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 45 

 46 

Abstract:  47 

Biomedical research accuracy and relevance for improving healthcare are increasingly identified as 48 

costly problems.  Basic research data quality, reporting and methodology, and reproducibility are 49 

common factors implicated in this challenge. Preclinical models of disease and therapy, largely 50 

conducted in rodents, have known deficiencies in replicating most human conditions.  Their 51 

translation to human results is acknowledged to be poor for decades. Clinical data quality and quantity 52 

is also recognized as deficient; gold standard randomized clinical trials are expensive.  Few solid 53 

conclusions from clinical studies are replicable and many remain unpublished.  The translational 54 

pathway from fundamental biomedical research through to innovative solutions handed to clinical 55 

practitioners is therefore highly inefficient and costly in terms of wasted resources, early claims from 56 

fundamental discoveries never witnessed in humans, and few new, improved solutions available 57 

clinically for myriad diseases.  Improving this biomedical research strategy and resourcing for 58 

reliability, translational relevance, reproducibility and clinical impact requires careful analysis and 59 

consistent enforcement at both funding and peer review levels.  60 

1. Introduction 61 

Translation of biomedical research results into clinical benefits is the rallying cry of the modern 62 

medical research establishment [1].  Medical innovation is linked to effective translation of new 63 

discoveries about disease, and in how drugs and devices produce therapies.  Many challenges are 64 

commonly identified in translating observations from model experimental biomedical research 65 

systems (e.g., in silico, in vitro, ex vivo, or in vivo in animal preclinical studies) towards treatments of 66 

human diseases and improvement of clinical practices [2–9]. Myriad murine disease models are 67 

frequently used to herald new “cures” for diverse human diseases, that unfortunately for most, prove 68 

to be invalid [10,11]. Only a small fraction of animal study outcomes are deemed transferrable to 69 

relevant human responses, thus qualifying as “knowledge-gaining research” [12].  The remainder 70 

often claim “potential” relevance, yet are poorly convincing, unsupported, or too risky or ambiguous 71 

to attempt  correlation or translation to human conditions, and without clear clinical impact.   This 72 

widely recognized but worrisome chasm separating discovery from technology validation and clinical 73 

 
“Knowing is not enough; we must apply.  Willing is not enough; we must do." 

J.W v. Goethe 
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 4 

impact de-values the role and credibility of the biomedical scientist and erodes their contributions to 74 

addressing compelling healthcare challenges [13,14]. 75 

 76 

A sound understanding of the medical need, its underlying causes and consequences, and whether 77 

corresponding preclinical data are likely to be clinically relevant, appear necessary to confidently 78 

proceed from preclinical to clinical testing for validation.  Accurate and validated scientific evidence 79 

generated in a timely manner in relevant biomedical research testbeds is required to address unmet 80 

needs and also the divides between biomedical research and clinical challenges.  “Translation” is 81 

defined as the essential process of turning observations in the laboratory, clinic and community into 82 

new interventions that improve both the health of individuals and the public — from diagnostics and 83 

therapeutics to medical procedures and behavioral changes [15].  Nonetheless, formidable barriers 84 

are frequently recognized that preclude ready achievement of this mission [16]. Traditionally, 85 

distinctions in translational cultures among investigators, regulatory hurdles, limited data access, 86 

reproducibility, usability, and poorly predictive research models have been  identified [17]. Practically, 87 

a critical barrier surrounds the increasing complexity of biomedical information and limited research 88 

capabilities to integrate complex multi-factorial data across multiple research formats.  Research 89 

strategies to effectively and comprehensively accommodate complex, dynamic models of health, 90 

disease and intervention do not yet exist in many cases. 91 

 92 

2. Predicting Translational Success 93 

A particularly acute facet of the translational research challenge is evident in the depressingly low rate 94 

of successful translation of preclinical models to human experiences [16,18–21]. Years ago, a 95 

systematic review identified that only about a third of 67 highly cited animal research studies could 96 

translate accurately at the level of published human randomized trials [22]. Translational 97 

predictiveness and reliability shown in that study is poorer than the recently estimated replication 98 

rates, less reliable than a coin toss, for highly cited human studies [23,24]. Given these precarious 99 

features of translational science, extrapolating outcomes from animal research as models of human 100 

maladies into claims for approaches to treating human disease should be performed with caution [25]. 101 

These noted deficiencies certainly provide major opportunities for improving study design and 102 

methodological quality for preclinical research that might improve human relevance.  103 

