
Comparing local and central differential privacy
using membership inference attacks

Daniel Bernau1, Jonas Robl1?, Philip W. Grassal2???, Steffen Schneider3??,
and Florian Kerschbaum4

1 SAP, Karlsruhe, Germany, firstname.lastname@sap.com
2 Heidelberg University, Heidelberg, Germany,

philip-william.grassal@iwr.uni-heidelberg.de
3 Procure.AI, London, United Kingdom, steffen.schneider@procure.ai

4 University of Waterloo, Waterloo, Canada, florian.kerschbaum@uwaterloo.ca

Abstract. Attacks that aim to identify the training data of neural net-
works represent a severe threat to the privacy of individuals in the train-
ing dataset. A possible protection is offered by anonymization of the
training data or training function with differential privacy. However, data
scientists can choose between local and central differential privacy, and
need to select meaningful privacy parameters ε. A comparison of local
and central differential privacy based on the privacy parameters further-
more potentially leads data scientists to incorrect conclusions, since the
privacy parameters are reflecting different types of mechanisms.
Instead, we empirically compare the relative privacy-accuracy trade-off of
one central and two local differential privacy mechanisms under a white-
box membership inference attack. While membership inference only re-
flects a lower bound on inference risk and differential privacy formulates
an upper bound, our experiments with several datasets show that the
privacy-accuracy trade-off is similar for both types of mechanisms de-
spite the large difference in their upper bound. This suggests that the
upper bound is far from the practical susceptibility to membership in-
ference. Thus, small ε in central differential privacy and large ε in local
differential privacy result in similar membership inference risks, and local
differential privacy can be a meaningful alternative to central differential
privacy for differentially private deep learning besides the comparatively
higher privacy parameters.

Keywords: Anonymization · Membership Inference · Neural Networks.

1 Introduction

Neural networks have successfully been applied to a wide range of learning tasks,
each requiring its own specific set of training data, architecture and hyperpa-
rameters to achieve meaningful classification accuracy and foster generalization.
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In some learning tasks data scientists have to deal with personally identifiable
or sensitive information, which results in two challenges. First, legal restrictions
might not permit collecting, processing or publishing certain data, such as Na-
tional Health Service data [5]. Second, membership inference (MI) [20,31,38]
and model inversion attacks [15,16] are capable of identifying and reconstruct-
ing training data based on information leakage from a trained, published neural
network model. A mitigation to both challenges is offered by anonymized deep
neural network training with differential privacy (DP). However, a data scientist
can choose between two categories of DP mechanisms: local DP (LDP) [40] and
central DP (CDP) [9]. LDP perturbs the training data before any processing
takes place, whereas CDP perturbs the gradient update steps during training.
The degree of perturbation, which affects the accuracy of the trained neural
network on test data, is calibrated for both DP categories by adjusting their
respective privacy parameter ε. Choosing ε too large will unlikely mitigate pri-
vacy attacks such as MI, and setting ε too small will significantly reduce model
accuracy. Balancing the privacy-accuracy trade-off is a challenging problem espe-
cially for data scientists who are not experts in DP. Furthermore, data scientists
might rule out LDP when designing differentially private neural networks due
to concerns raised by the comparatively higher privacy parameter ε in LDP. In
this work, we compare the empirical privacy protection under the white-box MI
attack of Nasr et al. [31] for LDP and CDP mechanisms for learning problems
from diverse domains: consumer preferences, face recognition and health data.
The MI attack indicates a lower bound on the inference risk whereas DP formu-
lates an upper bound [24,43,44], but in practice even high privacy parameters
such as experienced in LDP may already offer protection. This work makes the
following contributions:

– Comparing LDP and CDP by the average precision of their MI precision-
recall curve as privacy measure, and showing that under this measure LDP
and CDP have similar privacy-accuracy trade-offs despite vastly different ε.

– Showing that CDP mechanisms are not achieving a consistently better privacy-
accuracy trade-off on various datasets and reference models. The trade-off
rather depends on the specific dataset.

– Analyzing the relative privacy-accuracy trade-off and showing that it is not
constant over ε, but that for each data set there are ranges where the relative
trade-off is greater for protection against MI than accuracy.

Section 2 revisits differential privacy and Section 3 formulates our approach for
comparing LDP and CDP under membership inference. We describe evaluation
datasets in Section 4. Findings are presented in Section 5 and discussed in Sec-
tion 6. Related work and conclusions are provided in Section 7 and Section 8.

2 Differential Privacy

DP [8] anonymizes a dataset D = {d1, . . . , dn} by perturbation and can be either
enforced centrally to a function f(D), or locally to each entry d ∈ D.
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2.1 Central DP

In central DP the aggregation function f(·) is evaluated and perturbed by a
trusted server. Due to perturbation, it is no longer possible for an adversary to
confidently determine whether f(·) was evaluated on D, or some neighboring
dataset D′ differing in one element. Assuming that every participant is repre-
sented by one element, privacy is provided to participants in D as their impact on
f(·) is limited. Mechanisms M fulfilling Definition 1 are used for perturbation of
f(·) [9]. We refer to the application of a mechanismM to a function f(·) as cen-
tral differential privacy. CDP holds for all possible differences ‖f(D)− f(D′)‖2
by adapting to the global sensitivity of f(·) per Definition 2.

