chloride sodiummagnesium drinking mineral waters of Truskavets' spa have favorable neuromodulating effects on patients with chronic cholecystitis and pyelonephritis.

*Keywords:* sulfate-chloride sodium-magnesium drinking mineral waters, Truskavets' spa, EEG parameters.

### **INRODUCTION**

Earlier we showed that the newly created sulfate-chloride sodium-magnesium drinking mineral waters of Truskavets' spa have favorable effects on metabolism and neuroendocrineimmune complex of patients with their dysfunction [2]. Given the close relationship between EEG parameters and endocrine and immune systems parameters [1,4-6], as well as between their changes under the influence of balneotherapy [1,7-11], the aim of this study was to analyze the effects of mineral water on EEG parameters of the same patients.

### MATERIALS AND METHODS

The object of clinical-physiological observation were 34 men aged 23-70 years, who underwent rehabilitation treatment in the Truskavets' spa of chronic cholecystitis and pyelonephritis in remission with of neuroendocrine-immune complex dysfunction. The examination was performed twice, before and after a 7-10-day course of balneotherapy. All patients received bioactive water Naftussya (3 ml/kg one hour before meals three times a day), however, 11 men in half an hour additionally drank water "Khrystyna", and the other 11 men - water "Myroslava" in the same dose.

We recorded simultaneosly with HRV EEG a hardware-software complex "NeuroCom Standard" (KhAI MEDICA, Kharkiv) monopolar in 16 loci (Fp1, Fp2, F3, F4, F7, F8, C3, C4, T3, T4, P3, P4, T5, T6, O1, O2) by 10-20 international system, with the reference electrodes A and Ref tassels on the ears. The duration of the epoch was 25 sec. Among the options considered the average EEG amplitude ( $\mu$ V), average frequency (Hz), frequency deviation (Hz) as well as absolute ( $\mu$ V<sup>2</sup>/Hz) and relative (%) power spectrum density (PSD) of basic rhythms:  $\beta$  (35÷13 Hz),  $\alpha$  (13÷8 Hz),  $\theta$  (8÷4 Hz) and  $\delta$  (4÷0,5 Hz) in all loci, according to the instructions of the device. In addition, calculated Laterality Index (LI) for PSD each Rhythm using formula:

LI,  $\% = \Sigma [200 \cdot (\text{Right} - \text{Left})/(\text{Right} + \text{Left})]/8$ .

We calculated also for each locus EEG Shannon's CE entropy (h) of normalized PSD using Popovych's IL formula [1]:

 $\label{eq:head} \begin{array}{l} hEEG = - \ [PSD\alpha \bullet log_2 \ PSD\alpha + PSD\beta \bullet log_2 \ PSD\beta + PSD\theta \bullet log_2 \ PSD\theta + PSD\delta \bullet log_2 \ PSD\delta \\ 4 \end{array}$ 

Normal (reference) values of variables are taken from the database of the Truskavetsian School of Balneology.

### **RESULTS AND DISCUSSION**

Following the accepted algorithm [2], the method of discriminant analysis [3] revealed 30 EEG parameters, according to which the conditions of patients before and after the two balneotherapy regimens differ significantly. Characteristic were 4 parameters of **beta**-rhythm, 6 parameters of **alpha**- and **theta**-rhythm and 8 parameters of **delta**-rhythm, as well as the **entropy** of PSD in 6 loci (Tables 1 and 3).

