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Abstract 17 

Microclimate varies greatly over short horizontal and vertical distances, and timescales. This 18 

multi-level heterogeneity influences terrestrial biodiversity and ecosystem functions by 19 

determining the ambient environment where organisms live in. Fine-scale heterogeneity in 20 

microclimate temperatures is driven by local topography, land and water cover, snow, and soil 21 

characteristics. However, their relative influence over boreal and tundra biomes and in different 22 

seasons, has not been comprehensively quantified. Here, we aim to 1) quantify temperature 23 

variations measured at three heights: soil (-6 cm), near-surface (15 cm) and air (150 cm), and 24 
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2) determine the relative influence of the environmental variables in driving thermal variability. 25 

We measured temperature at 446 sites within seven focus areas covering large macroclimatic, 26 

topographic, and ecosystem gradients (tundra, mires, forests) of northern Europe. Our data, 27 

consisting of over 60 million temperature readings during the study period of 2019/11-2020/10, 28 

reveal substantial thermal variability within and across the focus areas. Near-surface 29 

temperatures in the tundra showed the greatest instantaneous differences within a given focus 30 

area (32.3°C) while the corresponding differences for soil temperatures ranged from 10.0°C 31 

(middle boreal forest) to 27.1°C (tundra). Instantaneous differences in wintertime air 32 

temperatures were the largest in the tundra (up to 25.6°C, median 4.2°C), while in summer the 33 

differences were largest in the southern boreal forest (13.1°C, median 4.8°C). Statistical 34 

analyses indicate that monthly-aggregated temperature variations in boreal forests are closely 35 

linked to water bodies, wetlands, and canopy cover, whereas in the tundra, variation was linked 36 

to elevation, topographic solar radiation, and snow cover. The results provide new 37 

understanding on the magnitude of microclimate temperature variability and its seasonal 38 

drivers and will help to project local impacts of climate change on boreal forest and tundra 39 

ecosystems.   40 
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1. Introduction 43 

Boreal forest and tundra biomes cover one third of Earth's terrestrial surface and are 44 

experiencing rapid climatic warming with severe consequences (Post et al. 2009). These high-45 

latitude biomes also play a key role in the global climate system, storing an estimated 50% of 46 

global soil carbon (McGuire et al., 2009; Virkkala et al., 2021). The warming trend is projected 47 

to continue during the upcoming decades with the most pronounced changes projected to occur 48 

during the winter season (Ruosteenoja et al. 2016, 2019; Bintanja and Andry, 2017). To track 49 

these changes and their impacts, climate change research heavily relies on coarse-gridded 50 

macroclimate data (Flato, 2011; Bedia et al., 2013; Lenoir et al., 2013; Gardner et al., 2019). 51 

However, local climate conditions can differ substantially from those represented by these 52 

macroclimatic temperature grids (e.g., Lembrechts et al., 2019; Haesen et al., 2021). Thus, 53 

recently there has been a renewed focus on microclimate owing to its paramount importance 54 

in understanding how organisms and ecosystems respond to climate change (Potter et al., 2013; 55 

De Frenne et al., 2021). 56 

 57 

The impact of macroclimate on ecosystems is filtered through physiographic, edaphic, and 58 

biotic characteristics of the landscape (Ashcroft and Gollan, 2013; Lenoir et al., 2017). These 59 

microclimatic drivers alter air mixing, heat transfer and budgets of short- and long-wave 60 

radiation, that potentially lead to contrasting wind, thermal, and humidity conditions within 61 

short horizontal and vertical distances (Barry and Blanken, 2016). Further, these conditions 62 

create microclimates where local temperatures can considerably differ from the macroclimate 63 

(Dobrowski, 2011; Graae et al., 2012; De Frenne et al., 2019). In terrestrial biomes, 64 

microclimate influences species distributions, biodiversity, and ecosystem functions by 65 

determining ambient temperatures for near-surface and soil organisms, and consequently, 66 

further influences productivity, decomposition, and carbon cycling (Greiser et al., 2018; 67 



Lembrechts et al., 2019; Niittynen et al., 2020; Zellweger et al., 2020; Seibold et at., 2021). 68 

Thus, understanding the magnitude of thermal differences in a landscape at a given time (i.e., 69 

thermal heterogeneity; Scherrer and Körner, 2011; Lenoir et al., 2013), and the relative 70 

contributions of static landscape factors (e.g., topography) and dynamic factors (e.g., canopy 71 

closure and snow cover) driving thermal heterogeneity is needed for projecting how climate 72 

change shapes ecosystems.   73 

 74 

In boreal forests, canopy intercepts radiation (both incoming and outgoing), decelerates air 75 

flow, and affects evapotranspiration, thus creates microclimates where temperature variation is 76 

buffered compared to macroclimatic temperatures outside the canopy (Barry and Blanken, 77 

2016; De Frenne et al., 2021). In contrast, microclimatic temperature variability may be 78 

accentuated compared to macroclimate in areas that are exposed to high radiation, sheltered 79 

from winds, and have dry soils. Vegetation drives microclimatic temperature variability also 80 

in the tundra (Aalto et al. 2013; Kemppinen et al. 2021). There, the role of local topography is 81 

expected to be especially strong due to its influence on fine-scale variation in snow 82 

accumulation, surface flow, net radiation, and cold-air pooling under stable atmospheric 83 

conditions (Pepin et al., 2009; Daly et al., 2010; Aalto et al., 2017; Niittynen et al., 2020). Local 84 

hydrology also influences microclimate temperatures due to the high specific heat capacity of 85 

water. This can lead to buffered temperatures in areas with high soil moisture and in areas near 86 

wetlands and water bodies (Yang et al., 2012; Ashcroft and Gollan, 2013; Słowińska et al. 87 

