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Abstract— This work proposes an automated epileptic seizure
detection pipeline using generated rhythmicity spectrograms
and Generic Convolutional Neural Networks (CNN). 1D multi-
channel, scalp-EEG signals taken from a publically available
EEG database (CHB-MIT Scalp EEG database, version: 1.0.0)
were converted to time-variable, non-overlapped and one-
sided rhythmicity spectrograms (2D images) through Short-time
Fourier transform (STFT) method for patient no. chb01, chb02,
chb03 and chb05. A two class, supervised classification between
seizure (ictal) and non-seizure images was performed. Thorough
cross-patient test set analysis has been presented along with
evaluation metrics such as precision, recall, F1-score, and loss
and accuracy of the model on the test set. The generic model
achieved an average training, validation and test set accuracy
up-to 91.89, 88.17 and 61% respectively. An automated epileptic
seizure detection system can escalate the process of diagnosis
and early decision to surgery which may aid in quality of life
(QOL) of diseased patients.

Index Terms— Spectrogram, test set, seizure detection, Q-
EEG, signal to image

I. INTRODUCTION

Epileptic seizures are sudden, uncontrollable electrical
disturbances which can be observed through an electroen-
cephalography (EEG) in different parts of the affected brain
[1]. Approximately 10 million epilepsy affected patients
reside in India [2]. Epileptic seizures are considered one of
major public health concerns by WHO [2]. Due to increase in
such cases every year and only handful people in neurology,
the rate of diagnosis of disorders related to epileptic seizure
activity is lower than the recommended rate [2], especially in
developing countries like India. Hence, automated detection
using deep learning techniques which are able to learn
complex patterns from seizure and non-seizure EEG signals
can be useful to reduce this burden, facilitate automated
diagnosis and improve the quality of life (QOL) of diseased
patients.

Signal to image based models like histogram, scalogram,
periodogram, variogram, and spectrogram etc. are becoming
popular in analyzing signals in different biomedical domain.
Spectrograms are one such method to convert a series of
signals to n*m matrix like image formats. It provides a
visualization and understanding of spectral complexities and
frequency components in time-frequency domain [3]. It is
known to have better temporal and frequency resolution in
comparison to Fourier transform [3]. Spectrographic analysis
is studied under Quantitative analysis of EEG signals [4]. It
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has been used as an input image to various deep learning
methods in several medical fields such as depth of anesthesia
(DOA) [3], brain coma [5], human imagination [6], epilepsy
and seizures [8], [9], [10], [11], [12], etc. Deep learning
methods have shown remarkable diagnostic accuracy towards
understanding complex patterns in medical AI due to their
automated complex feature extraction efficacy [8], [9], [10].

Recent studies carried out using deep learning such as
convolution neural networks (CNN), LSTM, Residual CNN,
Deep neural networks, and transfer learning architectures etc.
are trained on raw dataset instead of statistically developed
features[8], [9], [10]. Such techniques have achieved higher
accuracy levels but also helps in automating the entire
pipeline making the pipeline ‘end to end’.

Mathematically, each column of N channel EEG signal
can be considered as a sequence represented in equation 1.
A Short-time Fourier transform (STFT) of this time series
data can be done through equation 2. Power spectral density
of this function is achieved by magnitude square of STFT
function mentioned in equation 3.

x(t) = [x1,x2, . . . . . . .xh] (1)

ST FT [x(n)](m,ω)≡ X(m,ω) =
∞

∑
n=−∞

x(n)ω(n−m)e− jωn

(2)
spectrogram[x(t)](τ,ω)≡ |X(τ,ω)|2 (3)

In equation 1, 2 and 3 collectively, h presents the number
of seconds of a particular EEG envelope, x(n) is the signal
containing n samples, w is the frequency of the signal.

Recent contributions in signal to image conversion with
convolutional neural networks has been done using Univer-
sity of Bonn, EPILEPSIAE project and CHB MIT EEG scalp
database. Both before mentioned datasets are considered a
benchmark dataset for seizure detection and prediction tasks
[7].

Mandhouj et al. [8] performed epileptic seizure classifi-
cation of spectrograms developed from University of Bonn
EEG signals. Hussein et al. [9] generated scalograms from
CHB MIT scalp EEG signals and performed seizure predic-
tion using semi-dilated convolutional network (SDCN). An
eight class classification of different seizures such as tonic-
clonic, clonic, and non-specific seizures etc. and non-seizures
based on spectrogram representation of 1D EEG signals is
discussed in [10]. The work used advanced deep learning
models like AlexNet, two variants of VGG and a basic CNN
model.