Definition 1 ((ε, δ)-central differential privacy). A mechanism M gives
(ε, δ)-central differential privacy if D,D′ ⊆ DOM differing in at most one ele-
ment, and all outputs S ⊆ R

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ

Definition 2 (Global `2 Sensitivity). Let D and D′ be neighboring. The
global `2 sensitivity of a function f , denoted by ∆f , is defined as

∆f = maxD,D′‖f(D)− f(D′)‖2.

Definition 3 (Gaussian Mechanism [10]).
Let ε ∈ (0, 1) be arbitrary. For c2 > 2ln( 1.25

δ ), the Gaussian mechanism with

parameter σ ≥ c∆fε gives (ε, δ)-CDP, adding noise scaled to N (0, σ2).

For CDP in deep learning we use differentially private versions5 of two stan-
dard gradient optimizers: SGD and Adam [27]. We refer to these CDP op-
timizers as DP-SGD and DP-Adam. A CDP optimizer represents a differen-
tially private training mechanism Mnn that updates the weight coefficients θt
of a neural network per training step t ∈ T with θt ← θt−1 − α(g̃), where
g̃ = Mnn(∂loss/∂θt−1) denotes a Gaussian perturbed gradient and α is some
scaling function on g̃ to compute an update, i.e., learning rate or running moment
estimations. Differentially private noise is added by the Gaussian mechanism
of Definition 3 [1]. After T update steps, Mnn outputs a differentially private
weight matrix θ which is used by the prediction function h(·) of a neural network.
A CDP gradient optimizer bounds the sensitivity of the computed gradients by
clipping norm C based on which the gradients get clipped before perturbation.
Since weight updates are performed iteratively during training a composition of
Mnn is required until the the training step T is reached and the final private
weights θ are obtained. For CDP we measure privacy decay under composition
by tracking σ of the Gaussian mechanism. After training we transform and com-
pose σ under Renyi DP [29], and transform the aggregate again to CDP. We
choose this accumulation method over other composition schemes [1,25] due to
the tighter bound for heterogeneous mechanism invocations.

5 We used Tensorflow Privacy: https://github.com/tensorflow/privacy

https://github.com/tensorflow/privacy
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2.2 Local DP

We refer to the perturbation of entries d ∈ D as local differential privacy [40].
LDP is the standard choice when the server which evaluates a function f(D) is
untrusted. We adapt the definitions of Kasiviswanathan et al. [26] to achieve LDP
by using local randomizers LR. In the experiments within this work we use a
local randomizer to perturb each record d ∈ D independently. Since a record may
contain multiple correlated features (e.g., items in a preference vector) a local
randomizer must be applied sequentially which results in a linearly increasing
privacy loss. A series of local randomizer executions per record composes a local
algorithm according to Definition 5. ε-local algorithms are ε-local differentially
private [26], where ε is a summation of all composed local randomizer guarantees.
We perturb low domain data with randomized response [41], a (composed) local
randomizer. By Equation (1) randomized response yields ε = ln(3) LDP for a
one-time collection of values from binary domains (e.g., {yes, no}) with two fair
coins [12]. That is, retention of the original value with probability ρ = 0.5 and
uniform sampling with probability (1− ρ) · 0.5.

ε = ln

(
ρ+ (1− ρ) · 0.5

(1− ρ) · 0.5

)
= ln

(
Pr[yes|yes]

Pr[yes|no]

)
. (1)

Definition 4 (Local differential privacy). A local randomizer (mechanism)
LR : DOM → S is ε-local differentially private, if ε ≥ 0 and for all possible
inputs v, v′ ∈ DOM and all possible outcomes s ∈ S of LR

Pr[LR(v) = s] ≤ eε · Pr[LR(v′) = s]

Definition 5 (Local Algorithm). An algorithm is ε-local if it accesses the
database D via LR with the following restriction: for all i ∈ {1, . . . , |D|}, if
LR1(i), . . . ,LRk(i) are the algorithms invocations of LR on index i, where each
LRj is an εj-local randomizer, then ε1 + . . .+ εk ≤ ε.

Definition 6 (Laplace Mechanism [10]). Given a numerical query function

f : DOM → Rk, the Laplace mechanism with λ =
∆f

ε is an ε-differentially
private mechanism, adding noise scaled to Lap(λ, µ = 0).

In our evaluation we also look at image data for which we rely on the local
randomizer by Fan [14] for LDP image pixelization. The randomizer applies
the Laplace mechanism of Definition 6 with scale λ = 255·m

b2·ε to each pixel, thus
fulfilling Definition 4. Parameter m represents the neighborhood in which LDP is
provided. Full neighborhood for an image dataset would require that any picture
can become any other picture. In general, providing DP or LDP within a large
neighborhood will require high ε values to retain meaningful image structure.
High privacy will result in random black and white images. Within this work
we consider the use of LDP and CDP for deep learning along a generic data
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science process (e.g., CRISP-DM [42]). In such a processes the dataset D of a
data owner DO is (i) transformed, and (ii) used to learn a model function h(·)
(e.g., classification), which (iii) afterwards is deployed for evaluation by third
parties. In the following h(·) will represent a neural network. DP is applicable at
every stage in the data science process. In the form of LDP by perturbing each
record d ∈ D, while learning h(·) centrally with a CDP gradient optimizer, or to
the evaluation of h(·) by federated learning with voting. We leave learning with
more than two parties, such as used in PATE [33] with CDP or amplification
by shuffling for LDP [11] as future work. However, independent of the stage of
application, the privacy-accuracy trade-off is of particular interest. We follow the
evaluation of regularization techniques that apply noise to the training data to
foster generalization [17,18,28] and measure utility by the test accuracy of h(·).