2022.).  88 

 89 

In addition to various environmental drivers, microclimate temperature also depends on the 90 

height from the surface (Barry and Blanken, 2016). In general, temperature variations are 91 

largest close to the surface, and decrease with height due to increased air mixing. Below 92 



ground, temperature variability is buffered compared to above soil surface temperatures and is 93 

controlled by soil heat flux. This, in turn, is driven by surface radiation balance, specific heat 94 

capacity of the soil (dependent on e.g., soil moisture), and seasonal snow cover that effectively 95 

insulates the ground from temperature fluctuations in the free air (Grundstein et al., 2005; Aalto 96 

et al., 2018, Fernández-Pascual and Correia-Álvarez, 2021). These vertical variations in 97 

microclimate temperatures are also relevant for different ecosystem functions. For example, 98 

soil temperatures are closely linked to e.g., soil respiration and nutrient cycling via controlling 99 

microbial activity and mycorrhiza associations (Soudzilovskaia et al., 2015; Du et al., 2020). 100 

In turn, air temperatures close to the surface are especially relevant for animals living on the 101 

surface or in the litter, plant ecophysiology and metabolism, and decomposition (Körner and 102 

Hiltbrunner, 2018; Seibold et al., 2021). Air temperature measured 1–2 m above the soil surface 103 

represents conditions relevant for larger organisms and ecosystem-level processes, such as 104 

local productivity patterns (Potter et al., 2013). However, standardized weather stations and 105 

gridded climate datasets (e.g., Fick and Hijmans, 2017; Karger et al., 2017) often ignore the 106 

vertical temperature gradients and consequently misrepresent local climate conditions relevant 107 

for many organisms and ecosystem processes (Suggitt et al., 2011; Graae et al., 2012; De 108 

Frenne and Verheyen, 2016). 109 

 110 

The relative importance of microclimate temperature drivers can substantially differ across and 111 

within biomes (Barry and Blanken, 2016). However, in the past, most empirical microclimate 112 

studies have been conducted over single study settings with limited spatial extents (e.g., Pepin 113 

et al., 2009; Yang et al., 2012). Therefore, the understanding of the thermal characteristics 114 

across biomes and their contributing factors has remained limited. Here, we investigate 115 

microclimate temperature variation at various heights using a dense network of microclimate 116 

stations over a large geographical extent. More precisely, we aim to 1) quantify the temperature 117 



variability measured at three heights: soil (-6 cm), near-surface (15 cm) and air (150 cm), and 118 

2) examine the relative influence of the environmental variables driving spatio-temporal 119 

variation of the temperature parameters. The study is based on a large network of miniature 120 

and low-cost microclimate stations installed at study sites (n=446) within seven focus 121 

landscapes (hereafter focus areas) located in northern Europe. The study domain covers large 122 

gradients of macroclimate and elevation, and distinct ecosystems from both the boreal forest 123 

and tundra biomes.    124 

 125 

2. Material and methods 126 

2.1. Study domain and design 127 

The study domain extends across seven focus areas in Finland from hemiboreal forests to the 128 

oroarctic tundra and covers large gradients in macroclimate, elevation, and ecosystems (Fig 1). 129 

Climate in Finland is highly influenced by the Polar Front as well as the North Atlantic Current 130 

which drive macroclimatic temperature and precipitation patterns. These are also influenced 131 

by the Scandes mountains in the west and the landmass of the Eurasian continent in the east 132 

(Tikkanen, 2005). Along the latitudinal gradient of ca. 60–69 N, mean annual air temperatures 133 

range from -2.2°C to 7.1°C (1991–2020 period, Jokinen et al., 2021). The elevational gradient 134 

of the study domain ranges from ca. 30 to 950 meters above sea level with pronounced local 135 

and regional topographical variation due to multiple past glaciations. Moreover, due to the 136 

glaciations and the relatively humid climate, lakes and mires are abundant in Finland 137 

(Tikkanen, 2005). 138 

 139 

The selected focus areas are mainly situated in protected areas to minimize the influence of 140 

anthropogenic disturbance. Each focus area has 50–100 microclimate stations at which loggers 141 

were installed to measure soil and air temperature (see Table 1; Fig S1 and section 2.3. for 142 



more details). The northernmost focus areas are in Kilpisjärvi, north-western Finland, around 143 

Mount Malla and the Malla nature reserve (hereafter, MAL) and Mount Ailakkavaara (AIL). 144 

Another focus area in northern Finland is located in the Värriö nature reserve (VAR) in Salla 145 

and Savukoski, in the north-east. All the three northernmost areas have measurement sites 146 

above and below the forest line, and they are characterized by the boreal forest - tundra ecotone 147 

differentiating them from the central and southern areas. In central Finland, two focus areas are 148 

located within and around the Pisa nature reserve (PIS) in Kuopio and within the Tiilikkajärvi 149 

national park (TII) in Rautavaara. PIS is characterized by boreal forests and varying topography 150 

whereas TII comprises mainly mires. Another focus area characterized by mires is the Hyytiälä 151 

region (HYY) in southern Finland, where the stations are located within and nearby the 152 

Siikaneva nature reserve. The southernmost focus area is located within the Karkali nature 153 

reserve (KAR) and other nearby protected areas in Lohja, in the hemiboreal zone. 154 

 155 

 156 

 157 



Figure 1. Study domain and design. Panel a represents the locations of the seven focus areas 158 

in relation to the mean annual air temperature in Finland (MAAT; 1991–2020). The white 159 

borders mark boreal vegetation zones (in italics). White polygons represent water bodies over 160 

10 km². Northernmost focus areas (MAL, AIL, VAR) are in the boreal forest–tundra ecotone 161 

comprising both northern boreal forests and oroarctic tundra. Panel b represents an example of 162 

the sampling design in AIL with the colored points depicting annual potential incoming solar 163 

radiation (PISR) calculated from a digital elevation model. Panel c depicts the logger placement 164 

and measurement heights (T1=soil, T2=surface, T3=near-surface, T4=air) at the microclimate 165 

stations. T2 was only used to derive snow cover information (see Material and methods for 166 

details). Field photos from each focus area are presented in panel d. Focus area abbreviations 167 

are defined in the main text and in Table 1. 168 

 169 

To determine the measurement sites, we conducted a random stratification to pre-select a suite 170 

of candidate locations that maximally cover the main environmental gradients within the focus 171 

areas (Fig S2). This was done separately for each focus area. The stratification was based on 172 

several variables e.g., total canopy cover, deciduous canopy cover, distance to forest edge, 173 

elevation, potential annual incoming solar radiation, and a topographic wetness index (the 174 