Toraman [11] classified two different seizure states namely
pre-ictal and inter-ictal state using pre-trained classifiers
VGG19, ResNet, DenseNet. Yuan et al. [12] proposed an
auto-encoder based approach for spectrogram based super-
vised seizure detection. They extracted hand crafted features
and developed a channel aware module. Hu et al. [13] fused
time and frequency domain signal and image features namely
mean amplitude spectrum (MAS), mean power spectral den-
sity (MPSD) and wavelet packet features (WPFs) into an
image and used it as an input to proposed hierarchical neural
network (HNN) pipeline. The experiments were done on the
public database, CHB-MIT and the private database, iNeuro
epilepsy. A topological image of EEG channel was fed to a
3D CNN model in [14] from 16 patients of CHB MIT EEG
dataset.

Hussein et al. [15] converted the scalp and invasive
EEG signals to a scalogram using continuous wavelet trans-
form and proposed a semi-dilated convolutional network for
seizure prediction task. Another work analysed the ROC
curve of converted EEG signals and sub-bands to images
using STFT and naive bayes classifier [16].

Shankar et al. [17] generated 2D recurrence plots from
Bonn University and CHB-MIT EEG scalp database and
used CNN to perform classification. Fourier-based Synchro-
squeezing Transform (SST) images were generated from
CHB-MIT data to perform seizure detection task [18].

This paper has performed quantitative EEG (Q-EEG) anal-
ysis by generating power spectral density based rhythmicity
spectrogram from 1D seizure (ictal) and non-seizure EEG
segments. A generic CNN with cross-patient analysis has
been presented and discussed in Section III. Section II
describes the EEG dataset and processing done to perform
signal to image conversion and description of generic CNN.
Section III presents experimental results and its discussion.
Finally, the conclusion is presented in Section IV.

II. MATERIALS AND METHOD

A. EEG Dataset Description

CHB-MIT scalp EEG database is an open access database
containing 844 hour of multi-channel scalp-EEG [15]. 23
pediatric patient data has been recorded who suffer from
intractable seizures. 198 seizures have been reported at
sampling frequency of 256 Hz. There are unique folders for
each patient which contains summary of each folder and 1-4
hours of EEG in EDF format. Seizure start and end time in
different EDF files is also mentioned in these folders.

B. Signal to image generation

EDF files of patient 01, 02, 03 and 05 available at [19]
were downloaded. The dataset has several artifacts such as
eye ball, muscle movements etc. Wu et al. [20] has listed
all such artifact prone channels. Based on that list, specific
15 EEG channels namely F7-T7, T7-P7, P7-O1, F3-C3, C3-
P3, P3-O1, F4-C4, C4-P4, P4-O2, F8-T8, T8-P8, P8-O2,
FZ-CZ, CZ-PZ, and P7-T7 were chosen for further anal-
ysis. Channel-wise ictal and random non-seizure segments

were transformed into rhythmic spectrograms through STFT
method to generate a balanced, fixed time and length dataset.

Fig. 1. Spectrogram generation from a 1D EEG signal containing (A) a
seizure segment (B) a non-seizure segment.

Fig. 1 shows an example of the developed rhythmicity
based spectrograms from 1D seizure and non-seizure EEG
signals. In this, two different files suppose (A) and (B) con-
taining a seizure and non-seizure segment were considered.
EEG signal measured across a specific channel for e.g., F7-
T7 and F4-C4 were extracted and converted to a spectrogram.
The original image size obtained was 360*360. Information
present outside the spectrogram box was cropped and final
input image for generic CNN model was 280*274.

The final dataset consisted of 105 frames from chb01, 30
frames from chb02, 90 frames from chb05 and 75 frames
from chb05 separately from both ictal and non-seizure files.
The total image frames and ictal time (20 ictal signals) were
600 frames and 25 minutes respectively.

Table I shows the time calculation of 20 seizure segments
taken from respective folders available in the original CHB-
MIT EEG database. Finally, the dataset was divided into
training set (80%), testing set (10%) and validation set
(10%). Data augmentation methods such as re-scaling, and
flipping (horizontal and vertical) were opted to increase the
quantum of the dataset. A seizure segment refers to ictal
segments where the seizure started and ended. Similarly,
a non-seizure segment refers to any file which has no
occurrence of a seizure. No other prior processing was done
than extraction of EEG seizure and non-seizure fragments in
the above mentioned manner.

C. Generic CNN Model

The generic CNN model has a total of seven layers
comprising of two convolution layers (with ReLU activation
function) each followed by a max pooling layer, a flattening
layer and two fully connected layers (with Sigmoid activation
function). The two convolution with pooling layers extract
deep features from input seizure and non-seizure images.
Each max pooling layer helps in reducing the dimension of
the features extracted from each convolution layer. The final
feature vector is built using a flattening layer which is fed
to two dense layers to finally classify the input image as a
seizure or a non-seizure EEG. The last layer performed the
binary classification task with an activation layer of softmax



Fig. 2. Generic CNN Pipeline for seizure detection using Rhythmicity Spectrogram.