3 White-Box MI Attack

Membership inference (MI) attacks aim at identifying the presence or absence
of individual records in the training data of data owner DO. MI attacks are of
particular importance for members of the training dataset when the nature of
the training dataset is revealing sensitive information. For example, a medical
training dataset containing patients with different types of cancer, or a training
dataset that is used to predict the week of pregnancy based on the shopping
cart [21]. A related attack building upon MI is attribute inference [44] where
individual records are partially known and specific attribute values shall be in-
ferred. In this work we solely consider MI since protection against MI offers
protection against attribute inference. In specific, we consider white-box MI by
Nasr et al. [31] which is stronger than previously suggested black-box MI attacks
(e.g., Shokri et al. [38]). The MI attack assumes an honest-but-curious adver-
sary A with access to a trained prediction function h(·), knowledge about the
hyperparameters and DP mechanisms that were used for training. We refer to
the trained prediction function as target model and the training data of DO as
Dtrain

target. Given this accessible information A wants to learn a binary classifier,
the attack model, that allows to classify data into members and non-members
w.r.t. the target model training dataset with high accuracy. The accuracy of an
MI attack model is evaluated on a balanced dataset including all members (target
model training data) and an equal number of non-members (target model test
data), which simulates the worst case where A tests membership for all training
records. White-box MI exploits that an ML classifier such as a neural network
(NN) tends to classify a record d = (x, y) from its training dataset Dtrain

target with
different confidence p(x) given h(x) for features x and true label y than a record
d 6∈ Dtrain

target. White-box MI makes two assumptions about A. First, A is able to
observe internal features of the ML model in addition to external features (i.e.,
model outputs). The internal features comprise observed losses L(h(x;W )), gra-
dients δL

δW and the learned weights W of h(·). Second, A is aware of a portion of
Dtraintarget and Dtesttarget. These portions were set to 50% by Nasr et al. [31] and will
be the same within this work to allow comparison. Second, A extracts internal



6 D. Bernau et al.

and external features of a balanced set of confirmed members and non-members.
An illustration of the white-box MI attack is given in Figure 1. Again, A is as-
sumed to know a portion of Dtraintarget and Dtesttarget and generates attack features by
passing these records through the trained target model. A trains a binary clas-
sification attack model per target variable y ∈ Y to map p(x) to the indicator
“in” or “out”. The set (L(h(x;W )), δLδW , p(x), y, in/out) serves as attack model
training data, i.e., Dtrain

attack. Thus, the MI attack model exploits the imbalance
between predictions on d ∈ Dtrain

target and d 6∈ Dtrain
target. Attack model accuracy is

computed on features extracted from the target model likewise.

Dtrain
target

Dtarget

Dtest
target

Din
target

Dout
target

Dtrain
attack

Dtest
attack

Dattack

target
model

attack
model

training infer
ence

Fig. 1: White-box MI with attack features (y∗, p(x), L(h(x;W ), y), δLδW ). LDP
perturbation on Dtrain

target (dotted) and CDP on target model training (dashed).
Target model training is colored: training (violet) and validation (green).

3.1 Evaluating CDP and LDP under MI

DP has been shown to formulate a theoretical upper bound on the accuracy of
MI adversaries [44], and thus the use of DP should impact the classification ac-
curacy of A. To illustrate the effect of the privacy parameter ε on the MI attack
we focus on two questions related to the identifiability of training data within
this work: “How many records predicted as in are truly contained in the training
dataset?” (precision), and “How many truly contained records are predicted as
in?” (recall). For analysis we use precision-recall curves which depict the preci-
sion and recall for various classification thresholds, and thus reflect the possible
MI attack accuracies of A. We compare the precision-recall curves by their aver-
age precision (AP) to assess the overall effect of DP on MI. The AP approximates
the integral under the precision-recall curve as a a weighted mean of the preci-
sion P per threshold t and the increase in recall R from the previous threshold,
i.e.: AP =