SAGA wetness index), although the final selection of the variables varied depending on the 175 

distinct features of each area. First, we masked the areas outside the nature reservations and 176 

extracted the remaining pixel information on a systematic grid with a 10-m cell size. Next, we 177 

randomly selected 50% of the points and used this subset to reduce the multidimensional 178 

environmental space into its first three principal components. Then we took a sub-sample of 179 

100 points that maximally and systematically covered the shrinked environmental space. We 180 

repeated these procedures 100 times and used the selection frequency for each point as a weight 181 

in the final random point selection. This two-step selection process was also necessary to be 182 



able to ascertain a minimum distance (100m) between the selected points to avoid 183 

pseudoreplication. These steps used the eSample function from iSDM R package (Hattab and 184 

Lenoir 2017). Using such a protocol, we were able to detect (and select) the points that are 185 

unique in terms of their environmental conditions and thus likely valuable locations in the 186 

station network. Selected points were visually inspected by examining the environmental 187 

variables’ distributions. Final judgment of each preselected location was confirmed at the field. 188 

 189 

Table 1. Description of the seven focus areas. Mean annual air temperature data for 1991–190 

2020 are from Jokinen et al. (2021), and automated weather station data (AWS; Table S1) were 191 

acquired for each focus area for the period of the microclimate measurements (2019/11/01-192 

2020/10/31). 193 

 194 



2.2. Weather station data 195 

Hourly weather station data for the study period of 2019/11/01–2020/10/31 and long-term 196 

averaged climate data for the years 1991–2020, was acquired from each focus area's nearest 197 

automated weather station (AWS) operated by the Finnish Meteorological Institute (Fig S3; 198 

Table S1). The data have undergone an operational quality control.  199 

 200 

2.3. Microclimate temperature data 201 

All microclimate stations were equipped with a Tomst TMS-4 logger (Wild et al., 2019) and 202 

either a LogTag HAXO-8 (LogTag North America Inc.) or Onset HOBO U23 Pro v2 logger 203 

(Onset Computer Corporation; with exceptions of Ailakkavaara and Malla study areas which 204 

both have 100 TMS-4 loggers and 40 HAXO/HOBO loggers). The TMS-4 temperature sensors 205 

measure temperature at three heights (Fig 1c): -6 cm for soil temperature (T1), 2 cm for surface 206 

temperature (T2), and 15 cm for near-surface temperature (T3) with a precision of 0.0625°C 207 

and an accuracy of ± 0.5°C. Noteworthy, in this study, T2 is used only for interpreting snow 208 

cover duration from the surface temperature values. Additionally, TMS-4 also measures soil 209 

moisture, which is used in this study as a predictor of microclimate temperature variation (see 210 

sections 2.5. and 2.7.). We measured air temperature at 150 cm (T4) by using HAXO-8 211 

(precision of 0.1°C; accuracy ±0.3°C for ambient temperatures of 0°C-50°C and ±0.6°C for 212 

ambient temperatures below 0°C) and HOBO loggers (precision 0.04°C; accuracy ±0.2°C from 213 

0 to 70°C and ±0.25 from -40 to 0°C). These sensors were installed under white well-ventilated 214 

plastic radiation shields on the north side of either tree trunks or wooden poles to reduce 215 

exposure to direct solar radiation. Both sensors also measure air humidity, which was used only 216 

as a part of the data quality control in this study (see Section 2.4.). TMS-4 loggers were set to 217 

log at 15-minute, HOBO loggers at 30-minute, and HAXO loggers at 2-hour intervals due to 218 

different memory capacities of the loggers. To keep the 150 cm air temperature measurements 219 



comparable between the two logger types, we thinned the HOBO time series to the matching 220 

2-h intervals of the HAXO loggers. The stations were installed in June-October 2019. The 221 

study period is one year from 2019/11/01 to 2020/10/31 which is fully covered in all the study 222 

areas. 223 

 224 

2.4. Data preprocessing and quality control 225 

All temperature time series were visually quality checked. If, for instance, a logger had fallen 226 

down or its radiation shield was detached, such time periods were identified, and the 227 

jeopardized measurements were removed. Additionally, four sources of error were detected 228 

and corrected: 1) sensors systematically recording too low or high temperatures, 2) erroneous 229 

peaks over one or few consecutive measurements, 3) HAXO and HOBO loggers skipping 230 

measurements but continuing to count the time after the gap from the last timestamp before the 231 

failure, thus disengaging the correct time and temperature, and 4) snow reaching the height of 232 

the HAXO and HOBO loggers (T4, 150 cm). We created the following automated procedures 233 

to correct these issues. The R code used for these steps can be found in the public focus area -234 

specific Github repositories under user Poniitty (e.g., the raw data and processing code for 235 

VAR in https://github.com/poniitty/varrio_microclimate).  236 

 237 

1) We identified the periods when the TMS-4 loggers were “out-of-field” at stable conditions 238 

(no temporal variation). We calculated the mean temperature of these periods for each sensor 239 

and compared these means across the three sensors within each logger. We arranged the sensors 240 

based on these means and corrected the sensors recording the highest and lowest mean 241 

temperatures to match with the middle one. Then, we used these correction temperatures to 242 

correct for systematic deviations over the whole sensor-specific time series. These corrections 243 

https://github.com/poniitty/varrio_microclimate


were mostly very minor (<0.1°C) but in some rare cases even as high as 0.5°C. Thus, the 244 

corrections were considered to greatly improve the reliability of the dataset.   245 

 246 

2) To automatically detect erroneous peaks in the TMS-4 data, we iterated over all individual 247 

time series month by month and detected the logger within the same study area that best 248 

matched with the temporal pattern of the focal sensor (in terms of highest pairwise correlation 249 

and lowest root mean-squared error, RMSE). We then calculated moving averages and 250 

identified moments when the successive measurements showed a large rise or drop and when 251 

the two loggers showed suspicious differences based on the calculated statistics. By careful 252 

inspection, we set multiple criteria and thresholds for the differences to judge whether the peak 253 

in temperatures was a result of a natural event or an error. Erroneous peaks and their adjacent 254 

measurements were removed and replaced by linear interpolation while taking the 255 

measurements of the matching sensor into account as well.  256 

 257 

3) To correct for non-matching timestamps in the HOBO and HAXO data (T4), we calculated 258 

a median time series over all other loggers within each study area to which the individual logger 259 

time series were compared to. We calculated running correlations and identified breakpoints 260 

when the reference time series and a focal logger time series started to deviate from each other. 261 