 104 
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 105 

2.1 Changing Decades of Habit 106 

To produce different, and better, results than those published, the research community must attempt 107 

different methodologies and approaches.  Over 26 years ago, Altman asserted, “We need less 108 

research, better research, and research done for the right reasons”[26]. Yet, scientists like all other 109 

humans are creatures of routine who respond naturally to the incentives provided for performance: 110 

it is constantly challenging to expect, develop and enforce different and hopefully improved, validated 111 

approaches to address long-standing challenges, particularly in medical research centered on humans.  112 

One prominent hindrance is the dominant, pervasive incentive system for scientific recognition, 113 

promotion and success in academic research, relying on impact-agnostic numerical compilations and 114 

assessments of scholarly production [27–31]. Indeed, pet academic performance analytical tools now 115 

commonly employed by university administrative rankings and assessments use publications as “a 116 

currency they were never meant to be: a system of metrics to assess research, research programs and 117 

individual researchers” [32]. These research performance constraints perpetuate the long-standing 118 

insidious academic “publish-or-perish” culture, engaging 15,000,000 researchers publishing over 119 

25,000,000 scientific papers in 1996–2011 alone [33], without much incentive to change either the 120 

metrics, merits, or the results.  Furthermore, the audience for this mass of “discovery” literature is 121 

unappreciative and inattentive: the 10-year uncited rate for publications across all science disciplines, 122 

minus self-citation, is about 18% [34]. This excessive and under-appreciated global dissemination 123 

effort is openly acknowledged as a costly system that fails all involved in bringing the expected 124 

academic learnings, progress, innovation and research breakthroughs to benefit society.  Nonetheless, 125 

when “researchers are rewarded primarily for publishing, then habits which promote publication are 126 

naturally selected…. they modify their methods to produce the largest possible number of publishable 127 

results rather than the most rigorous investigations” [29]. Enormously profitable scientific publishing 128 

business interests [35] and the dubious roles of researchers as both the producers and consumers in 129 

this publication business (and who pay in both roles) introduce orthogonal pressures on research 130 

systems as well. New, unanticipated consequences and unfiltered media hype, often through rapid 131 

social media dissemination of non-factual reports and non-peer reviewed evidence [36] produce new 132 

complexities for scientific accuracy.  Breaking this performance pattern, removing the perverse 133 

incentives from for-profit external forces [27–31] and restoring biomedical research to originally 134 

envisioned more altruistic and impacting goals beyond publications will require concerted will and 135 

 
“The definition of insanity is doing the same thing over and over again, but expecting different 
results.”  

(attributed to 1981 Narcotics Anonymous pamphlet) 
) 
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dedication from numerous stakeholders [30,37,38]. Publications are important dissimenation tools as 136 

critical reports of progress to their stakeholders, but these are not final products [32,37]. Publishers 137 

and journal editorial boards could wield increasing influence in setting standards for acceptable 138 

research conduct and quality [39]. Researchers themselves, along with their peers and administrators 139 

who supervise the promotional and merti-review/reward systems, along with funding agencies that 140 

promote research programs with little hope for progress by relying on failed research tools and 141 

irrelevant disease models, and finally the peer-review community that seemingly condones the 142 

exaggerations of novelty and claims of impact while perpetuating certain systemic futility and wasted 143 

resources through their approval of compromised models, poor strategies and faulty techniques, must 144 

all be called upon to implement change. 145 

 146 

2.2  Addressing Preclinical Failure 147 

Using previous publications uncritically to justify further in vivo work, regardless of their veracity, 148 

relevance, robustness or quality, is often the most rapid route to institutional animal study approval 149 

and to obtaining publishable data, even though these data may have no translational relevance.  150 

Furthermore, a substantial fraction of these studies suffer from poor experimental design and 151 

methodological flaws, often under cost and funding constraints.  Under-powered animal studies, long 152 

known to be the bane of preclinical translational reliability [40–42], continue to be published and 153 

accepted as valid whole organism in vivo outcomes, despite poor methodological design [21,43], lack 154 

of validation and low or no human relevance.  However, apparently exciting preclinical data may fail 155 

to translate to the next step at many levels and for many reasons (Table 1) [2,10,18,21,43]. 156 

  157 

Table 1. Some examples of failure of translation of preclinical disease models to human trials.  158 

Disease Model Example of failure of translation 

Inflammatory arthritis, lupus, other 

autoimmune diseases  

>20 p38 inhibitors failed in clinic [44] 

Vascular prosthetic graft placement and 

endothelialization 

Success in models fails to predict clinical benefit 

[45] 