∑
t(Rt − Rt−1) · Pt. We prefer this non-interpolated technique over

interpolated calculations of the area under curve, since the precision-recall curve
is not guaranteed to decline monotonically and thus the linear trapezoidal in-
terpolation might yield an overoptimistic representation [7,13]. Good MI attack
models will realize an AP of close to 1 while poor MI attack models will be close
to the baseline of uniform random guessing, hence AP = 0.5. The data owner
DO has two options to apply DP against MI within the data science process
introduced in Section 2. Either in the form of LDP by applying a local random-
izer to the training data and using the resulting LR(Dtrain

target) for training, or
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CDP with a differentially private optimizer on Dtrain
target. A discussion and com-

parison of LDP and CDP purely based on the privacy parameter ε likely falls
short and potentially leads data scientists to incorrect conclusions, since the pri-
vacy parameters are reflecting different types of mechanisms. Furthermore, data
scientists give up flexibility w.r.t. applicable learning algorithms, if ruling out
the use of LDP due to comparatively greater ε and instead solely investigating
CDP (e.g., DP-SGD). We suggest to compare LDP and CDP by their concrete
effect on the AP and the resulting privacy-accuracy trade-off. While we consider
a specific MI attack our methodology is applicable to other MI attacks as well.
Models that use CDP are represented by dashed lines in Figure 1. In the LDP
setup, the target model is trained with perturbed records from a local random-
izer, i.e., LR(Dtrain

target). However, in order to increase his attack accuracy A needs
to learn attack models with high accuracy on the original data from which the
perturbed records stem, i.e., Dtrain

target. Perturbation with LDP is represented by
dotted lines in Figure 1.

3.2 Relative Privacy-Accuracy Trade-off

We calculate the relative privacy-accuracy trade-off for LDP and CDP as the
relative difference between A’s change in AP to DO’s change in test accuracy.
Let APorig, APε be the MI APs and ACCorig, ACCε be the test accuracies for
the original and DP target model. Furthermore, let ACCbase be the baseline
test accuracy of uniform random guessing 1/C, where C denotes the number of
classes in the dataset, and APbase be the baseline AP at 0.5. We fix ACCbase,
APbase, since A or DO would perform worse than uniform random guessing at
lower values. Rearranging and bounding the cases where AP and ACC increases
over ε yields:

ϕ =
(APorig −APε)/(APorig −APbase)

(ACCorig −ACCε)/(ACCorig −ACCbase)

ϕ =
max(0, APorig −APε) · (ACCorig −ACCbase)
max(0, ACCorig −ACCε) · (APorig −APbase)

ϕ = min

(
2,

max(0, (APorig −APε) · (ACCorig −ACCbase))
max(0, (ACCorig −ACCε) · (APorig −APbase))

)

To avoid ϕ from approaching infinitely large values when the accuracy re-
mains stable whileAP decreases significantly, and the undefined case ofACCorig ≤
ACCε, we bound ϕ at 2. In consequence, when the relative gain in privacy
(lower AP) exceeds the relative loss in accuracy, it applies that 1 < ϕ ≤ 2, and
0 ≤ ϕ < 1 when the loss in test accuracy exceeds the gain in privacy. Hence,
ϕ quantifies the relative loss in accuracy and the relative gains in privacy for a
given privacy parameter ε and captures the relative privacy-accuracy trade-off
as a ratio which we seek to maximize.
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4 Datasets and Learning Tasks

We consider four datasets for experiments. The datasets have been used in re-
lated work on MI and face recognition. The reference datasets are mostly un-
balanced w.r.t. the amount of training data per training label, a characteristic
that we found to benefit MI attacks. Each dataset is also summarized in Table 1
and the distributions for the two unbalanced datasets Texas Hospital Stays and
Purchases Shopping Carts are provided in the appendix.

Texas Hospital Stays. The Texas Hospital Stays dataset [38] is an unbalanced
dataset and consists of high dimensional binary vectors representing patient
health features. Each record within the dataset is labeled with a procedure. The
learning task is to train a fully connected neural network for classification of
patient features to a procedure and we do not try to re-identify a known in-
dividual, and fully comply with the data use agreement for the original public
use data file. We train and evaluate models for a set of most common pro-
cedures C ∈ {100, 150, 200, 300}. Depending on the number of procedures the
dataset comprises 67, 330 – 89, 815 records and 6, 170 – 6, 382 features. To allow
comparison with related work [31,38], we train and test the target model on
n = 10, 000 records respectively.

Purchases Shopping Carts. This dataset is also unbalanced and consists of binary
vectors with 600 features that represent customer shopping carts [38]. However,
a significant difference to the Texas Hospital Stays dataset is that the number
of features is almost 90% lower. Each vector is labeled with a customer group.
The learning task is to classify shopping carts to customer groups by using a
fully connected neural network. The dataset is provided in four variations with
varying numbers of labels C ∈ {10, 20, 50, 100} and comprises 38, 551 – 197, 324
records. We sample n = 8, 000 records each for training and testing the target
model. Again, this methodology ensures comparability with related work [31,38].

Labeled Faces in the Wild. The Labeled Faces in the Wild (LFW) dataset con-
tains labeled images each depicting a specific person with a resolution of 250×250
pixels (i.e., features) [22]. The dataset has a long distribution tail w.r.t. to the
number of images per label. We thus focus on learning the topmost classes
C ∈ {20, 50, 100} with 1906, 2773 and 3651 overall records respectively. We start
our comparison of LDP and CDP from a pre-trained VGG-Very-Deep-16 CNN
faces model [34] by keeping the convolutional core, exchanging the dense layer at
the end of the model and training for LFW grayscale faces. For LDP, we apply
differentially private image pixelization within neighborhood m =

