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in advance) of the Prover, and according to that it validates
whether the Prover is trustworthy or not.

Based on the memory regions considered for attestation,
RA schemes can be classified into either static or dynamic.
Static schemes verify the integrity of the Prover’s memory,
which does not change at runtime (e.g., the program binary).
In contrast, dynamic schemes verify the Prover’s integrity
based on the memory regions that change at runtime, such
as the RAM. These schemes monitor the execution flow of
running devices and mainly focus on detecting control-flow
attacks. However, current dynamic schemes are vulnerable to
other runtime attacks that manipulate data pointers through
Data-Oriented Programming (DOP) technique [3] without
deviating the control-flow execution of the running software.
Additionally, many memory regions of IoT devices remain
unattested by the existing RA schemes. Consequently, IoT
devices might be vulnerable to mobile attacks [4], [5] that can
relocate themselves during attestation. Designing lightweight
RA protocols that run inside resource-constrained IoT devices
to detect data attacks and mobile attacks is not a trivial task.

Contribution of the Paper. This paper proposes a new RA
approach that aims at addressing the aforementioned issues.
The main idea is simple: instead of performing RA directly
on resource-constrained IoT devices, our approach is based on
offloading Prover’s memory to a powerful platform with more
resources and computational capabilities, which will then per-
form the attestation. The approach leverages the opportunities
offered by the emerging Fog computing paradigm [6], where
a layer of distributed powerful computing entities (i.e., Fog
nodes) can enable the deployment of RA services. This allows
the Verifier, deployed and running on a Fog node, to perform
a much more accurate remote attestation of the IoT devices
(Provers) the Verifier is responsible for.

In particular, the paper brings the following main contribu-
tions to the research field of remote attestation:

• The paper proposes a novel RA protocol (ERAMO - Ef-
fective Remote Attestation through Memory Offloading)
that takes into account both static and dynamic memory
regions of an IoT device and checks the integrity of all
memory-mapped peripheral.

• To the best of our knowledge, this paper is the first
work that successfully implements and evaluates secure

Abstract—Remote Attestation (RA) has gained a broad atten-
tion over recent years as an essential security mechanism that 
enables integrity verification of remote IoT devices. Typically, 
existing RA protocols aim at detecting malware presence in 
program memory. Recent RA schemes work towards attesting 
also data memory and focus mainly on detecting runtime at-
tacks that manipulate stack pointers to hijack the execution 
flow of a running program. Despite different RA approaches, 
some data memory attacks still remain undetected. This paper 
proposes ERAMO, a novel RA protocol that investigates mem-
ory offloading technique in attesting broad memory regions of 
IoT devices. Instead of running a complex RA protocol on a 
resource-constrained IoT device, ERAMO leverages the emerging 
paradigm of Fog Computing to securely offload memory contents 
of IoT devices to nearby powerful devices. This approach aims 
at increasing the effectiveness of RA protocols by attesting larger 
data memory regions and allowing powerful devices to perform 
complex analysis of IoT devices’ state. We validate and evaluate 
ERAMO with a hardware proof-of-concept implementation using 
an ARM Cortex-M33 based microcontroller that provides ARM 
TrustZone to support secure isolation of the RA procedure. 
The conducted experiments confirm the feasibility of ERAMO 
and demonstrate that offloading technique increases the RA 
effectiveness in attesting dynamic memory regions.

I. INTRODUCTION

Internet of Things (IoT) devices are more and more get-
ting integrated into every aspect of our everyday life. The
number of active IoT devices is currently estimated around
11.7 billion and is expected to reach 30 billion by 2025
[1]. Unfortunately, IoT security is often lacking, with devices
having weak passwords or vulnerabilities to various attacks.
For many organizations, IoT security is not considered until
late in the design and prototyping phase, and security updates
are not issued after deployment [2].

Aimed at securing IoT devices, remote attestation (RA) has
been proposed as a security protocol for malware detection on
an untrusted platform. A typical RA protocol consists of two
parties, a trusted Verifier and an untrusted Prover. The Verifier
aims at assuring the integrity of the Prover (i.e., untrusted
IoT device). During the attestation, the Prover sends proofs
about its current state of the memory (typically a hash of
the memory) to the Verifier, whereas the Verifier matches the
received evidence with the expected legitimate state (known
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memory offloading as a means for enhancing remote
attestation. ERAMO has been implemented and evaluated
on an ARM Cortex-M33 based microcontroller, leverag-
ing the security features provided by ARM TrustZone.
Experiments confirm the feasibility and effectiveness of
the protocol in attesting dynamic memory regions.