## Table 1. Summary of the analysis of discriminant functions in relation to the parameters of EEG

|                                          | Groups (n) and Means±SE |            |         | Parameters of Wilks' Statistics |       |        |       | tics  |              |
|------------------------------------------|-------------------------|------------|---------|---------------------------------|-------|--------|-------|-------|--------------|
| Variables                                | After                   | After Salt | Before  | Wil                             | Par-  | F-re-  | p-    | Tole- | Norm         |
| currently in                             | Naftus-                 | Waters     | thera-  | ks'                             | tial  | move   | level | rancy | Cv/σ         |
| the model                                | sya (12)                | and N (22) | py (34) | Λ                               | Λ     | (2,36) |       |       | (122)        |
| Laterality β,                            | -33                     | -4         | -3      | 0,086                           | 0,666 | 9,03   | 0,001 | 0,179 | -6           |
| %                                        | 10                      | 4          | 5       |                                 |       |        |       |       | 28           |
| F4-β PSD,                                | 68                      | 92         | 86      | 0,061                           | 0,938 | 1,19   | 0,317 | 0,101 | 73           |
| μV <sup>2</sup> /Hz                      | 11                      | 12         | 9       |                                 |       |        |       |       | 0,612        |
| T4-β PSD,                                | 33,6                    | 37,3       | 29,0    | 0,071                           | 0,798 | 4,56   | 0,017 | 0,111 | 27,9         |
| %                                        | 4,7                     | 4,6        | 2,4     |                                 |       |        |       |       | 0,591        |
| Fp2-β PSD,                               | 50                      | 74         | 74      | 0,061                           | 0,936 | 1,23   | 0,305 | 0,232 | 61           |
| μV <sup>2</sup> /Hz                      | 7                       | 10         | 8       |                                 |       |        |       |       | 0,629        |
| Laterality a,                            | -23                     | -18        | -1      | 0,066                           | 0,858 | 2,97   | 0,064 | 0,096 | -4           |
| %                                        | 9                       | 5          | 6       |                                 |       |        |       |       | 27           |
| T4-α PSD,                                | 23,0                    | 32,6       | 28,0    | 0,058                           | 0,987 | 0,23   | 0,794 | 0,069 | 29,2         |
| %                                        | 3,2                     | 3,9        | 2,9     |                                 |       |        |       |       | 0,628        |
| F8-α PSD,                                | 37                      | 23         | 37      | 0,063                           | 0,909 | 1,80   | 0,179 | 0,267 | 40           |
| µV²/Hz                                   | 13                      | 2          | 4       |                                 |       |        |       |       | 0,957        |
| F4-α PSD,                                | 22,0                    | 31,5       | 31,4    | 0,120                           | 0,475 | 19,9   | 10-6  | 0,031 | 32,7         |
| %                                        | 3,8                     | 3,1        | 3,4     |                                 |       |        |       |       | 0,564        |
| P3-α PSD,                                | 37,7                    | 49,5       | 42,1    | 0,077                           | 0,737 | 6,44   | 0,004 | 0,032 | 40,8         |
| %                                        | 5,5                     | 3,8        | 3,6     |                                 |       |        |       |       | 0,480        |
| C3-a PSD,                                | 30,1                    | 38,9       | 35,5    | 0,071                           | 0,803 | 4,43   | 0,019 | 0,057 | 35,3         |
| %                                        | 4,8                     | 3,4        | 3,2     |                                 |       |        |       |       | 0,510        |
| Laterality θ,                            | -24                     | -35        | -4      | 0,119                           | 0,478 | 19,7   | 10-5  | 0,036 | -3           |
| %                                        | 10                      | 10         | 7       |                                 |       |        |       |       | 32           |
| <b>Τ4-θ PSD</b> ,                        | 22                      | 19         | 34      | 0,079                           | 0,724 | 6,85   | 0,003 | 0,032 | 32           |
| $\mu V^2/Hz$                             | 4                       | 3          | 7       |                                 |       |        |       |       | 2,582        |
| F7-0 PSD,                                | 9,8                     | 8,8        | /,1     | 0,127                           | 0,450 | 22,0   | 10-6  | 0,055 | 7,9          |
| 70<br>T4.0 DSD                           | 1,0                     | 1,5        | 0,7     |                                 |       |        |       |       | 0,308        |
| 14-0 PSD,                                | 9,1                     | 0,4        | 9,5     | 0,101                           | 0,565 | 13,86  | 10-4  | 0,016 | 8,/<br>0,520 |
| 70<br>En2.0 DSD                          | 0,8                     | 0,7        | 1,2     |                                 | 0.000 |        | 10.4  |       | 0,339        |
| гр2-0 г SD,<br>0/                        | 0,9                     | 0,7        | 9,7     | 0,095                           | 0,600 | 12,0   | 10-4  | 0,028 | 0,5          |
| Fn2 A PSD                                | 18                      | 1,5        | 20      | 0.002                           | 0.000 | 0.00   | 0.001 | 0.022 | 0,388        |
| $1^{1}P^{2-0}ISD,$<br>$1^{1}V^{2}/H_{7}$ | 3                       |            | 7       | 0,083                           | 0,690 | 8,08   | 0,001 | 0,033 | 1 186        |
| μν /112<br>Deviation δ                   | 0.71                    | 0.57       | 0.73    | 0.067                           | 0.946 | 2.07   | 0.050 | 0.400 | 0.66         |
| Hz                                       | 0.10                    |            | 0.05    | 0,067                           | 0,846 | 3,27   | 0,050 | 0,490 | 0.405        |
| Τ6-δ PSD                                 | 53                      | 279        | 174     | 0.124                           | 0.459 | 21.2   | 10-6  | 0.000 | 276          |
| $V^2/H_7$                                | 11                      | 136        | 73      | 0,124                           | 0,438 | 21,5   | 10 °  | 0,000 | 4 53         |
| Τ5-δ PSD                                 | 85                      | 234        | 395     | 0.079                           | 0.725 | 6 40   | 0.004 | 0.094 | 174          |
| $\mu V^2/Hz$                             | 21                      | 111        | 200     | 0,078                           | 0,755 | 0,49   | 0,004 | 0,084 | 3.737        |
| F7-δ PSD.                                | 84                      | 870        | 342     | 0.005                           | 0.602 | 11.0   | 10-4  | 0.016 | 319          |
| $\mu V^2/Hz$                             | 26                      | 621        | 169     | 0,095                           | 0,002 | 11,7   | 10    | 0,010 | 4,542        |
| <b>F8-δ PSD.</b>                         | 50,2                    | 28.3       | 38,8    | 0.074                           | 0.770 | 5 37   | 0.000 | 0.183 | 38.3         |
| <b>⁰∕₀</b>                               | 8,8                     | 7,3        | 4,7     | 0,074                           | 0,770 | 5,57   | 0,009 | 0,105 | 0,700        |
| C4-δ PSD.                                | 34.8                    | 22,9       | 28,6    | 0.066                           | 0.865 | 2.81   | 0.073 | 0.107 | 29.9         |
| %                                        | 6,5                     | 4,0        | 3,5     | 0,000                           | 0,005 | 2,01   | 0,075 | 0,107 | 0,617        |
| O2-δ PSD,                                | 104                     | 624        | 272     | 0.062                           | 0.913 | 1 72   | 0 193 | 0.086 | 181          |
| µV <sup>2</sup> /Hz                      | 19                      | 338        | 117     | 0,002                           | 0,715 | 1,72   | 0,175 | 0,000 | 2,438        |