√
250× 250

and avoid coarsening by setting b = 1. We transform all images to grayscale
before LDP and CDP training.
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Skewed Purchases. We specifically crafted this balanced dataset6 to mimic a
transfer learning task, i.e., the application of a trained model to novel data
which is similar to the training data w.r.t. format but following a different dis-
tribution. This situation arises for Purchases Shopping Carts, if for example not
enough high-quality shopping cart data for a specific retailer are available yet.
Thus, only few high-quality data (e.g., manually crafted examples) can be used
for testing and large amounts of low quality data from potentially different distri-
butions for training (e.g., from other retailers). In effect the distribution between
train and test data varies for this dataset. Similar to Purchases Shopping Carts
the dataset consists of 200, 000 records with 600 features and is analyzed for
C ∈ {10, 20, 50, 100} labels. However, each vector x in the training dataset X is
generated by using two independent random coins to sample a value from {0, 1}
per position i = 1, . . . , 600. The first coin steers the probability Pr[xi = 1] for a
fraction of 600 positions per record x. We refer to these positions as indicator
bits (ind) which indicate products frequently purchased together. The second
coin steers the probability Pr[xi = 1] for a fraction of 600− ( 600

|C| ) positions per

record. We refer to these positions as noise bits (noise) that introduce scatter in
addition to ind. We let Prind[xi = 1] = 0.8 ∧ Prnoise[xi = 1] = 0.2, ∀x ∈ Xtrain

and Prind[xi = 1] = 0.8 ∧ Prnoise[xi = 1] = 0.5,∧x ∈ Xtest, 1 ≤ i ≤ 600. The
difference in information entropy between test and train data is ≈ 0.3.

5 Experiments

We perform an experiment which compares the privacy-accuracy trade-off for
LDP and CDP by MI AP instead of privacy parameter ε per dataset. The re-
sults of each experiment are visualized by three sets of figures. First, we compare
the relative privacy-accuracy trade-off ϕ resulting from test accuracy and MI AP
over ε. We present this information for CDP per dataset in Figures 2 to 5 a,b,c
and for LDP in Figures 2 to 5 d,e,f. The obtained information serves as basis
to identify privacy parameters at which the MI AP is converging towards the
baseline. Second, we state the precision-recall curves from which MI AP was
calculated to illustrate the slope with which precision and recall are diverging
from the baseline for LDP and CDP in Figures 2 to 5 g,h. Third, we compare
the absolute privacy-accuracy trade-offs per dataset for both LDP and CDP in a
scatterplot. We present this information in Figures 2 to 5i. For each dataset the
model training stops once the test data loss is stagnating (i.e., early stopping)
or a maximum number of epochs is reached. This design avoids excessive over-
fitting and increases real-world relevance. For all executions of the experiment
CDP noise is sampled from a Gaussian distribution (cf. Definition 3) with scale
σ = noise multiplier z × clipping norm C. We evaluate increasing noise regimes
per dataset by evaluating noise multipliers z ∈ {0.5, 2, 4, 6, 16} and calculate the
resulting ε at a fixed δ = 1

n . However, since batch size, dataset size and number

6 We provide this dataset along with all evalua-
tion code on GitHub: https://github.com/SAP-samples/

security-research-membership-inference-and-differential-privacy

https://github.com/SAP-samples/security-research-membership-inference-and-differential-privacy
https://github.com/SAP-samples/security-research-membership-inference-and-differential-privacy
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of epochs are also influencing the Renyi differential privacy accounting a fixed z
will inevitably result in different composed ε for different datasets. For LDP we
use the same hyperparameters as in the original training and evaluate two local
randomizers, namely randomized response and LDP image pixelization with the
Laplace mechanism. For each randomizer we state the individual εi per invoca-
tion (i.e., per anonymized value). We apply randomized response to all datasets
except LFW with a range of privacy parameter values εi ∈ {0.1, 0.5, 1, 2, 3} that
reflect retention probabilities ρ from 5% – 90% (cf. Equation (1)). For LFW
each pixel is perturbed with Laplace noise, and also investigate a wide range of
resulting noise regimes by varying εi.
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Fig. 2: Texas Hospital Stays accuracy and privacy (error bars lie within points)

For sake of completeness we provide the resulting overall privacy parameters
ε, z, hyperparameters and train accuracies for all datasets for LDP and CDP
in Table 1 and 2 in the appendix. The experiment is repeated five times per
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dataset to stabilize measurements and we report mean values with error bars
unless otherwise stated. Precision-recall curves depict all experiment data.

Texas Hospital Stays. For Texas Hospital Stays we observe that LDP and CDP
are achieving very similar privacy-accuracy trade-offs under MI. The main dif-
ference in LDP and CDP is observable in a smoother decrease of target model
accuracy for CDP in contrast to LDP, which are depicted in Figures 2a and 2d.
The smoother decay also manifests in a slower drop of MI AP for CDP in com-
parison to LDP as stated in Figures 2b and 2e. Texas Hospital Stays represents
an unbalanced high dimensional dataset and both factors foster MI. However,
the increase in dataset imbalance by increasing C is negligible w.r.t. MI AP. The
relative privacy-accuracy trade-off for LDP and CDP is also close and for exam-
ple the baseline MI AP of 0.5 is reached at ϕ ≈ 1.5, as depicted in Figures 2c
and 2f. In the example case of C = 300 DO might prefer to use CDP, since
the space of achievable MI APs in LDP is narrow while CDP also yields APs
in between original and baseline as illustrated in the precision-recall curves in
Figures 2g and 2h, and the scatterplot in Figure 2i. This observation is similar,
though weaker, for all other C.