Outline of the Paper. The remainder of this paper is
organized as follows. We explain the problem statement in
Section II. Section III presents different RA approaches and
compares ERAMO with the existing RA schemes. The paper
describes the system model in Section IV and explains the
adversary model in Section V. Next, the paper presents the
protocol details in Section VI and the performance evaluation
in Section VIII. Finally, we present a protocol discussion in
Section IX and concluding remarks in Section X.

II. PROBLEM STATEMENT

Consider an attacker that discovers and exploits a program
vulnerability such as a buffer overflow. By leveraging Return-
Oriented Programming (ROP) technique [7], the attacker alters
at runtime the execution flow of legitimate code already loaded
on the device’s memory to produce a malicious operation.
Additionally, the attacker can use Data-Oriented Programming
(DOP) technique [3] to compromise variables’ values and
manipulate data pointers. Such attacks are common in IoT [8]
as resource-constrained IoT devices are exposed to many well-
known vulnerabilities e.g., format string and integer overflow.

The dynamic RA protocols in the literature (e.g., [9], [10],
[11]) which aim to detect control-flow attacks rely on tracing
the software execution inside an IoT device and representing
each execution flow as a single hash value. Since these
approaches detect the control-flow subversion, they do not
detect data attacks which do not maliciously deviate from the
legitimate control-flow executions. The RA schemes presented
in [4], [5] aim to detect mobile adversaries, which during the
attestation, relocate to different memory blocks of a memory
region (i.e., memory blocks that comprise the program mem-
ory). However, the existing RA schemes do not attest all the
memory regions of an IoT device. Thus, at the attestation time,
a mobile adversary could also move to the unattested memory
regions and relocate again on the original memory once the
RA procedure has finished.

In the context of the attacks described above, we propose
a new protocol that uses memory offloading to shift the
attestation from low-end devices to nearby devices with more
powerful computational capabilities. This approach is aligned
with and leverages the emerging Fog computing paradigm,
which extends the Cloud by bringing computational resources
next to IoT devices [6].

III. RELATED WORKS

This section summarizes the single-device and dynamic
state-of-the-art RA protocols in the IoT domain.

RA overview. RA approaches are generally classified into
three main categories: software-based, hardware-based and
hybrid approaches. Software-based schemes (e.g., SWATT

[12], Pioneer [13]) do not make any hardware assumption and
purely rely on the strict execution time of the RA protocol.
Despite their advantages, software-based RA schemes do not
provide strong security guarantees [22], [23]. Hardware-based
schemes (e.g., [24], [25]) use a tamper-resistance hardware
module as a Trusted Execution Environment (TEE). While
hardware-based designs provide strong security guarantees,
they are not suitable for low-cost resource-constrained IoT
devices. To provide lightweight secure RA protocols, hybrid
designs (e.g., SMART [14], TrustLite [15], TyTan [16]) rely
on minimal hardware changes to ensure that the RA protocol
and associated authentication keys cannot be tampered with.
All these schemes perform attestation on a single device.
Collective attestation schemes (e.g., SEDA [18], SANA [19],
SARA [20]) aim to provide scalable RA solutions that attest
efficiently large-scale IoT networks.

SMARM [4] aims to detect mobile adversaries that, dur-
ing attestation, relocate to different memory blocks of the
program memory. SMARM uses a probabilistic approach to
compute memory measurements in a random order, which
cannot be predicted by malware. However, the probabilistic
random (shuffled) measurements increase the attestation time.
ERASMUS [5] is a non-interactive RA protocol that allows
the Prover to self-initiate the attestation procedure at pre-
defined times. The attestation results are stored locally, and
the Verifier retrieves a set of attestation results. The sequence
of the attestation results allows the Verifier to detect mobile
adversaries that may leave or get relocated during attestation.

