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Abstract: 

The adrenal glands are the primary source of minerocorticoids, glucocorticoids, and the so called 

adrenal androgens. Under physiological conditions, cortisol and adrenal androgen synthesis are controlled 

primarily by ACTH. Although it has been established that ACTH can stimulate steroidogenesis, the effects of 

ACTH on overall gene expression in human adrenal cells have not been established. In this paper, we estimate 

the Adrenocorticotropic Hormone on cortisol and Dehydroepiandrosterone Sulfate (DHEA’s) production 

through Hamilton Jacobi-Bellmann equation using stochastic analysis. 
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1. Introduction: 

ACTH is a 39 amino acid polypeptide predominantly synthesized in and secreted from the anterior lobe 

of the pituitary gland. The synthesis and secretion of ACTH are tightly controlled by the hypothalamic pituitary 

adrenal axis. Under stress conditions, the paraventricular nucleus of the hypothalamus secretes vasopressin and 

CRH. These two peptides regulate the anterior lobe of the pituitary gland and stimulate the secretion of ACTH. 

ACTH subsequently induces adrenal cortex expansion and corticosteroid production (mainly cortisol in 

humans). Once synthesized, cortisol in turn acts on the hypothalamus and pituitary (To suppress CRH and 

ACTH production) causing a negative feedback cycle. In the adrenal glands, ACTH acts by binding to specific 

cell surface ACTH receptors (Melanocortin 2 Receptor MC2R). MC2R is a seven membrane spanning G-

protein coupled receptor that is primarily expressed in adrenocortical cells. Upon ligand binding, the receptor 

undergoes conformational changes that stimulate adenylyl cyclase, leading to an increase in intracellular cAMP 

and subsequent activation of protein kinase A (PKA).  

 Although previous studies have identified some ACTH responsive genes that are involved with the 

steroidogenic and growth related effects of ACTH [1-3], [6-7], [9] & [16], there is a lack of knowledge 

regarding the global actions of ACTH on gene expression. Given the critical role of ACTH in adrenal 

development, steroidogenesis, and disease, it is appropriate to further define the detailed effects of ACTH on 

human adrenal cell gene expression. 

            In this paper the problem is investigated by using the boundary condition of Halmilton Jacobi Bellman 

equation [17].  The continuous time portfolio optimization problem in [4].  The sufficient conditions to verify 

that a solution derived from the Hamilton Jacobi Bellman equation are in fact an optimal solution to the 

portfolio selection problem.   Many studies have been done on continuous time portfolio optimization problem 

with the Merton’s seminal work [8] & [19-20].  In particular, there has been increasing interest in finding an 

optiomal portfolio strategy when investment opportunities are stochastic, because many empirical works 

conclude that investment opportunities are time-varying.  There are two main approaches in solving continuous 

time portfolio optimization problem.  One is the stochastic control approach and the other is the martingale 

approach.  In the stochastic control approach, an optimal solution is conjectured by guessing a solution to the 

HJB equation.  It is necessary to verify that the conjectured solution is in fact solution to the original problem.  

In [5] pointed out, the verification is often skipped since it is mathematically demanding for Kim and Omberg 

examined the finiteness of conjectured value function very carefully, but they could not provide verification 

conditions.  The sufficient condition to verify that the conjectured solution is in fact the solution to the original 

problem. 

2. Stochastic Model: 

Let ( , , )D P  be a complete probability space on which we define a two-dimensional standard 

Brownian motion 
1 2( , )TB B B  and we also fix a time interval  0,T .  Let ( )D t  be the augmentation of the 

filtration ( ) : ( ( );0 )BD t B a a t   , 0 t T  . 
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Let Y be an Ornstein Uhlenbeck process: 

                                      1 2 2( ) ( ( )) ( ) 1 ( )YdY t Y Y t dt dB t dB t                              (1) 

                                                                  0(0) .Y y   

 1,1 , 0, 0, .Y andY         We call Y a state process, because it determines an investment 

opportunity set in our portfolio problem. There is one riskless asset and one risky asset.  Suppose the price 0A  

of the riskless asset satisfies 0 0 0( ) ( ) , (0) 1,dA t qA t dt A   

Where 0q   is constant.  The risky asset price A satisfies the stochastic differential equation 

                                         
1( ) ( ) ( ( )) ( ) ( ), (0) 0,dA t A t Y t dt A t dB t A a                             (2) 

Where :    satisfies ( ( ) ) / .y q y for y      Then (2) can be written by 

                                                 
1( ) ( )( ( )) ( ) ( ).dA t A t q Y t dt A t dB t     

We consider the division between the riskless asset and the risky assets.  Let 
2

0 1( , )t t  be a set of ( )t -

progressively measurable processes  0 1: ,t t     such that 

                                                         

1

0

2( ( ) ) 1

t

t

P t dt                                                           (3) 

We call an element of 
2

0 1( , )t t  a portfolio strategy.  We regard ( )i t  as a fraction of the wealth invested in 

the risky asset at time t.  The wealth process U
corresponding to 

2 (0, )T   is given by  

                      0(0) 0U u    and  

                        1( ) ( ) ( )( ( ( )) ) ( ) ( ) ( )dU t U t t Y t q q dt U t t dB t        

                                  1( ) ( ) ( ) ( ) ( ) ( )U t t Y t q dt U t t dB t      .                                          (4) 

There is incompleteness in the sense that there are some random processes that are not replicated by the self-

financing portfolio strategy  . The investor maximizes the expected utility of his wealth at terminal date T.  