Step 30, N of vars in model: 30; Grouping: 3 grps; Wilks' Λ: 0,057; approx. F<sub>(61)</sub>=3,8; p<10<sup>-6</sup>

| P3-δ PSD,   | 27,5  | 19,8  | 27,3  | 0,082 | 0,695 | 7,89 | 0,001 | 0,036 | 26,5  |
|-------------|-------|-------|-------|-------|-------|------|-------|-------|-------|
| %           | 4,9   | 3,4   | 3,3   |       |       |      |       |       | 0,672 |
| Entropy F7  | 0,851 | 0,724 | 0,704 | 0,060 | 0,956 | 0,83 | 0,446 | 0,122 | 0,751 |
|             | 0,024 | 0,054 | 0,039 | · ·   |       |      | -     |       | 0,282 |
| Entropy Fp2 | 0,797 | 0,705 | 0,817 | 0,202 | 0,282 | 45,9 | 10-6  | 0,021 | 0,799 |
|             | 0,036 | 0,048 | 0,024 |       |       |      |       |       | 0,180 |
| Entropy T4  | 0,843 | 0,736 | 0,819 | 0,131 | 0,434 | 23,5 | 10-6  | 0,029 | 0,790 |
|             | 0,029 | 0,030 | 0,022 |       |       |      |       |       | 0,215 |
| Entropy O2  | 0,798 | 0,669 | 0,769 | 0,082 | 0,698 | 7,77 | 0,002 | 0,106 | 0,727 |
|             | 0,027 | 0,037 | 0,028 |       |       |      |       |       | 0,242 |
| Entropy T6  | 0,834 | 0,710 | 0,790 | 0,069 | 0,826 | 3,79 | 0,032 | 0,108 | 0,761 |
|             | 0,026 | 0,046 | 0,031 |       |       |      |       |       | 0,249 |
| Entropy P3  | 0,851 | 0,771 | 0,797 | 0,068 | 0,834 | 3,57 | 0,038 | 0,098 | 0,804 |
|             | 0,032 | 0,025 | 0,024 |       |       |      |       |       | 0,155 |

Note. In each column, the first line is the average, the second – SE for variables and Cv or SD for Norm.

A number of variables despite their recognizable properties, were outside the discriminant model, apparently due to duplication and/or redundancy of information (Table 2).

|              | Groups   | Groups (n) and Means±SE |         |       | Parameters of Wilks' Statistics |      |       |       |       |
|--------------|----------|-------------------------|---------|-------|---------------------------------|------|-------|-------|-------|
| Variables    | After    | After Salt              | Before  | Wil   | Par-                            | F to | p-    | Tole- | Norm  |
| currently in | Naftus-  | Waters                  | thera-  | ks'   | tial                            | en-  | level | rancy | Cv/σ  |
| the model    | sya (12) | and N (22)              | ру (34) | Λ     | Λ                               | ter  |       |       | (122) |
| F8-β PSD,    | 23,9     | 39,0                    | 29,9    | 0,057 | 0,995                           | 0,09 | 0,912 | 0,067 | 28,7  |
| %            | 4,9      | 5,1                     | 3,5     |       |                                 |      |       |       | 0,702 |
| F8-0 PSD,    | 23       | 11                      | 22      | 0,056 | 0,985                           | 0,26 | 0,772 | 0,252 | 19    |
| $\mu V^2/Hz$ | 5        | 2                       | 5       |       | -                               |      | -     |       | 1,791 |
| O2-θ PSD,    | 7,2      | 5,1                     | 6,1     | 0,057 | 0,996                           | 0,07 | 0,928 | 0,255 | 6,0   |
| %            | 0,8      | 0,6                     | 0,7     |       |                                 |      |       |       | 0,603 |
| Entropy T5   | 0,835    | 0,770                   | 0,744   | 0,057 | 0,998                           | 0,03 | 0,969 | 0,170 | 0,778 |
|              | 0,028    | 0,041                   | 0,033   | -     |                                 |      |       |       | 0,211 |