Various cancer models Success in models fails to predict clinical benefit 

[46] 

Various pain models Success in models fails to predict clinical benefit 

[47,48] 

Various stroke models Success in models fails to predict clinical benefit 

[49,50] 
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In vivo cell and gene therapies in highly inbred, 

specialized mouse strains 

Success in models fails to duplicate human 

experiences [51] 

Various osteoarthritis models Success in models falls short in predicting clinical 

effects [52,53] 

 159 

Given abundant questioning and critique published for many current animal models used in 160 

biomedical research, criteria for defining validity of improved animal models is essential, and refining 161 

best practies for their adoption and continual evolution should be a research community mandate 162 

[54,55].  Some experimental uncertainties in models are certainly outside the researchers’ control – 163 

biology is indeed complex, often exhibiting non-linear or quasi-chaotic dynamics, and difficult to 164 

model.  The biology may simply differ in humans compared to model systems or non-human animals.  165 

In these cases, research model pursuit can be justified in terms other than direct one-to-one human 166 

relevance, such as isolating a specific relevant mechanistic signal, elucidating a relevant pathway, or 167 

assessing genetic contribution. Some argue that external validity (translation to other laboratories 168 

running similar experiments, in other study populations, or other species) as well as internal validity 169 

(competent experimental design, expert conduct and analysis, and accurate reporting) are both 170 

essential, and that reliable translation of research results from animal models to humans can only 171 

occur if preclinical animal studies are both internally and externally valid [56,57]. 172 

 173 

3. Reproducibility and Robustness 174 

3.1 Internal Validity 175 

Reproducibility and robustness (internal validity) are the bedrock of science and as such, also essential 176 

for biomedical translation [58]. Meta-research of the past decade has provided overwhelming 177 

evidence that research of low internal validity and statistical power is a major cause of translational 178 

attrition. For example, a recent analysis of 1.6 million papers (1997–2019) quantifying the rigor and 179 

transparency in the reporting of preclinical research demonstrated that less than 30% of studies 180 

mention methods to reduce bias (blinding, randomization, etc.) [59].  Average statistical power in most 181 

work appears to be below 10%. As a consequence, false positive as well as false negative results 182 

 
“Quality is never an accident; it is always the result of high intention, sincere effort, intelligent 

direction and skillful execution; it represents the wise choice of many alternatives, the cumulative 
experience of many masters…” 

 
William A. Foster 
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abound, and even where effects are real, their effect sizes may be substantially overestimated 183 

[22,30,60]. Predominant reliance of the biomedical field on null hypothesis significance testing (NHST), 184 

and associated use and misuse of P values for validation [40–42] is argued to now be the “most widely 185 

perpetrated misdeed of statistical inference across all of science” [61]. Selection bias, p-hacking, and 186 

data cherry-picking are common modalities used to falsely assert statistical validity for study 187 

conclusions.  Proper application of effect sizes, confidence intervals, techniques analyzing false 188 

discovery rates, Bayesian methods, and adoption of more stringent thresholds for asserting P values 189 

are all proposed alternatives to avoiding these increasingly reported questionable practices that 190 

plague experimental reproducibility and data robustness [29,30,58]. 191 

 192 

 193 

3.2 External validity 194 

In addition, generalizability (i.e., external validity) is significant to translational success and reliability. 195 

How well the chosen research model reflects critical factors of a relevant clinical setting is key to 196 

recapitulating disease pathophysiology, and hence for validating outcomes for possible therapeutic 197 

predictions. This includes – but is not limited - to sex, age, immune system status, microbiome, etc, as 198 

modifiers of an adequate model [62]. In-depth knowledge of the patient-specific medical need, its 199 

physiological and pathological characteristics and variation is essential. Recently it was proposed that, 200 

quite counterintuitively, experimental heterogeneity should be more widely embraced to improve 201 

model reproducibility and translatability. Instead of increasing reproducibility, the current emphasis 202 

on experimental standardization may actually reduce variability within studies and lead to 203 

idiosyncratic, lab-specific results that are not generally reproducible or translatable [63]. Therefore, 204 

activities to deliberately introduce heterogeneity (i.e., “heterogenization”) into the experimental 205 

design may lead to higher success in drug discovery or medtech developments and their later 206 

translation. 207 

 208 

The translatability of preclinical models in reliably predicting human results varies dramatically by 209 

disease. In many diseases, the primary animal model has been “cured” many times without leading to 210 

a successful human therapy or mitigation (e.g., the mdx mouse of Duchenne muscular dystrophy [64], 211 

the EAE-model of multiple sclerosis [65], different animal models for infections and sepsis [66,67], 212 

various animal models for tolerance induction in solid organ transplantation [68], hundreds of diverse 213 

refractory murine tumor types [46]), while other unmet needs manifest better predictivity 214 