If a breakpoint was identified, we started to gradually shift the temperature measurements of 262 

the focal logger and moved the post-breaking point data to a period where it reached maximum 263 

correlation with the reference period. We repeated this procedure multiple times to find all 264 

potential breaking points and to trim the gap margins efficiently. The outcomes were visually 265 

inspected to see if further corrections were needed (see an example of a corrected time series 266 

in Fig S4).  267 

 268 



4) We identified periods when the HAXO/HOBO loggers were under snow by calculating 269 

variability and extremes of temperature and relative humidity from individual time series with 270 

a 5-days moving window. We selected multiple criteria (e.g., low temporal variability, 271 

maximum temperatures <0.5°C) to find the potential periods of snow coverage and if these 272 

conditions persisted for several consecutive days the measurements were removed from the 273 

dataset. After quality checks temperature data from 446 study sites was used in the analyses 274 

but the number varies by month and measuring height (see details in Fig S5). 275 

 276 

The deployed radiation shielding has an effect on the temperature readings as the shield itself 277 

is likely to affect measured temperatures, and consequently, the accuracy of the measurements 278 

(Maclean et al., 2021). The effect is expected to be largest when direct sunlight is at its strongest 279 

(during solar noon and summer solstice) and wind speed is low. In the north where the solar 280 

angle is relatively low, early summer measurements can be affected by reflected short-wave 281 

radiation from the snow-covered surface. To mitigate these potential issues in our temperature 282 

data, we defined maximum temperatures (annual and summer) as the 95th percentiles of 283 

individual time series. In addition, T2 measurements that represent surface temperatures (Fig 284 

1c) can be problematic since the proper installation height (+2 cm) is difficult to estimate in 285 

the field, particularly in areas with herbaceous vegetation and bryophytes. Therefore, we 286 

present the results of T1, T3 and T4 in the main text, and use T2 temperature data only to 287 

calculate periods of snow cover (see 2.5.).  288 

 289 

2.5. Soil moisture and snow cover 290 

We used monthly soil moisture as a predictor of monthly microclimate temperatures (see 2.7.). 291 

Mean monthly soil moisture was calculated from the TMS-4 loggers. The loggers measure soil 292 

moisture in the upper 15 cm soil layer and the raw soil moisture count values were transformed 293 



to volumetric water content (VWC%) with a calibration function adopted from Wild et al. 294 

(2021). Soil moisture measurements were considered only when soil temperature of the same 295 

logger was above 1°C. To impute soil moisture for the missing months (mainly in winter), we 296 

used the value of the last month with sufficient soil moisture data. If this was not possible, we 297 

modeled the local soil moisture based on measurements at the focal site of other years (2019–298 

2021) and all data from all other loggers within the study area by fitting a linear mixed effect 299 

model, in which we included the month and year as factor predictors and the study site as a 300 

random factor. This model was then used for predicting the missing monthly values.  301 

 302 

Snow cover duration was also used for predicting monthly microclimate temperatures (see 303 

Section 2.7.). It was determined from the surface temperatures (T2) of the TMS-4 loggers by 304 

counting the days when the maximum surface temperature stayed below 1°C and the diurnal 305 

temperature range was below 10°C calculated with a 10-day moving average. The outcome 306 

was visually checked, and the algorithm was considered to detect periods of snow cover well 307 

in general. We identified three wetland study sites in the TII study area where the top peat layer 308 

stayed so warm under the snow that the automatic snow cover detection failed. For these sites, 309 

we identified the snow-covered period visually from the temperature time series. Missing 310 

values in snow cover duration were imputed in a similar way to the soil moisture values with 311 

the following differences: a generalized linear mixed effect model was used with Poisson 312 

distribution and only year was included as a factor predictor. The exact method and code to 313 

calculate the snow cover duration are available at the study-area-specific Github repositories 314 

(https://github.com/poniitty?tab=repositories). 315 

 316 

https://github.com/poniitty?tab=repositories


2.6. Geospatial data 317 

We utilized a multitude of geospatial datasets to derive variables that represent the major 318 

environmental drivers hypothesized to affect microclimate temperatures in boreal and tundra 319 

biomes. We used airborne light detection and ranging (LiDAR) data, which was provided by 320 

the National Land Survey of Finland (https://www.maanmittauslaitos.fi/en/maps-and-spatial-321 

data/expert-users/product-descriptions/laser-scanning-data). The LiDAR data was collected 322 

over summers 2016-2019. The point density is ~0.5p/m2, the standard error of the elevation 323 

accuracy is at maximum 15 cm, and the standard error in horizontal accuracy 60 cm. We 324 

downloaded a canopy height model produced by the Finnish Forest Center at 1-m spatial 325 

resolution (https://www.metsakeskus.fi/fi/avoin-metsa-ja-luontotieto/aineistot-paikkatieto-326 

ohjelmille/paikkatietoaineistot). It is based on the same LiDAR datasets introduced above. We 327 

also downloaded and utilized the Finnish national Topographic database which contains e.g., 328 

all water bodies, rivers, and wetlands in vector format 329 

(https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/expert-users/product-330 

descriptions/topographic-database).  331 

 332 

We constructed eight predictors that represent the main aspects of topography, solar radiation, 333 

vegetation, and land cover types that are known to affect microclimate temperature (e.g., 334 

Ashcroft and Gollan, 2013; Aalto et al., 2017; Greiser et al., 2018). Topographic predictors, 335 

i.e., elevation, potential incoming solar radiation (PISR), and topographic position index (TPI), 336 

represent the available energy and cold air pooling capacity. Vegetation effects were 337 

represented by canopy cover as high and dense vegetation shades the ground and slows down 338 

air movement. Wetland and water body proportions in the surroundings were included to 339 

represent their potential buffering effect on temperatures. Additionally, we included the mean 340 

soil moisture and snow cover duration calculated from the TMS-4 loggers as predictors.  341 