We assume that the investor has a power utility function with a relative risk aversion coefficient :  

                                                           

1

(0, )

( )
max .

1Q T

U T
E



 

 





 
 

 
                                                  (5) 

Here Q  denotes the set of admissible portfolio strategies defined as follows.  A Stochastic process   is said 

to be an admissible portfolio strategy on  0 1,t t  if  

(a) 
2

0 1( , ), 0 1t t when     

(b)  For some function :[0, ]T      satisfying the linear growth condition ,  

 0 1( ) ( , ( )) , , 1.t t Y t on t t when     

The set of all admissible strategies on  0 1,t t  is denoted by  0 1,Q t t .  The choice of our set of portfolio 

strategies seems to be restrictive. 

Because of incompleteness there is no unique equivalent martingale measure, and we cannot apply the so-called 

martingale approach directly.  It is thus common to apply the dynamic programming approach using Hamilton-

Jacobi-Bellman equation.  Let 

                                  

1
, , ( )

( , , ; ) ,
1

t u y U T
K t u y E

 




 
  

 
 

Here and in the sequel, we use the notation    , , . . | ( ) , ( ) .t u yE E U t u Y t y    

Let    0, 0, .S T    We then define : S   by 

                                      
( , )

( , , ) sup ( , , ; )
Q t T

t u y K t u y


 


 . 
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The function   is called a value function.  The Hamilton-Jacobi-Bellman equation related to the problem (5) is 

sup ( , , ) 0C H t u y






                                                                                   (6) 

With the boundary condition

1

( , , ) ,
1

u
H T u y










                                                                     (7)                                                                                    

                     Where ( , , ) ( ) ( )t u yC H t u y H u y q H Y y H        

                                           
2 2 2 21 1

.
2 2

uu Y yy Y uyu H H u H        

It is well known from Kim and Omberg and others that the function H is separable and has the following form: 
1

( , , ) ( , ),
1

u
H t u y g t y










                                                                         (8) 

                      Where 
21

( , ) exp ( ) ( ) ( )
2

g t y p t s t y r t y
 

   
 

 

With the boundary conditions ( ) ( ) ( ) 0.p T s T r T    

It follows from the first order condition for (6) that the candidate optimal portfolio strategy is given by 

* 1 ( ) 1
( ) ( ( ) ( ) ( )).YY t
t s t r t Y t




   
                                                                    (9) 

Substituting this conjectured solution into the Hamilton-Jacobi-Bellman equation, we obtain the differential 

equation for (.), (.), (.)p s and r  as follows: 

                
.

2 2 21 1 1
( ) 1 ( ) 2 ( )Y Yr t r t r t

  
    

  

     
        

   
                (10) 

                           
.

2 21 1
( ) 1 ( ) ( ) ( ) ( )Y Ys t s t r t s t Yr t

 
     

 

    
        

   
             (11) 

              
.

2 2 2 21 1 1
( ) 1 ( ) ( ) ( ) (1 )

2 2
Y Yp t s t r t Ys t q


    



 
       

 
               (12) 

3. Example: 

Figure (1) Time dependent effects of ACTH on cortisol and DHEA’s production in FA primary 

cultures. Primary human FA cells were prepared as described under Materials and methods, and plated at a 

density of 2,00,000 cells per well in 24 well dishes. The day before experiments, cells were changed to 1% low 

serum medium overnight. Cells were treated with ACTH (10nM) for the indicated times followed by 

quantification of medium cortisol and DHEA’s using EIA kits. Steroid data were normalized to protein per well 

and expressed as the fold change over basal conditions (untreated cells) for each time point. Results represent 

the mean ±S.E.M. of data from at least three independent experiments. Three wells were analyzed for individual 

treatment in each experiment. Statistics were calculated using one way Anova followed by Dunnett’s test, 

comparing with baseline. *P<0.05; **P<0.01; ***P<0.001 [10-15] & [18]. 

 
Figure (1): Effects of ACTH and DHEA’s on cortisol production in human adult adrenal (AA) cells 
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Figure (2): Effects of ACTH on cortisol and DHEA’s production in human adult adrenal (AA) cells using 

Normal Distribution 

4.  Conclusion: 

   By applying a bio mathematical approach, we defined and estimate the genomic effects of ACTH in 

human adult and FA primary cultures. The newly defined adrenal ACTH responsive genes can provide clues to 

the mechanism of ACTH regulated steroidogenesis and cell growth, and may lead to further understanding of 

the global functions of ACTH in the adrenal gland. HJB equation with normal distribution gives the same as the 

medical report. The medical reports are beautifully fitted with the mathematical model. Hence the mathematical 

report {Figure (2)} is coincide with the medical report {Figure (1)}. 
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