Table 2. EEGs parameters not included in the model

The identifying information contained in the 30 discriminant variables is condensed into two roots. The major root contains 90% of discriminatory opportunities (r\*=0,944; Wilks'  $\Lambda$ =0,057;  $\chi^{2}_{(60)}$ =145; p<10<sup>-6</sup>), while minor root 10% only (r\*=0,689; Wilks'  $\Lambda$ =0,526;  $\chi^{2}_{(29)}$ =32; p=0,299).

| Table 3. Su | nmary of step | wize analysis o | of discriminant | t variables ranked | by criterion A | ١ |
|-------------|---------------|-----------------|-----------------|--------------------|----------------|---|
|             | •/            | •/              |                 |                    | •/             |   |

| Variables currently           | F to  | p-    | Λ    | F-va- | p-    |
|-------------------------------|-------|-------|------|-------|-------|
| in the model                  | enter | level |      | lue   | level |
| Laterality β, %               | 6,28  | 0,003 | 0,84 | 6,28  | 0,003 |
| Laterality 0, %               | 4,02  | 0,023 | 0,74 | 5,09  | 0,001 |
| Entropy F7                    | 2,83  | 0,067 | 0,68 | 4,41  | 10-3  |
| Entropy Fp2                   | 3,31  | 0,043 | 0,62 | 4,23  | 10-3  |
| <b>T4-α PSD, %</b>            | 2,00  | 0,144 | 0,58 | 3,83  | 10-3  |
| Entropy T4                    | 2,37  | 0,102 | 0,54 | 3,65  | 10-3  |
| T6-δ PSD, μV <sup>2</sup> /Hz | 2,87  | 0,065 | 0,49 | 3,62  | 10-4  |
| T4-θ PSD, μV²/Hz              | 1,96  | 0,150 | 0,46 | 3,46  | 10-4  |
| F8-α PSD, μV <sup>2</sup> /Hz | 2,25  | 0,115 | 0,42 | 3,38  | 10-4  |
| <b>F4-α PSD, %</b>            | 1,72  | 0,188 | 0,40 | 3,25  | 10-4  |
| <b>P3-α PSD</b> , %           | 3,02  | 0,057 | 0,36 | 3,32  | 10-4  |
| T5-δ PSD, μV <sup>2</sup> /Hz | 3,22  | 0,048 | 0,32 | 3,43  | 10-5  |

| F7-θ PSD, %                                         | 2,08 | 0,135 | 0,30 | 3,38 | 10-5 |
|-----------------------------------------------------|------|-------|------|------|------|
| Entropy O2                                          | 2,78 | 0,071 | 0,27 | 3,43 | 10-5 |
| Т4-0 PSD, %                                         | 2,26 | 0,115 | 0,25 | 3,43 | 10-5 |
| F7-δ PSD, μV <sup>2</sup> /Hz                       | 5,41 | 0,007 | 0,20 | 3,80 | 10-6 |
| F4-β PSD, μV <sup>2</sup> /Hz                       | 3,21 | 0,049 | 0,18 | 3,91 | 10-6 |
| <b>Fp2-θ PSD, %</b>                                 | 1,63 | 0,207 | 0,17 | 3,82 | 10-6 |
| Laterality a, %                                     | 2,22 | 0,120 | 0,15 | 3,83 | 10-6 |
| Fp2-θ PSD, μV <sup>2</sup> /Hz                      | 2,13 | 0,131 | 0,14 | 3,82 | 10-6 |
| Deviation <b>δ</b> , Hz                             | 2,06 | 0,139 | 0,13 | 3,82 | 10-6 |
| F8-δ PSD, %                                         | 1,97 | 0,152 | 0,12 | 3,80 | 10-6 |
| C4-δ PSD, %                                         | 1,77 | 0,183 | 0,11 | 3,77 | 10-6 |
| O2-δ PSD, μV <sup>2</sup> /Hz                       | 2,61 | 0,085 | 0,10 | 3,85 | 10-6 |
| <b>P3-δ PSD, %</b>                                  | 1,34 | 0,272 | 0,09 | 3,78 | 10-6 |
| Entropy T6                                          | 2,29 | 0,114 | 0,08 | 3,83 | 10-6 |
| Entropy P3                                          | 1,13 | 0,334 | 0,08 | 3,74 | 10-6 |
| T4-β PSD, %                                         | 1,05 | 0,359 | 0,07 | 3,65 | 10-6 |
| <b>C3-α PSD, %</b>                                  | 3,86 | 0,030 | 0,06 | 3,89 | 10-6 |
| <b>Fp2-</b> β <b>PSD</b> , $\mu$ V <sup>2</sup> /Hz | 1.23 | 0,305 | 0.06 | 3,83 | 10-6 |

