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What is this about? 

Adjoints can efficiently compute sensitivity between input and output of models. While 
popularly known for their use in estimation and optimization (e.g., data assimilation), adjoint 
models are also increasingly employed to investigate the workings of complex systems like the 
ocean. What could collectively be called "adjoint modeling", these emerging applications afford 
insight that can be difficult to attain otherwise.  
  
Here we describe briefly what an adjoint is, how it is useful, and how it is derived.  
 

Adjoint is not data assimilation. 
 

What is an adjoint? 

Adjoint1 is a transformation used in studying mathematical relationships. An “adjoint model” 
refers to an adjoint-transformed version of a model. Here, “model” is simply a set of rules, or a 
computer program, that takes input and calculates output. To distinguish it from its adjoint, the 
original pre-transformed model is often referred to as the “forward model” in contrast to its 
adjoint that computes things “backward”, switching roles of what is input and what is output2 
(see diagram below). Adjoint models are particularly useful for computing how forward model 
output depends on its input, i.e., sensitivity (a.k.a. derivative, gradient).  

 
1 The adjoint here is technically called the Hermitian Adjoint.  
 
2 Adjoint models are distinct from inverse models that are also "backward." Inverse models solve input from 
output, whereas adjoint models evaluate dependencies between the two.   
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A schematic illustration of a forward model and its adjoint. Note the input and 

output being opposite between the two models.  
 
For illustration, suppose we have a simple “forward model” written as   

   (1) 

Here, the model's input is the variables (x, y, z) used in the computation on the right-hand-side 
and its output is the variables (a, b) on the left-hand-side assigned (=) to the results of this 
computation. Now suppose we have a quantity of interest J (often called “cost function”, 
“objective function”, or “target function”) defined in terms of the forward model output,  
   (2) 
and that we are interested in the sensitivity of this quantity to the model input (x, y, z). In other 
words, how much would J change, if x, y, or z were to change by one?   
 
One way of evaluating this sensitivity is to use the forward model, by changing its input x, y, and 
z one by one and evaluating how J would change each time. For example, J’s sensitivity to x can 
be computed by setting x=1 and y=z=0 as input for the forward model (Eq 1) and using its 
output to evaluate J (Eq 2), which result is -22. J’s sensitivity to y and z can be obtained 
similarly, each requiring a separate evaluation of the forward model. Thus, this way of deriving 
the sensitivity, the answer of which is (-22, -12, 53), requires three separate evaluations of the 
forward model, one for each input variable.  
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The “adjoint model”, in comparison, allows us to evaluate this sensitivity in one step. The 
adjoint of the forward model (Eq 1) is3  

   (3) 

where carets (^) denote variables of the adjoint model (“adjoint variables”). Here, the adjoint 
model’s input used in the computation on the right-hand-side is  and its output assigned 

on the left-hand-side is , which are opposite to what they are in the forward model.  
That is, the adjoint model conducts its computation “backward” compared to the “forward 
model” as noted above.   
 
Adjoint variables can be regarded as sensitivity. Specifically, by setting the adjoint model's input 

 to be the sensitivity of J to  (Eq 2),    

   (4) 

the adjoint model's output  gives the sensitivity of J to . The result, 

, is the same as the previous calculation. However, the present 
computation requires only one evaluation of the adjoint model (Eq 3) instead of the three that 
were required by the forward model (Eq 1).  
 
For this example, owing to its simplicity, the difference is small between using the forward 
model and using the adjoint model in the amount of computation required to evaluate the 
sensitivity. But imagine the model being more complex such as the ocean general circulation 
model used by the Consortium for "Estimating the Circulation and Climate of the Ocean" (ECCO; 
https://ecco-group.org; Wunsch et al., 2009). In ECCO, a single forward or adjoint model 
evaluation requires several days of computation on a state-of-the-art supercomputer with 
millions of input and output variables. The sensitivity calculation using the forward model will 

 
3 In many circumstances, as it is here, the adjoint corresponds to a transpose operation. This can be seen more 
clearly in matrix notation. Namely, using matrices, Equations (1) and (3) can be written, respectively, as,  

   (1’) 

   (3’) 