 342 

A Digital Terrain Model (DTM) was produced for each study area based on the LiDAR datasets 343 

using the grid_terrain function from the lidR R library (Roussel et al., 2020). The DTM 344 

represents elevation at 2-m spatial resolution. These DTMs were then used to calculate 345 

potential incoming solar radiation (PISR) for the 15th day of each calendar month using the 346 

Potential Incoming Solar Radiation tool in the SAGA-GIS software (version 7.6.2; 347 

http://www.saga-gis.org/saga_tool_doc/7.6.2/ta_lighting_2.html). TPI describes the difference 348 

in elevation between a focal location and the mean surrounding elevation which we defined 349 

with a 100-m radius. TPI was calculated using the Topographic Position Index tool in SAGA-350 

GIS (http://www.saga-gis.org/saga_tool_doc/7.6.2/ta_morphometry_18.html). Canopy cover 351 

was calculated from the canopy height model as a proportion of vegetation higher than two 352 

meters within a five-meter buffer around the focal location. We extracted still water bodies and 353 

wetland land cover polygons from the topographic database (scale 1:10 000), and then 354 

calculated the proportion of these land cover types using a 1000 m or 100 m buffer respectively 355 

for each logger location.  356 

 357 

2.7. Statistical modeling of monthly microclimate temperatures 358 

We used multivariate statistical modeling to investigate environmental drivers of the monthly 359 

microclimate temperatures, as detailed below: 360 

  361 

Response variables. We aggregated the quality-checked temperature time series to monthly 362 

means (Tavg), maximums (Tmax) and minimums (Tmin). We used the 95th percentile to 363 

calculate Tmax, as we expected this to dilute the potential effect of unrealistically high 364 

individual measurements caused by the radiation shield. The three measurement heights (i.e., 365 

http://www.saga-gis.org/saga_tool_doc/7.6.2/ta_morphometry_18.html


T1, T3, T4), three summary statistics (Tavg, Tmax, Tmin), and 12 months led to a total of 108 366 

response variables. 367 

 368 

Predictors. We included the eight predictors (i.e., elevation, PISR, TPI, canopy cover, 369 

wetlands, waterbodies, mean soil moisture and snow cover duration) in the models to explain 370 

variation in the response variables. However, as the conditions of the seven focus areas contrast 371 

greatly, we used a slightly different set of predictors for each area to facilitate model realism. 372 

For example, in winter 2019–2020 there was no permanent snow cover in Southern Finland 373 

and thus the snow variable was omitted in the model of KAR. Snow cover was also omitted 374 

from monthly models for other areas when all study locations were snow free for the whole 375 

month. KAR, HYY, and TII show minimal variation in elevation (Table 1). From the initial 376 

model results, we noticed that these short elevational gradients resulted in unrealistic model 377 

estimates for elevation, and thus, it was omitted from the models for these areas. Furthermore, 378 

the proportion of water bodies was not included in VAR, because this focus area has no lakes. 379 

Multivariate modeling. We related the response variables to the predictors by fitting linear 380 

models separately for each month and focus area. We considered only linear terms of the eight 381 

predictors, because we did not expect strong nonlinear responses, and to avoid the risk of 382 

overfitting. After running a full model with all the relevant predictors included, we ran a step 383 

function to select the best model based on the AIC value with a both backward and forward 384 

mode of stepwise search. As a measure of variable importance, we compared the explanatory 385 

power (R2) of the final model to a model in which the focal predictor was randomly permuted 386 

with the vi function from vip R library (Greenwell and Boehmke, 2020). This function also 387 

determines the direction of the effect for each predictor based on the sign of the t-statistic, 388 

which is analogous to the sign of the slope parameter in regression analysis. If the permuted 389 

predictor is important, the R2 will drop greatly leading to a high importance value. The overall 390 



explanatory power of the model is also reflected in the variable importance scores as the drop 391 

in R2 cannot be high if the R2 is low in the first place. This also gives less weight for poorly 392 

performed models when the results are compared or summarized. 393 

 394 

3. Results 395 

3.1. Environmental gradients 396 

Our microclimate station network across the seven focus areas covers large environmental 397 

gradients (Fig 2; Table S2) with e.g., elevation ranging from 32 to 934 meters and snow cover 398 

duration from 0 to 262 days (KAR to AIL). In most areas, canopy cover ranges from 0 to 100%.  399 

 400 

 401 

 402 

Figure 2. Environmental gradients covered by the microclimate station network. The 403 

figure represents the variability in environmental conditions within the seven focus areas (see 404 



Table 1 for the abbreviations). Gray dots depict median values. These environmental variables 405 

were used as predictors of the monthly microclimate temperatures.  406 

 407 

3.2. Spatio-temporal variability in microclimate temperatures 408 

The data demonstrate pronounced spatio-temporal variations in the microclimate temperatures 409 

(Fig 3; Fig S6; Table 2). The intra-annual variation in near-surface (T3) and air temperatures 410 

(T4) over all stations was large across the focus areas, for example 64.5°C and 69.3°C in MAL 411 

(tundra), and 61.3°C and 54.7°C in HYY (southern-boreal forest), respectively. These 412 

microclimate temperature variations often exceeded the variability measured by the adjacent 413 

AWS (Table 2). In general, the amplitude of intra-annual soil temperature (T1) variation was 414 

ca. 50% of the amplitude of T3 and T4 with the largest variation measured in tundra (ca. 415 

42.1°C; MAL) and the smallest variation in the middle boreal forest (ca. 22.3°C; PIS). Spatial 416 

variation in the microclimate temperatures was pronounced both within and among focus areas 417 

as well as across seasons (Fig 4).  418 

 419 



 420 

 421 

Figure 3. Spatio-temporal variability of soil and near-surface temperatures in the focus 422 

areas. The polygons represent hourly temperature variability over the microclimate stations 423 