Calculating the values of discriminant roots for each patient by the raw coefficients and the constant (Table 4) allows visualization of each patient in the information space of roots.

| Table   | 4. | Standardized | and | raw | coefficients | and | constants | for | discriminant | EEG |
|---------|----|--------------|-----|-----|--------------|-----|-----------|-----|--------------|-----|
| variabl | es |              |     |     |              |     |           |     |              |     |

| Coefficients                                                         | Standa | ardized | Raw     |         |  |
|----------------------------------------------------------------------|--------|---------|---------|---------|--|
| Variables                                                            | Root 1 | Root 2  | Root 1  | Root 2  |  |
| Laterality β, %                                                      | 1,374  | -0,613  | 0,0550  | -0,0245 |  |
| Laterality 0, %                                                      | -3,999 | 0,492   | -0,1119 | 0,0138  |  |
| Entropy F7                                                           | -0,591 | -0,314  | -3,1466 | -1,6701 |  |
| Entropy Fp2                                                          | 6,220  | -0,378  | 42,538  | -2,5875 |  |
| <b>T4-α PSD, %</b>                                                   | -0,174 | -0,578  | -0,0122 | -0,0404 |  |
| Entropy T4                                                           | -4,676 | 0,530   | -40,737 | 4,6211  |  |
| T6-δ PSD, μV <sup>2</sup> /Hz                                        | 10,024 | 0,449   | 0,0252  | 0,0011  |  |
| T4-θ PSD, μV <sup>2</sup> /Hz                                        | -3,112 | 0,440   | -0,1137 | 0,0161  |  |
| F8-α PSD, μV <sup>2</sup> /Hz                                        | 0,083  | 0,840   | 0,0034  | 0,0350  |  |
| <b>F4-α PSD, %</b>                                                   | 4,266  | 1,032   | 0,2782  | 0,0673  |  |
| <b>P3-α PSD, %</b>                                                   | -3,000 | -0,717  | -0,1691 | -0,0404 |  |
| T5-δ PSD, μV <sup>2</sup> /Hz                                        | -1,756 | 0,903   | -0,0022 | 0,0011  |  |
| F7-θ PSD, %                                                          | -3,351 | -0,172  | -0,8149 | -0,0419 |  |
| Entropy O2                                                           | 1,788  | 0,087   | 13,073  | 0,6355  |  |
| T4-θ PSD, %                                                          | 5,478  | -1,528  | 1,1257  | -0,3139 |  |
| F7-δ PSD, μV <sup>2</sup> /Hz                                        | -5,196 | -1,160  | -0,0036 | -0,0008 |  |
| F4-β PSD, μV <sup>2</sup> /Hz                                        | -0,261 | -1,081  | -0,0057 | -0,0237 |  |
| <b>Fp2-θ PSD, %</b>                                                  | -4,001 | 0,581   | -0,6332 | 0,0920  |  |
| Laterality a, %                                                      | 1,280  | -0,107  | 0,0480  | -0,0040 |  |
| <b>Fp2-<math>\theta</math> PSD, <math>\mu</math>V<sup>2</sup>/Hz</b> | 3,187  | 0,695   | 0,1170  | 0,0255  |  |
| Deviation δ, Hz                                                      | -0,575 | 0,198   | -2,3259 | 0,8004  |  |
| <b>F8-δ PSD, %</b>                                                   | -1,147 | 0,423   | -0,0429 | 0,0159  |  |
| C4-δ PSD, %                                                          | 1,024  | -0,824  | 0,0565  | -0,0454 |  |
| O2- $\delta$ PSD, $\mu$ V <sup>2</sup> /Hz                           | 0,121  | -1,455  | 0,0001  | -0,0017 |  |
| <b>P3-δ PSD, %</b>                                                   | -3,103 | 0,037   | -0,1946 | 0,0023  |  |
| Entropy T6                                                           | 1,313  | -0,371  | 8,3683  | -2,3617 |  |
| Entropy P3                                                           | -1,378 | 0,050   | -12,129 | 0,4444  |  |

| T4-β PSD, %                    | -1,370        | -0,549    | -0,0913 | -0,0366 |
|--------------------------------|---------------|-----------|---------|---------|
| <b>C3-α PSD, %</b>             | -1,903 -0,704 |           | -0,1222 | -0,0452 |
| Fp2-β PSD, μV <sup>2</sup> /Hz | 0,487         | 0,366     | 0,0126  | 0,0095  |
|                                | C             | Constants | 7,567   | 5,967   |
|                                | 8,22          | 0,90      |         |         |
| Cum                            | oportion      | 0,901     | 1       |         |

The localization of the cluster of patients who received only **Naftussya** water in the extreme left zone of the first root axis (Fig. 1) reflects the maximum decrease in the initial parameters that are **positively** related to the root, as well as the maximum increase **inversely** correlated parameters (Table 5). Recall that a negative value of the Laterality Index indicates a left shift of symmetry. In contrast, in patients receiving **complex balneotherapy**, these EEG parameters deviated from the initial to a much lesser extent or remained unchanged.