TABLE I
SEIZURE SEGMENTS INFORMATION

Seizure s.no. Seizure from folder Seizure time (in seconds)
1 chb01-03 40
2 chb01-04 27
3 chb01-15 40
4 chb01-16 51
5 chb01-18 90
6 chb01-21 93
7 chb01-26 101
8 chb02-16 82
9 chb02-16+ 81
10 chb03-01 52
11 chb03-02 65
12 chb03-03 69
13 chb03-04 52
14 chb03-35 66
15 chb03-36 53
16 chb05-06 115
17 chb05-13 110
18 chb05-16 96
19 chb05-17 120
20 chb05-22 117

— Total seizure time 25.33 minutes

function by matching them to appropriate labels. Stochastic
gradient descent optimizer was used in the training phase.

III. RESULTS AND DISCUSSION

There are several types of trends in spectrograms to
detect seizures such as amplitude based spectrograms, asym-
metric spectrograms, rhythmicity based spectrograms and
frequency-amplitude based spectrograms [4]. EEG ictal
spikes and frequency changes observed in the CHB-MIT
data are much more sudden and frequent as compared to
non-seizure states. A rhythmicity based spectrogram can
measure rhythmicity of EEG signals at different frequencies
and detect those sudden changes where low rhythmicity rep-
resents a yellow band and high rhythmicity represents a dark
blue/purple band (likely possibility of seizure occurrence).
Since spectrograms are prone to detection of artifacts such

as muscle/EMG changes, chewing, eye ball movements, this
paper used 15 channels in a frequency range from 0 – 40
Hz. Time –variable, one sided, non-overlapped, rhythmicity
based spectrograms were developed using short-time Fourier
transform (STFT) method from EDF files of Patient no. 01,
02, 03 and 05 as described in section II.

A generic two dimensional Convolutional neural networks
was developed for classification between seizure (ictal)
and non-seizure spectrographic images. Convolutional layers
tried to extract temporal deep features from the input data.
The model was run for 15 epochs on training set (480
images) and validated through a validation set (60 images).
Batch-wise processed, 16 images (at-a-time) were fed to the
Generic CNN.

Fig. 3. Training and validation accuracy and loss graph



TABLE II
PERFORMANCE EVALUATION OF GENERIC CNN WITH CROSS-PATIENT TEST SET

Model Configuration Parameters Model performance
(A) Training and Validation set: Avg. of Accuracy (%) 91.89
Epochs = 15, Batch size = 16, Avg. of Validation Accuracy (%) 88.17

SGD, learning rate = 0.01, Avg. of training loss 0.244
decay = 1e-6, momentum = 0.9 Avg. of Validation loss 0.1819

Training time per epoch (in seconds) 14
Model size (h5 file) 8.93 MB

(B) Test set: Avg. of accuracy (%) 61
SGD, re-runs = 50, Batch size = 16 Avg. of precision (%) 65

Avg. of recall (%) 59
Avg. of F1-score (%) 60

All the model configuration details are mentioned in Table
II. The best model after several re-runs with a constant seed
was saved. The memory disc space of the model was 8.93
MB. The pipeline was implemented using python scripts
(jupyter notebook) on system with 16GB RAM, AMD Ryzen
7 2700 Eight-core processor, NVIDIA GeForce GTX 1050Ti
and 4GB RAM graphics card.

Different patient images were used in test set (60 images).
A total of 2,337,810 parameters were trained. Obtained aver-
age results of model run for 15 epochs have been mentioned
in Table II where average of the evaluation metrics refers
to the average of all the epochs and no. of times the model
was run. In Fig. 3, there was an overall accuracy increase
for both validation and training data with the advancement
of the epoch. The overall loss of both training and validation
decreased with increasing epochs. Evaluation metric of the
classification task was done through accuracy, loss, precision,
recall and F1-score. An average training and validation ac-
curacy of 91.89 and 88.17 % was achieved with training and
validation loss of 0.244 and 0.1819. An average accuracy,
precision, recall and F1-score of 61%, 65%, 59% and 60%
was achieved on the test set images.

IV. CONCLUSION

Automatic detection of epileptic seizures from EEG sig-
nals has been researched widely. Various mentioned state-of-
art pipelines have worked upon signal to image conversion
methods and classified the images using machine learning
and deep learning methods. This paper focused on generating
rhythmicity spectrogram for different EEG segments con-
taining seizure and non-seizure activities of patients chb01,
chb02, chb03 and chb05 in CHB-MIT database. The generic
model achieved an average training, validation and test set
accuracy up-to 91.89, 88.17 and 61% respectively. It is a
preliminary work of ongoing work to classify seizure and
non-seizure EEG signals based on different angle, magni-
tude and power spectral density rhythmicity spectrogram for
CHB-MIT EEG and Siena Scalp EEG database.
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