(number of stations 50–100 per focus area, see Table 1) at two heights, soil temperature (T1) 424 

and near-surface temperature (T3), over the study period 2019/11/01–2020/10/31. In the sub-425 

panels, red lines show the maximum instantaneous temperature difference within a given focus 426 

area (i.e., thermal heterogeneity, numerical results in Table 2).  427 

 428 



 429 

 430 

Figure 4. Microclimate temperature variability over two example focus areas. Panel a 431 

depicts intra-annual near-surface temperature (T3) variation over the microclimate stations in 432 

middle boreal forest (TII) and boreal forest-tundra (VAR). In TII, the intra-annual range in T3 433 

was larger in open measurement sites (nearly 40°C), whereas in forested sites the variation was 434 

mostly below 30°C. In VAR, the largest intra-annual range in T3 was found in open wetland 435 



areas (> 40°C), while areas with least annual variation were located either in forests or in 436 

depressions between fells (< 20°C). Canopy cover represents over 2 m heigh trees. Panel b 437 

shows January and July temperature time series from example microclimate stations (I–IV in 438 

panel a). The smallest temperature variations over both focus areas were found in forested sites 439 

(II and IV).   440 

 441 

The results demonstrate large instantaneous, within-area thermal heterogeneity (Fig 3; Fig. S6; 442 

Table 2). For T3, the maximum instantaneous difference across all loggers within each focus 443 

area ranged from 17.8°C (KAR, median=3.3°C) to 32.3°C (MAL, 6.5°C). In the tundra, the 444 

largest within-area differences occurred mainly during the snowmelt season (late spring–early 445 

summer). In the southern focus areas (HYY and KAR), the magnitude of the thermal 446 

heterogeneity in T3 remained fairly constant throughout the year. Thermal heterogeneity in T1 447 

was markedly suppressed during the snow cover period, especially in the northern focus areas 448 

(difference ranging from 7.3°C [MAL, median=5.1°C] to 12.4°C [AIL, 6.9°C]). The maximum 449 

instantaneous difference in T1 was largest in the tundra (27.1°C [MAL, 5.9°C] and 23.5°C 450 

[AIL, 6.7°C]) and smallest in the southern boreal zone (10.1°C in PIS, 2.9°C). Wintertime 451 

instantaneous differences in T4 were clearly largest in topographically heterogeneous tundra 452 

areas with the difference ranging from 17.5°C (AIL, 3.0°C) to 25.6°C (MAL, 4.2°C; Fig S6; 453 

Table 2). In contrast, during summer, maximum thermal heterogeneity was similar among the 454 

tundra and boreal focus areas, but the median heterogeneity was highest in the southernmost 455 

focus areas (HYY and KAR).  456 

 457 

Table 2. Intra-annual temperature range of microclimate temperatures and thermal 458 

heterogeneity over each focus area. Temperature range over all microclimate stations within 459 

a focus area was determined for three measurement heights (T1, T3, and T4 for soil, near-460 



surface, and air temperatures, respectively) and adjacent automated weather stations (AWS). 461 

Instantaneous thermal heterogeneity depicts the maximum (median in brackets) within-area 462 

temperature difference at a given time.  463 

 464 

 465 

3.3. Environmental drivers of the temperature variability 466 

The performance of the monthly microclimate models was generally good but varied 467 

considerably across seasons and focus areas. The average model fit (R2) for T1 was 0.44 468 

(minimum R2 was 0.00 and maximum 0.87), 0.50 (0.00–0.99) for T3, and 0.57 (0.00–0.99) for 469 

T4. On average, the Tmax models performed the best (0.53; 0.00–0.99), followed by Tavg 470 

(0.51; 0.05–0.96) and Tmin (0.49; 0.00–0.89). More detailed information about the R2 values 471 

is presented in Fig S7 and Table S3. 472 

 473 

Statistical modeling indicated that the drivers of microclimate temperatures vary across months 474 

and focus areas (Fig 5). Overall, canopy cover was identified as the most important variable in 475 

summer (May–August) and elevation in winter and shoulder seasons (September–April). In 476 

general, the relative importance of elevation and snow increased by latitude, whereas canopy 477 

cover had the largest influence in the southernmost focus areas. As expected, water-related 478 

variables were found to be important in study areas with extensive wetlands and lakes. 479 

 480 

The direction of the effect of canopy cover on temperatures was dependent on measurement 481 

height, response variable, and season (Tables S4–S6). For example, in winter, soil temperatures 482 



were consistently higher under closed canopies, whereas in summer the direction was reversed. 483 

In turn, T3 and T4 minimum temperatures were higher and maximum temperatures lower under 484 

canopies throughout the year, but for average temperatures the sign of the effect varied among 485 

seasons. Soil temperatures were consistently warmer under a thick snowpack (indicated by 486 

long snow cover duration), but during late spring, the sign of the effect turned opposite when 487 

slowly melting snow patches kept soil temperatures colder compared to the rest of the 488 

landscape. Snow also had a strong effect on near-surface temperatures by increasing Tmin and 489 

Tavg and decreasing Tmax. Elevation had, in general, a strong negative effect on temperatures, 490 

but especially minimum T4 temperatures showed strong contrasting effects throughout the 491 

year. 492 

 493 

 494 

 495 

Figure 5. Relative influence of the environmental drivers explaining monthly 496 

microclimate temperature variability. Stacked variable importance scores of the predictors 497 

in monthly temperature models per temperature variable (Tmin, Tavg, Tmax) for the three 498 



measurement heights (T1, T3, and T4) and for the seven study areas from north (MAL) to south 499 

(KAR). Response variables in the models were the monthly minimum (Tmin), average (Tavg) 500 

and maximum temperatures (Tmax). Height of the stacked bars also indicate the model fit i.e., 501 

a short bar means that the model explained only a little of the temperature variation. TPI = 502 

Topographic position index. 503 

 504 

4. Discussion 505 

4.1. Magnitude of thermal heterogeneity 506 

Our data revealed substantial spatio-temporal variations in microclimate temperatures with 507 

distinct landscape and seasonal patterns. Overall, the largest variation in soil and air 508 

temperatures was observed in the tundra, where local variability in topography, snow cover, 509 

vegetation, and soil moisture create a fine-scale mosaic of thermal conditions (Daly et al., 2010; 510 