On the other hand, these patients are characterized by reduced or minimal for sample EEG parameters that correlate **positively** with the second root, and correspondingly increased or maximum for sample EEG parameters that correlate **negatively** with it, which is visualized by localization of the cluster in the lower root axis.

|                     |         |          | After     | After Salt | Before  |
|---------------------|---------|----------|-----------|------------|---------|
| Variables           | Corre   | lations  | Naftussya | Waters     | therapy |
|                     | Variabl | es-Roots | (12)      | and N (22) | (34)    |
| Root 1 (90%)        | Root 1  | Root 2   | -5,77     | +0,06      | +2,00   |
| Laterality <b>B</b> | 0,149   | -0,112   | -0,95     | +0,08      | +0,10   |
| Laterality a        | 0,098   | 0,144    | -0,71     | -0,52      | +0,12   |
| F4-a PSDr           | 0,076   | -0,065   | -0,58     | -0,06      | -0,07   |
| Fp2-β PSDa          | 0,075   | -0,061   | -0,26     | +0,35      | +0,35   |
| Fp2-θ PSDa          | 0,048   | 0,079    | -0,23     | -0,17      | +0,14   |
| T5-δ PSDa           | 0,047   | 0,032    | -0,14     | +0,09      | +0,34   |
| Entropy F7          | -0,096  | 0,039    | +0,47     | -0,13      | -0,22   |
| Entropy T5          |         |          | +0,35     | -0,05      | -0,20   |
| F7-θ PSDr           | -0,077  | -0,082   | +0,51     | +0,29      | -0,11   |
| Root 2 (10%)        | Root 1  | Root 2   | +0,61     | -1,34      | +0,65   |
| Laterality 0        | 0,063   | 0,240    | -0,66     | -0,98      | -0,04   |
| Entropy Fp2         | 0,012   | 0,256    | -0,02     | -0,66      | +0,13   |
| T4-θ PSDr           | 0,006   | 0,215    | +0,08     | -0,49      | +0,17   |
| F8-a PSDa           | -0,007  | 0,201    | -0,07     | -0,44      | -0,08   |
| Entropy O2          | -0,031  | 0,277    | +0,40     | -0,32      | +0,24   |
| Entropy T4          | -0,032  | 0,272    | +0,31     | -0,32      | +0,17   |
| Deviation <b>d</b>  | 0,007   | 0,218    | +0,17     | -0,34      | +0,26   |
| Entropy T6          | -0,039  | 0,206    | +0,39     | -0,27      | +0,15   |
| F8-δ PSDr           | -0,056  | 0,180    | +0,45     | -0,37      | +0,02   |
| P3-δ PSDr           | -0,005  | 0,166    | +0,06     | -0,38      | +0,04   |
| Fp2-θ PSDr          | 0,012   | 0,157    | +0,13     | -0,34      | +0,29   |
| T4-θ PSDa           | 0,049   | 0,155    | -0,12     | -0,16      | +0,03   |
| C4-δ PSDr           | -0,045  | 0,145    | +0,27     | -0,38      | -0,07   |
| O2-θ PSDr           |         |          | +0,32     | -0,25      | +0,03   |
| F8-0 PSDa           |         |          | +0,11     | -0,24      | +0,08   |
| Entropy P3          | -0,061  | 0,127    | +0,38     | -0,27      | -0,06   |
| O2-δ PSDa           | 0,028   | -0,167   | -0,18     | +1,00      | +0,21   |
| T4-β PSDr           | -0,034  | -0,164   | +0,35     | +0,58      | +0,07   |
| F8-ß PSDr           |         |          | -0.24     | +0.51      | +0.06   |

Table 5. Correlations between EEGs variables and roots, centroids of clusters and Z-scores of variables

| P3-a PSDr | 0,034 | -0,171 | -0,15 | +0,45 | +0,07 |
|-----------|-------|--------|-------|-------|-------|
| F4-β PSDa | 0,050 | -0,085 | -0,11 | +0,43 | +0,30 |
| F7-δ PSDa | 0,025 | -0,145 | -0,16 | +0,38 | +0,02 |
| T4-α PSDr | 0,046 | -0,147 | -0,34 | +0,19 | -0,07 |
| C3-a PSDr | 0,045 | -0,111 | -0,29 | +0,20 | +0,01 |
| T6-δ PSDa | 0,040 | -0,123 | -0,18 | 0,00  | -0,08 |



# Fig. 1. Scattering of individual values of the first and second EEG discriminant roots of patients before (circles) and after the course of drinking only water Naftussya (triangles) and in combination with water "Myroslava" or "Khrystyna" (rhombuses)

Fig. 2 illustrates that the integrated initial state of all three groups of patients was almost the same as the effect on the discriminant EEG variables of both sulfate-chloride sodiummagnesium mineral waters.