Dynamic RA. While the aforementioned RA schemes
perform only static attestation, dynamic RA schemes aim to
attest dynamic data memory. C-FLAT [9] is the first dynamic
RA protocol for resource-constrained devices, and it focuses
on detecting control-flow attacks. C-FLAT relies on software
instrumentation to trace the execution of a running software
and generates an accumulative single hash value for each exe-
cution flow. At the verification phase, the Verifier compares the
generated hash value with a set of expected legitimate values to
determine whether the device is trustworthy or not. C-FLAT
is implemented in a TEE such as TrustZone. However, C-
FLAT introduces a high overhead because at runtime each
instrumented code instruction is intercepted and redirected
to the TrustZone secure world. LO-FAT [10] enhances C-
FLAT by replacing software instrumentation with a hardware
module, implemented on an external FPGA, which intercepts
the executed instructions at runtime. Likewise, ATRIUM [11]
extends C-FLAT and LO-FAT by attesting both executed in-
structions and the control-flow. However, these schemes detect
control-flow deviations and do not consider data attacks which
leverage DOP technique [26] to corrupt data variables without
altering control-flow information. LiteHAX [17] aims to detect
both control-flow and data-attacks. However, LiteHAX detects
only the memory operations load and store, thus, it works only
on RISC-based architectures.

Memory offloading. Beside RA protocols, some works
within the field of offloading are of interest. In particular,
CloneCloud [21] allows a resource-constrained mobile device
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TABLE I: Related work summary

Scheme Static memory RAM Peripheral Verification Type Attestation

SWATT [12], Pioneer [13] Program checksum One-to-one On-demand

SMART [14], TrustLite [15], TyTan [16] Program checksum One-to-one On-demand

C-FLAT [9], LO-FAT [10] Control flow integrity (CFI) One-to-one On-demand

ATRIUM [11], LiteHAX [17] Program checksum & CFI One-to-one On-demand

SMARM [4] Program checksum & Shuffled Measurements One-to-one On-demand

ERASMUS [5] Program checksum One-to-one Self-initiated

SEDA [18], SANA [19], SARA [20] Program checksum One-to-many On-demand

CloneCloud [21] One-to-one

ERAMO Memory offloading One-to-one On-demand

to offload its execution threads to a clone of itself operating
in a virtual machine with more computational capabilities.

In the context of remote attestation it will, however, be more
useful to gather an accurate clone of the device memory, on
which the memory forensics can be performed, rather than
replicating the functionality of the device. Additionally, certain
security guarantees not considered by offloading techniques
must be provided by RA designs, as they are intended to be
used on potentially malware-infected platforms. Due to these
differences in security requirements and their purpose, the
works within the field of offloading are not directly applicable.

The possibility of offloading in the RA context is first
mentioned in RAaS [27], where RA is proposed as a cloud
service. While this proposal is mostly focused on increasing
the efficiency of the protocol and reducing its associated down-
time, the proposal has not been implemented and evaluated.
Furthermore, we want to investigate whether offloading the
memory is feasible and how this technique can be used to
improve the effectiveness of remote attestation.

Discussion. Table I summarizes the works discussed so far.
In short, the static RA approach does not consider runtime
attacks, while recent dynamic approaches are limited to de-
tecting control-flow attacks. Thus, even if the approaches are
combined, data attacks will still remain undetectable.

This paper proposes a new protocol (ERAMO) aimed at ad-
dressing the limitations of current attestation designs. Instead
of relying on the control-flow attestation or checksum/hash
comparisons, we propose to transmit the entire memory to
the Verifier. This allows the Verifier to employ sophisticated
methods of attesting the dynamic memory (e.g., the open-
source Volatility memory forensics framework [28]), while
expanding the protocol to also cover the Prover’s peripherals
(e.g. ADC and I2C configurations). ERAMO design is based
on ARM TrustZone [29], which is a hardware-enforced iso-
lation method. However, as opposed to other hardware-based
methods, TrustZone is built into the CPU, providing a TEE
without the need for external specialised hardware.

IV. SYSTEM MODEL

We consider an IoT system which adopts Fog computing
paradigm [6]. In this system, an untrusted resource-constrained
IoT device interacts with a nearby powerful device named Fog

Verifier (Vrf)
Fog node / Laptop

Prover (Prv)
Microcontroller

1 Request attestation

2 Copy memory
on chip, m 3 Send memory contents m

4 Verify m

Fig. 1: System model of the memory offloading protocol

SRAM0 SRAMX Flash Boot
ROM

SRAM
1..n

Internal
memory-mapped

peripheral

External
peripheral
registers

Internal
memory

External
memory

Fig. 2: Memory on chip of a Prover device

node. To design a RA protocol in this setting, we consider the
presence of the following two entities as shown in Figure 1:

• The Prover (Prv) is an untrusted IoT device. This device
can be infected by malware or can be misconfigured as
a result of previous attacks. Prover’s memory consists
of a set of memory regions as shown in Figure 2. Each
memory region can be seen as a set of smaller units called
memory blocks. The Prover might be a non-monolithic
system, e.g., a multi-sensor IoT device that provides a
set of sensing capabilities using external peripheral.