(inflammatory arthritis models predicting efficacy of TNF inhibitors for rheumatoid arthritis [52,53,69], 215 

estrogen withdrawal for osteoporosis [70], immunotherapies involving checkpoint inhibitors and CAR-216 
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T cells in liquid tumors), even though the animal model might share few features closely associated 217 

with the human disease (e.g., few mammals progress naturally to osteoporosis [71] or spontaneously 218 

develop tumors as in humans [46]). 219 

 220 

3.3 The End of the Animal Model? 221 

Additional data to test a hypothesis before proceeding to human trials ideally should be orthogonally 222 

designed – preferably from genetic validation in humans, or from inferential human evidence such as 223 

“real world” data, related known pathway interventions by other human drugs, etc. We contend that 224 

spending time, effort and money to create new models seeking closer preclinical relationships or 225 

equivalence to human disease is not an efficient use of research resources.  After all, most animal 226 

models have recognized limitations that may never duplicate any human disease entirely [18–22,46] 227 

– and importantly, need not be [19,43].  Animal models have utility for only select aspects of 228 

biomedical research validation and confirmation, often limited mechanistic acute pharmacological, 229 

toxicological, or biomechanical features.  Human translational forecasting should not and cannot rely 230 

on such limitations. Yet, there does not appear to be the resolve in the research community to 231 

understand, directly address and alter many of the current challenges in translating animal results to 232 

human use: reviews and summaries of evidence from animal research are methodologically 233 

inadequate [72], and few animal study meta-analyses are conducted compared to clinical trial meta-234 

analyses [20,43]. 235 

 236 

For biopharmaceutical industry, it is much more effective to proceed to human testing as rapidly as 237 

possible once some preclinical evidence of benefit is obtained in a model that has demonstrable 238 

perturbation of the target pathway that is substantially corrected by the candidate therapy under 239 

investigation. Companies are generally willing to test the hypothesis in the most relevant species – 240 

humans –  after proving basic, necessary pharmacological and toxicological features in preclinical 241 

models. Predictive pathologic pathway mechanistic information is more insightful in preclinical testing 242 

that actually establishing complete animal-human disease or healing equivalence. Ironically, 243 

toxicology studies needed for human trials are uniformly done in healthy animals, not in disease 244 

models. To that end, different critical questions must be answered – safety, tolerability, dosing, effect 245 

size, biomarkers – that do not require more basic experiments with disease models. This also means 246 

that additional attention and resources are needed to safely and ethically facilitate the human-tissue 247 

 
‘The best material model of a cat is another, or preferably the same, cat.' 

(Norbert Wiener, with A. Rosenblueth, Philosophy of Science 1945)  
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and human experience-based data that often fall under the rubric of “translational research” [3,6,8–248 

10]. 249 

 250 

4 Regulators, Clinical Trials and Academia: Worlds Apart 251 

The traditional world of fundamental and applied research is dominated by academic centers, while 252 

later testing of therapeutic candidates is performed primarily by industry, with academic contributions 253 

to industry-sponsored clinical trials or investigator-initiated trials. The latter space has formal and 254 

continuous regulatory oversight from health authorities, while the former is generally regulated only 255 

by animal use committees and funding reviews. New advanced therapies (i.e., cell and gene therapies, 256 

tissue engineering, medical technologies, and their combinations) have closed the gap between the 257 

regulatory world and the academic world, as many clinical developments in this field are driven by 258 

academic labs, with many new regulatory challenges [73].  If this trend is to continue, then educating 259 

young researchers with a mindset targeted towards the basics of translational medicine and important 260 

regulatory realities will also be necessary [74,75]. In addition, the active development bridge between 261 

idea-generating fundamental research and the subsequent regulated clinical development can 262 

accelerate and de-risk translation if high standards of quality are maintained in this transition phase 263 

[3,75]. 264 

 265 

Reproducibility, veracity and validity of early mechanistic therapeutic data comprise the foundation 266 

upon which the entire edifice of clinical research is built. All new medicines, interventions and 267 

treatments results from volunteers participating in clinical trials. In clinical research, trials are 268 

conducted using recruited, screened patient volunteers to answer patient-related questions, and are 269 

required by governmental regulatory bodies as the basis for generating evidence for approval 270 

decisions.  Randomized controlled trials (RCTs) are considered the gold-standard trial format, and 271 

optimal approach to study both safety and efficacy of new treatments: trial design processes to 272 

conduct an RCT minimize risks from confounding factors that might influence outcomes.  As a result, 273 