Fig. 2. Mean values (M±SD) of the first and second discriminant EEG roots of patients before (red fill) and after the course of drinking only water "Naftussya" (circle) and in combination with water "Myroslava" (triangle) or "Khrystyna" (square)

The visual impression of a clear demarcation of the three clusters in the information field of the two roots is documented by calculating the distances of Mahalanobis (Table 6).

### Table 6. Squares of Mahalanobis distances between clusters (above the diagonal) and F-criteria (df=30,3) and p-levels (below the diagonal)

| Clusters  | Before  | After     | After |
|-----------|---------|-----------|-------|
|           | therapy | Naftussya | SW&N  |
| Before    | 0       | 60        | 7,7   |
| therapy   |         |           |       |
| After     | 9,9     | 0         | 38    |
| Naftussya | 10-6    |           |       |
| After     | 1,91    | 5,4       | 0     |
| SW&N      | 0,033   | 10-5      |       |

Selected discriminant variables were used to identify the affiliation of a patient to a particular cluster. This goal of discriminant analysis is realized with the help of classification functions (Table 7).

| Clusters                       | Before  | After     | After    |
|--------------------------------|---------|-----------|----------|
|                                | therapy | Naftussya | Salt W&N |
| Variables                      | p=,500  | p=,176    | p=,324   |
| Laterality β, %                | -0,914  | -1,340    | -0,972   |
| Laterality 0, %                | -0,046  | 0,822     | 0,143    |
| Entropy F7                     | 233,3   | 257,8     | 242,8    |
| Entropy Fp2                    | -83,74  | -413,79   | -160,9   |
| <b>T4-α PSD, %</b>             | 2,086   | 2,182     | 2,190    |
| Entropy T4                     | -353,5  | -37,51    | -283,9   |
| T6-δ PSD, μV <sup>2</sup> /Hz  | -0,226  | -0,422    | -0,277   |
| T4-θ PSD, μV <sup>2</sup> /Hz  | -0,583  | 0,299     | -0,395   |
| F8-α PSD, μV <sup>2</sup> /Hz  | 0,032   | 0,004     | -0,045   |
| <b>F4-α PSD, %</b>             | -0,515  | -2,678    | -1,188   |
| <b>P3-α PSD, %</b>             | 6,436   | 7,750     | 6,844    |
| T5-δ PSD, μV <sup>2</sup> /Hz  | 0,037   | 0,055     | 0,040    |
| F7-θ PSD, %                    | -4,860  | 1,466     | -3,200   |
| Entropy O2                     | 386,6   | 285,1     | 360,0    |
| T4-θ PSD, %                    | 15,31   | 6,583     | 13,76    |
| F7-δ PSD, μV²/Hz               | 0,054   | 0,081     | 0,062    |
| F4-β PSD, μV²/Hz               | 0,976   | 1,021     | 1,035    |
| <b>Fp2-θ PSD, %</b>            | 2,844   | 7,755     | 3,886    |
| Laterality a, %                | 1,108   | 0,735     | 1,023    |
| Fp2-θ PSD, μV <sup>2</sup> /Hz | -2,362  | -3,270    | -2,639   |
| <b>Deviation δ, Hz</b>         | 11,68   | 29,70     | 14,59    |
| <b>F8-δ PSD, %</b>             | 0,296   | 0,628     | 0,347    |
| C4-δ PSD, %                    | 2,239   | 1,802     | 2,220    |
| O2-δ PSD, μV²/Hz               | 0,069   | 0,068     | 0,072    |
| <b>P3-δ PSD, %</b>             | 6,638   | 8,148     | 7,010    |
| Entropy T6                     | -135,2  | -200,0    | -146,7   |
| Entropy P3                     | 757,5   | 851,7     | 780,1    |
| T4-β PSD, %                    | 5,517   | 6,227     | 5,766    |
| <b>C3-α PSD, %</b>             | 5,831   | 6,781     | 6,158    |

Table 7. Coefficients and constants of classification functions

| Fp2-β PSD, μV <sup>2</sup> /Hz | -0,295 | -0,392 | -0,338 |
|--------------------------------|--------|--------|--------|
| Constants                      | -838,8 | -913,5 | -864,5 |

The accuracy of the classification is 91,2% (Table 8).

### **Table 8. Classification matrix**

Rows: observed classifications; columns: projected classifications

|           |         | Before  | After     | After    |
|-----------|---------|---------|-----------|----------|
|           | Percent | therapy | Naftussya | Salt W&N |
| Groups    | Correct | p=,500  | p=,176    | p=,324   |
| Before    | 82,4    | 28      | 0         | 6        |
| therapy   |         |         |           |          |
| After     | 100     | 0       | 12        | 0        |
| Naftussya |         |         |           |          |
| After     | 100     | 0       | 0         | 22       |
| Salt W&N  |         |         |           |          |
| Total     | 91,2    | 28      | 12        | 28       |

Thus, we have shown that complex balneotherapy by interval use of sulfate-chloride sodium-magnesium mineral water with Naftussya water causes significant changes in the constellation of EEG parameters, which are different from the effects of Naftussya water monotherapy.

