
PYTEST AND LSST

1

Background
• DM and Sims codebase uses unittest for Python testing.

• Historically there have been workarounds to overcome old bugs in unittest: explicit specification of suites
and a utils run function to trigger the correct exit status.

• We run the tests as “python tests/test.py”, sending the output to a file and renaming that file
“.failed” if exit status is bad. SCons then looks for .failed files to work out whether the tests worked or
not.

• Many tests were written before specific asserts were available. Far too many tests have assertTrue(a < b)
or assertTrue(isinstance(a, b)) or assertTrue(a is None) or even worse assertTrue(a
== None). These can be replaced with specialized asserts that trigger descriptive error messages on failure.

• assert_ and assertEquals are deprecated on Python 3 and should be replaced.

• Some older tests are just scripts that run. These need to be migrated to unittest.

2

PYTEST

• We need to be able to run our tests with a modern test runner that can run
all tests together; generate results that can be parsed to report numbers of
passes, fails, unexpected successes, expected failures and skips; report test
durations; give rich error traces.

• py.test can do all this. It can also run tests in parallel and load the debugger
on failure. It can report on test coverage.

• py.test does not require unittest-style tests but can work within that
environment.

• It does not always work nicely with our current tests though.

3

Testing Modifications

• See SQR-012 for detailed instructions on how to migrate from old
to new. Current instructions in the developer guide.

• Remove suite and replace with:

4

class TestMemory(lsst.utils.tests.MemoryTestCase):
 pass

def setup_module(module):
 lsst.utils.tests.init()

if __name__ == "__main__":
 lsst.utils.tests.init()
 unittest.main()

https://sqr-012.lsst.io
https://developer.lsst.io/coding/python_testing.html

• This defines a memory test class (inheriting from the memory test
class itself) and calls lsst.utils.tests.init() before the
tests are run.

• setup_module is a special pytest function that is called when the
tests are loaded.

• This change to boiler plate will be enough in many cases.

• Get pytest with “conda install pytest” and try it on the
file: py.test tests/testfile.py

5

What if it doesn’t work?

• Do not use a Test prefix on classes if the class is not meant to be searched by pytest.

• Do not use a test prefix on functions unless you want pytest to run it.

• Do not have base classes without tests inheriting from unittest.TestCase that
are meant to be used by subclasses.

• Do not set global state in a test module. When the next test module runs that global
state will be still be active. If you have to use global state reset it in the tearDown.

• Skip tests properly rather than dropping out of the test module immediately if some
condition is not met.

6

How do I know it worked?

• run the test on the command line as before. Look at the test count. Run
the test with pytest. Does the test count differ?

• Run all the tests with pytest: py.test tests/*.py — do they all
pass?

• Run the tests in reverse with py.test `ls -r tests/*.py` —
passing still?

• Were there warnings? Use “py.test -r a tests/*.py” to see
those.

7

Clean up

• Clean up the test files while you are sorting out pytest. Run autopep8 first.

% pip install autopep8
% autopep8 {{package_dir}} --in-place --recursive
 --ignore E26,E133,E226,E228,N802,N803 --max-line-length 110

• Modernize asserts. Do not use assertTrue unless you are checking something that has no
specialist form (such as the return value of a function). Replace assert_ and assertEquals.

• Use assertRaises without the lambda.

• Make sure tests run from any directory. Do not assume that support data files are in a “tests/“
sub directory. Locate them relative to the test file using __file__. This will let us run all the
tests in the entire stack in one go without having to change to the build directory first.

8

Testing executables

• pytest only tests Python code.

• To run the executables (mainly compiled C++ code) copy in
testExecutables.py from the utils package. In many cases
that will be all that is needed to run the executables. The list of
executables is worked out automatically but can be constrained. If
some require command line arguments more work is needed. See
the lsst.utils.tests documentation.

9

Massively Parallel

• There are hundreds of test files in the stack and they can be fixed up in
parallel by different people.

• We will use one JIRA ticket per package that we are updating.

• If multiple people are working on the same package share the branch
(there will be no conflicts). Remember to “git pull —rebase” if
you are committing before pulling updates.

• Take ownership of specific test files on the pytest confluence page:
https://confluence.lsstcorp.org/display/DM/Pytest+Migration

10

https://confluence.lsstcorp.org/display/DM/Pytest+Migration