Note the coefficient matrix on the right-hand-side of the adjoint model (Eq 3’) simply being the transpose of that in 
the forward model (Eq 1’), i.e., a reversal of rows and columns of the matrix. Sensitivity is independent of 
inhomogeneous terms and are, therefore, excluded from the example. For nonlinear systems, adjoints can be 
defined with respect to linearized forward models (i.e., tangent linear approximation).   
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require one forward model evaluation per input variable which altogether will take millions of 
days to complete (that's a couple thousand years!), but the equivalent calculation can be 
performed with only one evaluation of the adjoint model taking only a few days’ time. Thus, it 
is impractical to use the forward model to evaluate the sensitivity of a model like ECCO’s, 
whereas it is a routine calculation using its adjoint. This computational efficiency is what makes 
an adjoint model indispensable.  
 

Adjoint models efficiently compute sensitivity. 
 

How is an adjoint model useful?   

Sensitivity (derivative) is foundational in calculus used in every branch of science and 
engineering that employs math. Just as how calculus has advanced these disciplines, adjoint-
derived sensitivities provide new insight into problems.  
 
Adjoint models were first introduced in oceanography in the context of data assimilation 
(Thacker and Long, 1988). Based on sensitivity of model-data differences, adjoint models are 
used to fit corresponding forward models to observations. Such approach (“adjoint method”) is 
also at the heart of ECCO’s Central Solution and most of its other estimation products (e.g., 
Forget et al., 2015). Values of an adjoint’s sensitivity also tell us what observations are most 
effective for monitoring different quantities of interest and are useful in designing observing 
systems (Köhl and Stammer, 2004). 
 
Importantly, adjoints also provide an effective means to investigate the workings of complex 
systems like the ocean. As a tangible example, consider a change in passive tracer, like dye in 
water, which can tell us how a tracer-tagged water spreads with time (fate of the water). In 
contrast, the sensitivity of such quantity to tracer concentrations in the past (“adjoint passive 
tracer”; Fukumori et al., 2004), tells us where that tracer-tagged water came from (origin of the 
water). Quantitative measures of origin and fate elucidate pathways of ocean circulation and 
provide insight into processes controlling its evolution.   

 
Adjoint models are also employed in directly studying causation (“adjoint gradient 
decomposition”; Fukumori et al., 2015); in this, sensitivity is used to quantify effects of different 
elements driving the ocean, thus providing a tool to assess their relative contribution (e.g., wind 
vs heat flux).  In contrast to commonly-used correlation, which quantifies similarities, adjoints 
reveal causation based on theoretical relationships underlying the models (first principles).  
 

Adjoints quantify causation that correlation doesn't. 
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How do you derive an adjoint?   

Derivation of adjoint models is conceptionally straightforward but technically challenging owing 
to the size and complexities of computer programs defining most state-of-the-art forward 
models. Remarkably, however, there are software that can automatically transform computer 
programs into their adjoint (“automatic differentiation”, "algorithmic differentiation", "AD 
tools"; International Conference on Automatic Differentiation, 2004, 2012). For example, the 
ocean circulation model used by ECCO, MITgcm (Marshall et al.,1997), was purposefully created 
to use such automatic differentiation tool to generate its adjoint (Marotzke et al., 1999). Today, 
MITgcm remains one of the few state-of-the-art ocean general circulation models that has an 
adjoint readily available (https://github.com/MITgcm/MITgcm.git). A rigorous process is in 
place to routinely test the “adjointability” of new features introduced in the model, thus 
assuring availability of the adjoint for the latest version of MITgcm for use in ocean state 
estimation and other applications.  
 

AD tools help generate adjoint models. 
 

Concluding remark 

Despite its foundational nature, adjoint modeling is still far uncommon today compared to 
forward modeling. This difference is due in part to most adjoint models being developed for 
purposes of estimation and optimization, which relatively speaking are specialized fields of 
investigation, as opposed to general modeling applications. As the community becomes more 
familiar with adjoint models, their availability and scope of utilization are bound to broaden 
synergistically. Adjoint modeling is still at a nascent stage and is ripe for innovation. 
 

Adjoint modeling is on the cusp of transformation. 
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