Scherrer and Körner, 2011; Aalto et al., 2013; Niittynen et al., 2020). This high thermal 511 

variability was poorly represented by adjacent AWS that often indicated lower ranges for air 512 

temperatures compared to our measurements. Thus, these results provide support for the 513 

argument that weather stations insufficiently capture the range of thermal conditions over 514 

heterogeneous landscapes, which limits their usability in assessing local climate change 515 

impacts (Graae et al., 2012; Lembrechts et al., 2019). We also found that thermal heterogeneity 516 

within boreal and tundra landscapes varies markedly at monthly and shorter timescales, with 517 

the largest instantaneous differences often exceeding 30°C near the ground (Fig 3). This 518 

heterogeneity was particularly evident in the tundra in early summer during the time of partial 519 

snow melt over the landscape. Similar patterns, but in smaller magnitudes, were also detectable 520 

in soil temperatures. While the soil temperature heterogeneity during winter was relatively low, 521 

the near-surface heterogeneity remained high during winter over most focus areas. This is likely 522 

due to fine-scale variation in snow accumulation, which in the studied tundra systems is related 523 



to complex topography and in boreal forests to canopy interception (Hedstrom and Pomeroy, 524 

1998; Niittynen et al., 2020). As microclimate is typically not examined over different 525 

environments and large extents, these thermal differences have remained undetected (Aalto et 526 

al., 2013; Kemppinen et al., 2021). However, our comprehensive study design covering broad 527 

geographical and environmental gradients enabled us to quantify the magnitude of thermal 528 

heterogeneity and its drivers across distinct ecosystems and landscapes.  529 

 530 

4.2. Drivers of the microclimate temperatures 531 

Our results show that the main drivers of microclimate temperatures vary over landscapes and 532 

seasons. For example, in the northernmost focus areas in the oroarctic tundra, the elevational 533 

gradient clearly has the largest influence, especially on the above-surface temperatures via the 534 

atmospheric lapse rate. Also, the role of local topography is particularly evident in the tundra, 535 

where it drives microclimate temperature variability by controlling surface net radiation and 536 

cold-air pooling (e.g., Daly et al., 2010; Dobrowski, 2011). In addition, local topography 537 

controls spatial snow patterns and soil moisture, which are among the key factors creating 538 

thermal heterogeneity close to the soil surface and controlling many ecosystem processes 539 

(Aalto et al., 2013; le Roux et al., 2013; Niittynen et al., 2020). In our study design, local 540 

elevational differences diminish towards the southernmost focus areas, and consequently, the 541 

relative importance of other microclimate drivers increases. For example, our data reveal that 542 

canopies, water bodies, and wetlands can create larger maximum and average thermal 543 

heterogeneity in air temperatures in forests than observed in the tundra. Forest canopy is 544 

especially important in the southernmost focus areas where dense canopies decrease the 545 

maximum, but increase the minimum temperatures, which leads to buffered thermal conditions 546 

compared to open areas.  547 

 548 



Our data show that drivers of temperature variability are also dependent on the height from the 549 

surface (De Frenne et al., 2021; Maclean and Klinges, 2021). This is demonstrated by the effect 550 

of canopy cover – a dense canopy buffers air and near-surface temperature variation whereas 551 

soil temperatures follow a distinct seasonal cycle where minimum, maximum, and mean 552 

temperatures are all consistently lower in forests in summer but higher in winter compared to 553 

open areas (in agreement with De Frenne et al., 2019). In our data, soil temperatures were 554 

decoupled from elevational gradients, and, on average, elevation had the greatest importance 555 

for air temperatures. This is especially evident in the tundra, where temperatures at >150 cm 556 

are less affected by heterogeneous surface conditions and are more dependent on meso- and 557 

macro-scale topographical gradients (Aalto et al., 2017; Maclean et al., 2019). During the study 558 

period, temperature inversions in the lower atmosphere were so prevalent in our northernmost 559 

focus areas that even the monthly mean air temperatures positively correlated with elevation 560 

during some winter months. This is not evident in the near-surface temperatures recorded under 561 

snow. In general, soil temperatures had similar driver contributions in minimum, maximum 562 

and mean temperatures. Whereas, for near-surface and air temperatures, minimum and 563 

maximum temperatures often had contrasting variable importances and effects. This is 564 

probably because soil temperatures are less affected by short-term variability in weather and 565 

radiation conditions, and thus, minimums and maximums are more closely coupled in soil 566 

temperatures than in air (Ashcroft and Gollan, 2013). These height-dependent patterns that we 567 

found highlight the importance of considering vertical temperature gradients when analyzing 568 

microclimatic heterogeneity in space and time.  569 

 570 

4.3. Methodological uncertainties 571 

Statistical modeling of microclimates can be challenging, as the same variables and model 572 

parameters proposed for one location and time may not be applicable for other areas and 573 



seasons. Temperature variation follows physical principles but the commonly used geospatial 574 

predictors are usually proxies for the underlying mechanisms (e.g., topographic position, 575 

proximity to water bodies and wetlands). The quality and representativeness of such predictors 576 

is crucial when interpreting the modeling results. Here, we aimed to evaluate the area-specific 577 

strength of the statistical links between the predictors and the microclimate temperatures rather 578 

than to produce accurate spatially explicit predictions. Most of the statistical relationships were 579 

logical except for few individual results. For example, the models suggested that increasing 580 

wetland cover decreased the minimum and increased the maximum air temperatures in our data 581 

throughout the year, while in theory, a large water body should have the opposite effect, 582 

especially during the snow and ice-free season. However, in our data the wetland cover was 583 

negatively correlated with canopy cover in many of the focus areas (the smallest Spearman 584 

correlation coefficient was -0.71), which may confound the found effects. Furthermore, 585 

wetlands are typically located in topographic depressions, and thus, wetlands may be better 586 

proxies for cold air pooling potential than a topographic position index (TPI). Mechanistic 587 

microclimate models are increasingly developed and can solve some of these problems, but 588 

they are similarly dependent on the input data quality and can also be computationally 589 

demanding when applied over large extents at high spatial resolution (Maclean et al., 2019). 590 

More research is needed to improve the quality of the geospatial data fed into statistical and 591 

mechanistic microclimate models.  592 

 593 

Measuring microclimate temperatures is prone to errors as the processes creating measurement 594 

errors are the same as those responsible for creating the thermal variation (e.g., incoming solar 595 

radiation, air mixing; Maclean et al., 2021). This is of particular concern for temperature 596 

measurements conducted above the ground surface and if the sensors are exposed to sunlight. 597 