Purchases Shopping Carts. CDP and LDP are achieving similar target model
test accuracies on the Purchases dataset as depicted in Figures 3a and 3d. How-
ever, LDP is allowing a slightly smoother decrease in test accuracy over ε. Fig-
ure 3b illustrates that the CDP MI AP is somewhat resistant to noise and
remains above 0.5 until a small ε ≈ 1. The LDP MI APs are significantly higher
and decrease slower to the baseline as depicted by Figure 3e. A comparison of the
relative privacy-accuracy trade-offs ϕ in Figures 3c and 3f underlines that CDP
and LDP achieve similar trade-offs and LDP allows for smoother drops in the
MI AP in contrast to CDP. Thus, LDP is the preferred choice for this dataset, if
DO desires to lower the MI AP to a level between original and baseline. This is
illustrated for example for C = 50 in the precision-recall curves in Figures 3g, 3h
and the scatterplots in Figure 3i. It is noticeable that while the overall ε for
LDP and CDP differs by a magnitude of up to 10 times the relative and abso-
lute privacy-accuracy trade-offs are close to each other. The observations also
hold for other C.

LFW. For LFW the target model reference architecture converges for both CDP
and LDP towards the same test accuracy, which is reflecting the majority class.
However, the target model test accuracy decay over ε is much smoother for
CDP when comparing Figures 4a and 4d. Furthermore, the structural changes
caused by LDP image pixelization seem to lead to quicker losses in test accu-
racy. W.r.t. the relative privacy-accuracy trade-off ϕ in Figures 4c and 4f CDP
outperforms LDP. At MI AP = 0.5 CDP achieves ϕ ≈ 1.5 for all C while LDP
yields ϕ ≈ 1.1 for all C. The ϕ = 0 observed at εi = 10000 for C = 100 is due to
an actual increase in AP that is comparatively larger than the decrease in test
accuracy. The exemplary precision-recall curves for C = 50 in Figures 4g and
4h furthermore illustrate that CDP can already have a large effect on MI AP at
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Fig. 3: Purchases accuracy and privacy (error bars lie within points)

high ε. In addition, we observe from Figure 4i that CDP realizes a strictly better
absolute privacy-accuracy trade-off under MI for C = 50.

Skewed Purchases. The effects of dimensionality and imbalance of a dataset on
MI have been addressed by related work [31,38]. However, the effect of a domain
gap between training and test data which is found in transfer learning when
insufficient high-quality data for training is initially available and reference data
that potentially follows a different distribution has not been addressed. For this
task we consider the Skewed Purchases dataset. Figures 5a and 5d show that the
LDP test accuracy is in fact only decreasing at very small εi whereas CDP again
gradually decreases over ε. This leads to a consistently higher test accuracy in
comparison to CDP. W.r.t. the relative privacy-accuracy trade-off LDP outper-
forms CDP as depicted by ϕ in Figures 5c and 5f. However, we observe several
outliers. Most notably for CDP, the MI AP decreases for C = 100 and large
ε values, but increases for small ε as shown in Figure 5b. This is a consequence
of the target model resorting to random guessing for test records. Similarly, for
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LDP the MI AP for C ∈ {10, 100} first decreases before recovering again as
depicted in Figure 5e. We reason about the cause of these outliers by analyzing
the target model decisive confidence values. LDP generalizes the training data
towards the test data, however, at εi = 1.0 LDP leads to nearly indistinguishable
test and train distributions. Thus, the decisive softmax confidence of the target
model increases in comparison to smaller and larger εi. For C = 10 the absolute
privacy-accuracy trade-off is also favorable for LDP as depicted in Figure 5i.

6 Discussion

Privacy parameter ε alone is unsuited to compare and select and compare DP
mechanisms. We consistently observed that while the theoretic upper bound
on inference risk reflected by ε in LDP is higher by a factor of hundreds or
even thousands in comparison to CDP, the practical protection against a white-
box MI attack is actually not considerably weaker at similar model accuracy.
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Fig. 5: Skewed Purchases accuracy and privacy (error bars lie within points)

For Texas Hospital Stays LDP mitigates white-box MI at an overall ε = 6382
whereas CDP lies between ε = 0.9 for C = 100 and ε = 0.3 for C = 300. This
observation at the baseline AP also holds for Purchases Shopping Carts where
LDP ε = 60 and CDP is between ε = 0.4 for C = 10 and ε = 0.3 for C = 100,
and LFW (LDP ε = 62.5 × 102, CDP ε = 2.1 to ε = 1.5). Thus, we note that
assessing privacy solely based on ε falls short. Given the results of the previous
sections we rather encourage data scientists to also quantify privacy under an
empirical attack such as white-box MI in addition to ε.

