Disks and cones: interferometry of the dusty and molecular material of AGN on parsec sales
Description
The central engine of Active Galactic Nuclei (AGN) is surrounded by dense molecular and dusty material on parsec scales. Typically referred to as the ""dusty torus"", this material is a key ingredient of AGN because it (1) provides the angle dependent obscuration of the central engine and (2) most likely plays an important role for the accretion of the material onto the supermassive black hole. Observations using interferometry in the infrared have, in the last ten years, resolved and characterised the thermal emission from the dust heated by the AGN beyond simple fits of the spectral energy distribution, leading to a great leap forward in our view of the dusty material surrounding AGN. In general the torus is parsec-sized, with a large scatter in extension between individual objects. Our studies have led to the surprising discovery that the dust emission is clearly separated into two distinct components: an inner disk-like emission region which is surrounded by a polar elongated emitter. I will demonstrate these discoveries using the results obtained for the Circinus galaxy, and discuss how the results for this galaxy compare to other well studied sources. While putting strong constraints on torus models, our findings are in good qualitative agreement with recent hydrodynamic simulations of AGN tori. The next big step forward can be expected from sub-mm interferometry and I will give a short glimpse at the results from our recent ALMA observations of the outer torus in the Circinus galaxy.
Files
AGN2016_Talk_Tristram.pdf
Files
(5.0 MB)
Name | Size | Download all |
---|---|---|
md5:33673ac870b286d78c087a37a02b07c3
|
5.0 MB | Preview Download |