RCTs are widely encouraged as the ideal methodology for causal inference and estimates of average 274 

treatment effects. Together with meta-analyses of pooled clinical trial data, high-quality RCTs with a 275 

low risk of systematic error (bias) provide the highest level of medical evidence.  Analogous to other 276 

forms of biomedical research (vida supra) arguments relevant to their external and internal validity 277 

considerations are published [76]. 278 

 279 
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While RCTs may be considered the gold standard for generating clinical evidence, they are expensive, 280 

time-consuming, lengthy, tedious and difficult.  Clinical research also has questionable quality, 281 

reliability and replicability challenges [24,33,77].  Because clinical acceptance, patient safety and 282 

treatment efficacy, and further research designs all depend directly on conclusions drawn from clinical 283 

research, and meta-analysis quality is intrinsically dependent on clinical trial evidence quality, clinical 284 

research reliability and veracity is essential.  Interestingly, much of modern medical practice and 285 

established routine is not based on RCT vetting, as clinical medicine relies primarily on empirically 286 

“grandfathered” best practices and anecdotes collected and established from centuries of 287 

observational evidence. Hence, there is a growing interest in using real-world evidence (RWE). RWE is 288 

proposed to avoid the patient exclusion criteria used in RCTs, and to better reflect actual patient 289 

demographics, co-morbidities, protocol adherence, and concurrent treatment use in actual clinical 290 

environments,  However, only a small fraction of RCTs are replicated to date in the real world [78] and 291 

these are typically using retrospective (observational) RWE patient data.   292 

 293 

Regardless of clinical trial design and conduct, an essential contribution of clinical trial data comes 294 

from reliable trial conduct, including results reporting.  This expectation is enforced by regulatory 295 

bodies to make detailed information regarding testing and evaluation of regulated products available 296 

to the public to support trial enrollment, inform clinical care decisions, and accelerate future 297 

research.  Despite nearly 275,000 clinical trials registered on ClinicalTrials.gov currently, fewer than 298 

10% of these trials report results publicly to the site annually. Less than half of all clinical trial results 299 

have ever been published [79].  Further, less than half of NIH-sponsored clinical trials are published in 300 

peer-reviewed journals within 30 months of trial completion [80,81].  Thousands of USA-conducted 301 

clinical trials are identified as noncompliant with regulatory results information reporting 302 

requirements as of January 2021.  The regulatory (and often funding agency) requirement and 303 

expectations that public recruitment and involvement in clinical research should be reported publicly 304 

in a timely manner has recently begun to be enforced [82].  305 

 306 

Ironically,  clinical trials with positive results are twice as likely to be published as those with negative 307 

results [79,83]. Trials evaluating treatments of chronic medical conditions published early in the chain 308 

of evidence commonly demonstrate an exaggerated treatment effect compared with subsequent 309 

trials [84].  In over a third of clinical studies analyzed, first or second clinical trial study otucomes 310 

reported an effect 2.67 times larger than what subsequent trials eventually showed.  Further, clinical 311 

trial data from small clinical trials published in major general medical journals exhibit more 312 

exaggerated results overall than equivalent studies published in other journals [85]. Trial results are 313 
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most often published in English, and the likelihood of publication is frequently decoupled from  sample 314 

size, funding mechanism, investigator rank or gender [86]. The notable lack of normal and consistent 315 

publication practices represents a significant publication bias, and one in this case that is highly 316 

unpredictable and non-uniform. 317 

 318 

Unfortunately, scientific research validity is seriously threatened by such publication bias.  Decision-319 

making for clinical innovations based on studies showing exaggerated benefit, or biased by lack of 320 

studies published showing adverse effects, provides very low certainty in such recommendations [83]. 321 

Further, clincial data meta-analyses are more likely to consider more trial reports with positive findings 322 

than with negative findings, and the estimated pooled effect size is likely to be exaggerated from 323 

publication bias. Resulting clinical recommendations based on such evidence influenced by 324 

publication bias falls victim to likely exaggerated benefits. Therefore, fair assessment of patient 325 

benefit and harm producing such recommendations is likely inaccurate. This risk is acknowledged in 326 

clinical trial assessments by reducing certainty in the quality of the evidence provided [87]. 327 