LDP and CDP result in similar privacy-accuracy curves. A wide range of pri-
vacy regimes in CDP and LDP can be compared with our methodology under
MI. We observed for most datasets that similar privacy-accuracy combinations
are obtained for well generalizing models (i.e., use of early stopping against
excessive overfitting) that were trained with LDP or CDP. We also ran the
experiments with black-box MI (i.e., only model outputs) and observed that
the additional assumptions made by white-box MI (e.g., access to internal gra-
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dient and loss information) only yield a small increase in AP (3 – 5%). The
privacy-accuracy scatterplots depict that LDP and CDP formulate very simi-
lar privacy-accuracy trade-offs for Purchases Shopping Carts, LFW and Texas
Hospital Stays. At two occasions on the smaller classification tasks Purchases
Shopping Carts C = {10, 20} and Skewed Purchases C = {10, 20} LDP realizes
a strictly better privacy-accuracy trade-off w.r.t. the practical inference risk.
These observations lead us to conclude that LDP is an alternative to CDP for
differentially private deep learning on binary and image data, since the privacy-
accuracy trade-off is often similar at the same model accuracy despite the sig-
nificantly larger ε. Thus, data scientists should consider to use LDP especially
when required to use optimizers without CDP implementations or when train-
ing ensembles (i.e., multiple models over one dataset), since the privacy loss will
accumulate over all ensemble target models when assuming that training data
is reused between ensemble models. Here, we see one architectural benefit of
LDP: flexibility. LDP training data can be used for all ensemble models without
increasing the privacy loss in contrast to CDP.

The relative privacy-accuracy trade-off is favorable within a small interval. We
observed that the privacy-accuracy trade-off as visualized in the scatterplots
throughout this work allows to identify whether CDP or LDP achieve better
test accuracy at similar APs. However, the scatterplots do not reflect whether
target model test accuracy is decreasing slower, similar or stronger than MI
AP decreases over the privacy parameter ε. For this purpose we introduced ϕ.
We found that ϕ allows to identify ε intervals in which the AP loss is stronger
than the test accuracy loss for all datasets. On the high dimensional datasets
Texas Hospital Stays and LFW CDP consistently achieves higher ϕ than LDP.
In contrast, ϕ values are similar for LDP and CDP on Purchases, and superior
for LDP on Skewed Purchases.

7 Related Work

Our work is related to DP in neural networks, attacks against the confidentiality
of training data and performance benchmarking of neural networks.

CDP is a common approach to realize differentially private neural networks
by adding noise to the gradients during model training. Fundamental approaches
for perturbation with the differentially private gradient descent (DP-SGD) dur-
ing model training were provided by Song et al. [39], Bassily et al. [4] and Shokri
et al. [37]. Abadi et al. [1] formulated the DP-SGD that was used in this work.
Mironov [29] introduces Renyi DP for measuring the DP-SGD privacy loss over
composition. Iyengar et al. [23] suggest a hyperparameter free algorithm for dif-
ferentially private convex optimization for standard optimizers.

Fredrikson et al. [15,16] formulate model inversion attacks that use tar-
get model softmax confidence values to reconstruct training data per class. In
contrast, MI attacks address the threat of identifying individual records in a
dataset [3,36]. Yeom et al. [44] have demonstrated that the upper bound on
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MI risk for CDP can be converted into an expected bound for MI Advantage.
We state MI precision and recall, arguing that in is the sensitive information.
Jaymaran and Evans [24] showed that the theoretic MI upper bound and the
achievable MI lower bound are far apart in CDP. We observe, that LDP can be
an alternative to CDP as the upper and lower bounds are even farther apart from
each other. Shokri et al. [32] formulate an optimal mitigation against their MI
attack [38] by using adversarial regularization. By applying the MI attack gain as
a regularization term to the objective function of the target model, a non-leaking
behavior is enforced w.r.t. MI. While their approach protects against their MI
adversary, DP mitigates any adversary with arbitrary background information.
Carlini et al. [6] suggest exposure as a metric to measure the extent to which
neural networks memorize sensitive information. Similar to our work, they apply
DP for mitigation. We focus on attacks against machine learning models target-
ing identification of members of the training dataset. Abowd and Schmutte [2]
describe an economic social choice framework to choose privacy parameter ε. We
compare LDP and CDP mechanisms aside from ε. Rahman et al. [35] applied a
black-box MI attack against DP-SGD models on CIFAR-10 and MNIST. They
evaluate the severity of MI attack by the F1-score which results in numerically
higher scores, but assumes out labels to be sensitive.

MLPERF [30] and DPBench [19] are frameworks for machine learning perfor-
mance measurements and evaluation of DP. We focus on comparing the privacy-
utility trade-off and apply the core principles of both benchmarks.

8 Conclusion

We compared LDP and CDP mechanisms for differentially private deep learning
under a white-box MI attack. The comparison comprises the average precision
of the MI precision-recall curve and the target model test accuracy to support
data scientists in choosing among available DP mechanisms and selecting privacy
parameter ε. Our experiments on diverse learning tasks show that neither LDP
nor CDP yields a consistently better privacy-accuracy trade-off. While MI only
yields a lower bound on MI whereas ε in DP yields an upper bound, we observed
that the lower bounds for LDP and CDP are close at similar model accuracy
despite large difference in their upper bound. This suggests that the upper bound
is far from the practical susceptibility to MI attacks and that data scientists
should also consider to apply LDP despite the large privacy parameter values.
Especially, since LDP does not require privacy accounting when training multiple
models and offers flexibility w.r.t. optimizers. We consider the relative privacy-
accuracy trade-off for LDP and CDP as the ratio of losses in accuracy and
privacy over ε, and show that it is only favorable within a small interval.