• The Verifier (Vrf) is a powerful device that has resources
and computational capabilities to perform complex op-
erations. Besides, the Verifier has the required resources
to adopt advanced security and trust techniques (e.g., it
is equipped with a TPM [30]); thus, it is assumed to
be trusted. Additionally, aligned with other RA schemes
in the literature, we assume that the Verifier knows in
advance the legitimate program binaries of the Prover.
The Verifier randomly initiates the attestation on the
Prover, after which it can perform memory forensics
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techniques to determine the Prover’s integrity.
The Verifier initiates the attestation by sending a request to the
Prover (Step 1 in Figure 2). After obtaining the attestation
request, the Prover copies the content of its entire internal
memory associated with the device application (Step 2 )
and offloads it to the Verifier (Step 3 ). Upon receiving the
Prover’s memory, the Verifier will perform the verification
(Step 4 ) to check the Prover’s trustworthiness. The verifica-
tion process includes two main parts: a comparison of the static
memory (e.g., flash memory) with the legitimate program
binaries known in advance and a detailed investigation of the
transferred data memories (e.g., SRAM).

V. ADVERSARY MODEL AND SECURITY REQUIREMENTS

In the following, we define the adversarial capabilities and
corresponding security requirements w.r.t. the system model
described in Section IV.

A. Adversary model

In line with the adversary model described in [31], [32], and
[27], we consider an adversary with the following capabilities.

• Software attack: A software adversary compromises the
Prover’s program memory by injecting and executing
malicious code. Additionally, this adversary can exploit
a software vulnerability to compromise data memory,
for instance, by modifying variable’s value, corrupting
control-flow pointers, data pointers. This can also be
exploited to misconfigure internal or external peripheral
to cause unintended device behaviour.

• Communication attack: The communication adversary
can fully control communications between the Prover and
the Verifier by forging, dropping, delaying, eavesdropping
the exchanged messages.

• Mobile attack: A mobile adversary is a smart adversary
that tries to avoid detection by deleting itself during the
attestation time or relocating itself to different memory
blocks or memory regions which have already been
transmitted to the Verifier.

• Replay attack: An adversary precomputes a valid attes-
tation response and sends this old legitimate response to
hide an ongoing attack.

Assumptions. We assume that a software adversary does
not compromise the hardware-protected memory. Following
the assumptions of other RA schemes [18], [9], [14], we
rule out physical adversaries, Denial of Service (DoS), and
Time-Of-Check Time-Of-Use (TOCTOU) attacks. While we
do not consider TOCTOU attacks, we limit these attacks by
transmitting complete device memory to a powerful Verifier
that performs advanced analysis or historical comparison over
the memory contents.

Device requirements. In line with common assumptions of
the state-of-the-art RA schemes, we assume the presence of
two trusted components inside a Prover.

• Read-Only Memory (ROM). A ROM memory region
contains the code of ERAMO protocol. The protocol code

resided in this memory region cannot be tampered with
by a software adversary.

• Secure key storage. A secure memory region stores the
Prover’s keys. Only ERAMO protocol has read permis-
sions in this memory region.

B. Security requirements

Based on the adversarial actions described in Section V, in
the following we define the required security properties.

• Integrity. The protocol should provide reliable evidence
guaranteeing that the transmitted memory contents cor-
respond to the Prover’s memory at the time of the
attestation request.

• Authenticity. The protocol should provide verifiable evi-
dence for the origin of the memory contents transmitted.

• Integrity of communication data. The protocol should
ensure that any memory contents transmitted cannot be
altered without it being detectable.

• Freshness. The protocol should ensure that any given
response to an attestation request can be reliably linked
to that request.

VI. ERAMO: PROTOCOL PROPOSAL

ERAMO protocol consists of three main phases: (1) Setup
phase, (2) Attestation phase, and (3) Verification phase. In the
following, we describe each phase in detail.