Consequently, the sensors themselves can heat up, and the temperature recordings of ambient 598 



conditions can be substantially overestimated. Radiation shielding around the sensors is 599 

commonly used to mitigate the issue, but the choice of shielding (e.g., material, structure) is 600 

not trivial (Maclean et al., 2021). In future studies, these measurement errors could be 601 

accounted for by, for instance, quantifying the possible errors across seasons (e.g., snow 602 

covered and bare ground), landscapes (contrasting expositions), and weather conditions. 603 

Solving such practical methodological challenges is especially timely as new microclimate 604 

networks are emerging (e.g., Greiser et al., 2018; Lembrechts et al., 2020) to facilitate more 605 

accurate predictions of future microclimates and associated ecosystem impacts. 606 

 607 

4.4. Future microclimate temperatures and ecosystem implications 608 

Since the preindustrial time, the macroclimate has warmed 2.3°C over the study domain with 609 

pronounced observed and predicted changes in thermal seasons, precipitation, and snow cover 610 

(Mikkonen et al., 2015; Bintanja and Andry, 2017; Ruosteenoja et al., 2016, 2019; Luomaranta 611 

et al., 2019). However, microclimates may not directly follow changes in macroclimate due to 612 

the differing dynamics of the environmental drivers and how they are structured over 613 

landscapes (e.g., Maclean et al., 2016; Aalto et al., 2018; De Frenne et al., 2019). For example, 614 

elevation gradients and local topography as static drivers will create thermal heterogeneity also 615 

in the future (Daly et al., 2010; Dobrowski, 2011). In turn, climate warming has already delayed 616 

lake freeze-up and advanced ice break-up (Newton and Mullan, 2021), which can affect 617 

microclimates of adjacent areas due to prolonged ice-free periods that sustain the energy 618 

exchange between lake and atmosphere (Brown and Duguay, 2010). Changes in wetlands’ 619 

water balance (due to drainage and restoration) influence their thermal properties, energy 620 

fluxes, and biogeophysical feedbacks that can lead to altered local temperature variability 621 

(Menberu et al., 2016; Laine et al., 2019; Fernández-Pascual and Correia-Álvarez, 2021; 622 

Słowińska et al., 2022). In the tundra, changes in snow cover and properties control temporal 623 



dynamics and magnitude of landscape level thermal heterogeneity, especially close to the soil 624 

surface (Aalto et al., 2018; Niittynen et al., 2020). Thus, shortening of the snow season could 625 

translate into earlier peaks in landscape thermal heterogeneity and a general shift towards more 626 

thermally homogeneous tundra landscapes. In both biomes, abiotic and biotic disturbances, 627 

such as windstorms, wildland fires, and pest outbreaks, can lead to changes in local 628 

temperatures due to their effect on e.g., vegetation structuring that in turn controls many of the 629 

microclimatic processes (Venäläinen et al., 2020; De Frenne et al., 2021). 630 

 631 

Microclimates and their changes have implications for the ecology and functioning of boreal 632 

and tundra environments due to the inherent linkages to the organisms’ performance and 633 

ecosystem processes (Maclean et al., 2016; Körner and Hiltbrunner, 2018; Bentz et al. 2019; 634 

Zellweger et al., 2020; Seibold et at., 2021). However, mostly due to a lack of observation data 635 

such links have been anticipated rather than directly detected (De Frenne and Verheyen, 2016).  636 

It is only with contemporary developments in data loggers and remote sensing that extensive 637 

mapping of microclimates has become a reality (Lenoir et al., 2017; Zellweger et al., 2019). 638 

Using microclimate data will allow more organism-centered approaches to determine species 639 

range boundaries and related climate change dynamics (Potter et al., 2013; Bentz et al., 2019). 640 

For example, microclimate could be incorporated into investigations of the temperature-driven 641 

leading and trailing edges, where species’ responses may be susceptible to the availability of 642 

suitable microclimate and associated microrefugia (Hylander et al., 2015; Keppel et al., 2015). 643 

Moreover, a landscape with various microclimates is also likely to transition slower to an 644 

alternate state, whereas a landscape with homogeneous microclimate may transition due to 645 

minor temperature shifts in the macroclimate (Randin et al., 2009; Lenoir et al., 2013; Aalto et 646 

al., 2018). Therefore, thermally heterogeneous landscapes could be more resilient against 647 

climate changes and short-term climate extremes (e.g., drought), and recover faster and/or 648 



persist better in response to perturbations than their low resilience counterparts (Kühsel and 649 

Blüthgen, 2015). With further expansions, our comprehensive study setting could also provide 650 

possibilities to analyze, model, and compare the effects of microclimate on ecosystem 651 

functioning of pristine and managed boreal forests. This is relevant, since different forest types 652 

and management practices can produce substantial near-ground microclimate variation (De 653 

Frenne and Verheyen, 2016; Greiser et al., 2018). 654 

 655 

5. Conclusions 656 

We showed remarkable multi-level microclimate temperature variability over boreal forest and 657 

tundra biomes based on the data from hundreds of microclimate stations. The data revealed 658 

high instantaneous thermal heterogeneity over the landscapes, with the largest differences 659 

found in the tundra during wintertime and in southern boreal forest during summer. Our results 660 

suggested that microclimate temperature variability in southern boreal forests is mostly driven 661 

by canopy cover and proximity of water covers. In the tundra, the microclimatic temperature 662 

variability is most strongly linked to the elevation gradient, variations in topographic solar 663 

radiation and snow cover. Here we have also showed that the relative importance and effects 664 

of microclimate drivers and landscape thermal heterogeneity vary seasonally. This calls for 665 

careful investigation of the temporal aspects in future microclimate studies. As microclimate 666 

temperatures are the most proximally related to organisms’ performance and various ecosystem 667 

functions, our new comprehensive data will be highly relevant in various ecosystem 668 

applications aiming to understand and project the biome-wide responses to contemporary 669 

climate change.  670 

 671 



Data availability 672 

The raw microclimate data and code to preprocess these data are available in the study-area-673 

specific Github repositories (https://github.com/poniitty?tab=repositories). The preprocessed 674 

data and code used in this study are available in a Github repository 675 

(https://github.com/poniitty/Boreal-Tundra_Microclimates) and a static version of this 676 

repository will be deposited and openly published in Zenodo upon acceptance for publishing.  677 
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