Using the algebraic approach described in the previous article [2], we modeled the neurotropic effects of mineral waters **themselves**.

Three patterns of neurotropic effects of mineral waters emerge (Fig. 3). The first pattern (12 parameters) reflects a more or less pronounced activation of neurons that generate delta, alpha and beta rhythms, as well as a right-hand shift of symmetry of beta-rhythm. In contrast, the antipode pattern (17 parameters) reflects the inhibition of neurons that generate delta, alpha, and theta rhythms and the left-hand shift of theta-rhythm symmetry, as well as the decrease in EEG entropy. The intermediate position in the profiles is occupied by 5 parameters, the changes of which are insignificant.



Fig. 3. Profiles of real Z-scores of initial discriminant EEGs variables and their simulated Z-scores after consumption of sulphate-chloride sodium-magnesium mineral waters

Since the described neuromodulation is accompanied by physiologically favorable changes in HRV, immune and metabolic parameters [2], a priori it is also favorable. In the next article, this assumption will be verified by correlation analysis.

### ACKNOWLEDGMENT

We express sincere gratitude to TA Korolyshyn as well as administration of clinical sanatorium "Moldova" for help in recording of EEG.

### ACCORDANCE TO ETHICS STANDARDS

Tests in patients are carried out in accordance with positions of Helsinki Declaration 1975, revised and complemented in 2002, and directive of National Committee on ethics of scientific researches. During realization of tests from all participants the informed consent is got and used all measures for providing of anonymity of participants.

#### REFERENCES

1. Gozhenko AI, Korda MM, Popadynets' OO, Popovych IL. Entropy, Harmony, Synchronization, Harmony and Their Neuro-Endocrine-Immune Correlates [in Ukrainian]. Odesa. Feniks; 2021: 232.

2. Hrytsak MV, Popovych DV, Badiuk NS, Hrytsan II, Zukow X. Comparative study of the effect on the neuroendocrine-immune complex and metabolism of drinking monotherapy with Naftussya water and therapy supplemented with "Myroslava" and "Khrystyna" mineral waters. Journal of Education, Health and Sport. 2022; 12(1): 355-367.

3. Klecka WR. Discriminant Analysis [trans. from English in Russian] (Seventh Printing, 1986). In: Factor, Discriminant and Cluster Analysis. Moskva: Finansy i Statistika; 1989: 78-138.

4. Kul'chyns'kyi AB, Gozhenko AI, Zukow W, Popovych IL. Neuro-immune relationships at patients with chronic pyelonephrite and cholecystite. Communication 3. Correlations between parameters EEG, HRV and Immunogram. Journal of Education, Health and Sport. 2017; 7(3): 53-71.

5. Kul'chyns'kyi AB, Kovbasnyuk MM, Korolyshyn TA, Kyjenko VM, Zukow W, Popovych IL. Neuro-immune relationships at patients with chronic pyelonephrite and cholecystite. Communication 2. Correlations between parameters EEG, HRV and Phagocytosis. Journal of Education, Health and Sport. 2016; 6(10): 377-401.

6. Kul'chyns'kyi AB, Kyjenko VM, Zukow W, Popovych IL. Causal neuro-immune relationships at patients with chronic pyelonephritis and cholecystitis. Correlations between parameters EEG, HRV and white blood cell count. Open Medicine. 2017; 12(1): 201-213.

7. Kul'chyns'kyi AB, Zukow W, Korolyshyn TA, Popovych IL. Interrelations between changes in parameters of HRV, EEG and humoral immunity at patients with chronic pyelonephritis and cholecystitis. Journal of Education, Health and Sport. 2017; 7(9): 439-459.

8. Kul'chyns'kyi AB, Zukow W. Three variants of immune responses to balneotherapy at the spa Truskavets' in patients with chronic pyelonephritis and cholecystitis. Journal of Education, Health and Sport. 2018; 8(3): 476-489.

9. Popovych IL, Kul'chyns'kyi AB, Korolyshyn TA, Zukow W. Interrelations between changes in parameters of HRV, EEG and cellular immunity at patients with chronic pyelonephritis and cholecystitis. Journal of Education, Health and Sport. 2017; 7(10): 11-23.

10. Popovych IL, Kul'chyns'kyi AB, Gozhenko AI, Zukow W, Kovbasnyuk MM, Korolyshyn TA. Interrelations between changes in parameters of HRV, EEG and phagocytosis at patients with chronic pyelonephritis and cholecystitis. Journal of Education, Health and Sport. 2018; 8(2): 135-156.

11. Vis'tak HI, Popovych IL. Vegetotropic effects of bioactive water Naftussya and their endocrine and immune support in female rats [in Ukrainian]. Medical Hydrology and Rehabilitation. 2011; 9(2): 39-57.