 328 

Today, the success rate of translation is woefully low – even among drugs that enter phase I human 329 

trials, fewer than 10% are eventually registered as new drugs, often after costly failed trials 330 

[6,9,10,88]. Given the known limitations of preclinical models discussed above, it is critical to learn as 331 

much as possible in early clinical trials using accompanying mechanistic studies (safety, PD/PK, mode-332 

of-action, surrogate markers). Given that the proportion of early trial failure due to safety versus 333 

efficacy is likely roughly equal, and not frequently posted to clinical registries, reliable results from 334 

those studies require highly validated biomarkers and their appropriate use in tests – another 335 

important standardization task to improve data quality that is frequently underestimated [89]. 336 

Lessons learned from those studies allow iterative improvements of the therapeutic candidate or 337 

patient selection by a back-to-bench-forward-to-bed approach (“refined translation”) - an important 338 

de-risking process [3,75]. 339 

 340 

5 Conclusions 341 

 
“… despite the substantial resources invested into basic biomedical research, a vast majority of 

findings will never be tested in humans, let alone culminate in change in clinical practice.” 
 

R. Ogier, W. Knecht, and M.E. Schwab [94] 
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Literature points many fingers at causality in assessing challenges in the translational biomedical 342 

research enterprise [3–8,74,75,90–92]. Research waste, lost opportunities for impact, and inefficiency 343 

are natural products of collective failure across the biomedical research enterprise to enact long-344 

recognized changes necessary to improve translational processes and clinical impact.  Scientists and 345 

clinical researchers operate in a global theatre in which biomedical research is governed by incentives 346 

that oppose such changes, enforcing the status quo to the detriment of best translational practices, 347 

patient welfare and quality of life, stewardship of resources and societal support, and scientific 348 

credibility.  A call for an improved “mind-set” and broader education of the next generation of 349 

biomedical and clinical researchers will in itself be insufficient to address data reproducibility, 350 

reporting, relevance and reliability challenges.  Differences between academic and industrial missions, 351 

research strategies and conduct, and reward structures in biomedical research and translation must 352 

be appreciated and harmonized for translational congruence [93]. In some instances, a similar 353 

biomedical translational goal involving both academic and industry has resulted in surprisingly 354 

disparate intellectural property estates demonstrating orthogonal priorities and different 355 

translational strategies [94]. Stakeholder messaging and peer expectations for change provided to the 356 

translational research community must be consistent, persistent and focused.  As global 357 

understanding of human disease mechanisms and markers broadens and improves, periodic revisiting 358 

and critically evaluating ‘standard’ biomedical research models, and their expected deliverables, are 359 

critical.  We must continually review whether existing models – in silico, in vitro, ex vivo, in vivo - and 360 

the underlying data and hypotheses that drive them remain valid as new data emerge.  Continual re-361 

evaluation and critique of research approaches, models and data reporting will continue to inform, 362 

but should be better enforced on the research community by diverse stakeholders, to evolve best 363 

practices.  Towards this end, seeking actual clinical validity of novel interventions and therapies will 364 

be more convincing than continually improving pre-clinical models attempting to duplicate clinical 365 

reality.  But engaging in such practices must also be reinforced by the proper research incentives to 366 

more efficiently steer the investigating and translating community and more reliably assess and report 367 

their medical utility and clinical benefit [93].  368 

 369 

High quality biomedical evidence across the diverse different biomedical sources – molecular/cellular, 370 

preclinical whole organism, computational in silico, case series, clinical trials, meta-analyses, patient-371 

clinician engagement, and societal evidence (e.g., advocacy groups) – must be reliably selected and 372 

supported, collected, vetted and fairly reported to achieve best evidence-based medical care.  373 

Numerous known research deficiencies preclude realization of a reliable, efficient biomedical research 374 

system.  Critically, stakeholders must show the resolve and initiative to properly incentivize the 375 
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research system to enable best practices systemically across the biomedical research spectrum.  Only 376 

with dedicated and persistent focus on holistically improving biomedical research process and 377 

resulting data quality and reliability emanating from “bench to bedside and back” will global 378 

biomedical translational efficiency and impact improve to benefit patient quality of life.  379 

 380 
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Highlights: 

• Healthcare technology innovation is expected from biomedical research translation 

• Moving biomedical research discoveries to clinically reliable outcomes is difficult. 

• Few academic claims are actually verified in human patients.  

• Biomedical research models and data reliability are increasingly questioned.  

• Biomedical research strategies must better address the actual human condition. 
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