Acknowledgements. This work has received funding from the European Union’s
Horizon 2020 research and innovation program under grant agreement No. 825333
(MOSAICROWN).
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Appendix

Neural network models and composed ε for LDP are provided in Table 1. We
state hyperparameters, composed ε for CDP, and training accuracies in Table 2.
Texas Hospitals Stays and Purchases Shopping Carts provided by Shokri et
al. are unbalanced in terms of records per class, as shown in Figures 6 and 7.

Table 1: Overview of datasets considered in evaluation.
Dataset Model LDP

Texas Hospital
Stays [38]

Fully connected NN
with three layers
(512× 128× C) [38].

19, 125 – 638
(6382× εi)

Purchases Shopping
Carts [38]

Fully connected NN
with two layers (128× C) [38]
(i.e., logistic regression).

1800 – 60
(600× εi)

Labeled Faces
in the Wild [22]

VGG-Very-Deep-16
CNN [34]

62.5× 106 – 6, 250
(250× 250× εi)

Skewed
Purchases

Fully connected NN
with two layers (128× C) [38]
(i.e., logistic regression).

1, 800 – 60
(600× epsi)

Table 2: Target Model training accuracy (from orig. to smallest ε), CDP ε values
(from z = 0.5 to z = 16) and hyperparameters

Texas Hospital Stays Purchases Shopping Carts LFW Skewed Purchases

C 100 150 200 300 10 20 50 100 20 50 100 10 20 50 100

LDP

0.86
1.0
1.0
1.0
0.99
0.82

0.92
1.0
1.0
1.0
0.95
0.71

0.83
1.0
1.0
0.98
0.86
0.59

0.81
1.0
1.0
0.92
0.72
0.53

0.99
0.97
0.88
0.64
0.58
0.44

1.0
0.97
0.85
0.58
0.47
0.38

1.0
0.95
0.86
0.69
0.62
0.49

0.99
0.94
0.90
0.79
0.75
0.51

1.0
1.0
1.0
0.22
0.24
0.25

1.0
1.0
0.96
0.18
0.17
0.17

1.0
1.0
1.0
0.13
0.13
0.13

1.0
1.0
1.0
1.0
0.93
0.52

1.0
1.0
1.0
0.99
0.98
0.55

1.0
1.0
1.0
0.97
0.9
0.71

1.0
0.99
0.97
0.89
0.80
0.45

CDP

0.86
0.74
0.57
0.35
0.22
0.05

0.92
0.75
0.54
0.31
0.19
0.04

0.83
0.69
0.48
0.26
0.16
0.03

0.81
0.62
0.42
0.22
0.13
0.02

1.0
0.95
0.91
0.80
0.69
0.28

1.0
0.91
0.84
0.69
0.51
0.14

1.0
0.82
0.71
0.46
0.28
0.05

0.99
0.63
0.51
0.27
0.14
0.02

1.0
0.99
0.76
0.44
0.36
0.32

1.0
0.87
0.5
0.28
0.23
0.19

1.0
0.79
0.35
0.25
0.18
0.13

1.0
1.0
1.0
0.92
0.89
0.66

1.0
1.0
0.96
0.8
0.64
0.24

1.0
0.97
0.6
0.25
0.12
0.03

1.0
0.58
0.1
0.02
0.02
0.01

ε

222.6
6.3
2.3
0.9
0.3

259.8
6.6
2.0
1.1
0.2

251.5
7.3
2.2
1.0
0.3

259.8
7.4
2.1
1.1
0.3

88.1
4.6
2.0
1.3
0.4

88.1
4.1
1.8
1.2
0.4

88.1
4.1
1.8
1.2
0.4

88.1
4.1
1.8
1.2
0.3

84.3
4.8
2.1
1.3
0.5

70.4
3.9
1.7
0.8
0.4

62.4
3.4
1.5
1.0
0.3

28.9
1.6
0.7
0.9
0.4

29.8
1.7
1.6
0.9
0.4

42.2
3.5
1.3
0.7
0.3

73.5
2.1
1.3
0.6
0.3

Learning
rate

Orig. 0.01 0.01 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
CDP 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.0008 0.0008 0.001 0.001 0.001 0.001
LDP 0.01 0.01 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Batch
size

Orig. 128 128 128 128 128 128 128 128 32 32 32 100 100 100 100
CDP 128 128 128 128 128 128 128 128 16 16 16 100 100 100 100
LDP 128 128 128 128 128 128 128 128 32 32 32 100 100 100 100

Epochs
Orig. 200 200 200 200 200 200 200 200 30 30 30 200 200 200 200
CDP 1000 1000 1000 1000 200 200 200 200 110 110 110 200 200 200 200
LDP 200 200 200 200 200 200 200 200 30 30 30 200 200 200 200

Clipping
Norm

CDP 4 4 4 4 4 4 4 4 3 3 3 4 4 4 4
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Fig. 6: Quantity of records per label for Purchases Shopping Carts
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Fig. 7: The Quantity of records per Label for the Texas Hospital Stays Dataset
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