Setup phase. A network operator guarantees the secure
bootstrap of the software deployed on each Prover. Con-
sidering the limited capabilities of Provers, the Verifier and
the Prover establish a shared symmetric attestation Message
Authentication Code (MAC) key k. To prevent untrusted
parties from using Prover’s key, the shared attestation key k is
stored in a hardware-protected memory. Alternatively, a Prover
can establish a secure communication channel with the Verifier
by possessing an asymmetric key-pair (pk, sk) and knowing
the Verifier’s public key. Note that the key management details
are out of scope of this paper. The protocol description is
independent of the key management, thus, the symmetric key
usage can be easily replaced by an asymmetric key-pair. For
simplicity, preserving our work’s generality, we assume that
the Prover and the Verifier share a symmetric key k.

Attestation phase. Figure 3 illustrates the protocol. To
initiate the attestation, the Verifier generates a nonce N and
sends it to the Prover (Step 1 in Figure 3). The Prover
then relinquishes control to the RA protocol residing in the
hardware-protected component. The Prover’s RA protocol
reads the device memory contents m (Step 2 ) and computes
a hash h = hash(m). Next, the Prover concatenates the
computed hash h with the received nonce N and authenticates
it by computing a keyed Hash Message Authentication Code
(HMAC) over the obtained result s = HMAC(k, (h||N)).
Finally, the memory m and HMAC s are transmitted to the
Verifier (Step 3 ), which checks whether it corresponds to the
transmitted data. The transmission may be split into smaller
chunks, e.g., by authenticating individually memory blocks
or regions. In that case, integrity, authenticity and temporal
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Verifier (Vrf)
Fog node / Laptop

Prover's untrusted 
memory

1 Request attestation, N
2

Copy memory
on chip, m

3 Send s and m
4

h' = hash(m);
s' = HMAC(k, (h' || N));
Verify: s == s' ∧ m ∈ M 

- Shared key, k
- Set of valid memories, M

Input
- Memory on chip, m

Input

Prover's trusted 
memory

- Shared key, k
- Acces to memory on chip

Input

N = generateNonce();

h = hash(m)
s = HMAC(k, (h || N))

PROVER

Fig. 3: ERAMO protocol

freshness must be ensured for each transmitted memory chunk,
e.g., by adding a unique extra byte for each chunk or securely
generating a pseudo-random number inside the Prover.

Verification phase. The verification phase starts when the
Verifier receives an attestation response from the Prover. By
using the shared attestation key k, the Verifier checks the
authenticity and integrity of the attestation result (Step 4 ).
Assuming that the Verifier knows all valid combinations of
memory M , the Verifier has the ability to determine whether
a given memory m is in the set M . A powerful Verifier that
is able to perform advanced memory forensics analysis (e.g.,
by using the open-source Volatility Framework [28]) can use
the offloaded dynamic memory contents to provide a detailed
attestation and precisely determine the Prover’s integrity.

Attested memory and device integrity. Figure 4 shows the
attested memory regions verified by ERAMO protocol for a
device with a flash memory and a memory-mapped peripheral
region. A certain portion of the flash region allocates data
memory, whereas the memory-mapped peripheral region con-
tains both readable and write-only registers. All readable mem-
ory can be attested apart from the secure memory allocated to
the trusted component performing attestation.

The inclusion of the aforementioned memory regions in
the attestation result is crucial to ensure Prover’s integrity.
In particular, the attestation of the memory-mapped on-chip
peripheral address space guarantees that any on-chip peripheral
in use works as intended, and an adversary has not altered the
device’s peripheral configurations. These configurations may
range from the ADC channel chosen, the I2C communication
speed, or the internal timer setup. However, due to its dy-
namic status and configuration registers, this region cannot be
attested by the comparison of hashes. Additionally, registers
may have unused or reserved bits with undefined read-values,
which further complicates the hash verification. Therefore, this
memory region should instead offloaded to the Verifier.

Furthermore, if a region of the flash/EEPROM is used for
data, such as calibration values or network information, this
region may also be verified through offloading. This data

may change during runtime and may depend on the electrical
characteristics of the specific device, and thus may not be
verifiable through hashing. Assuming that the Verifier has
some notion of what differentiates legitimate values of this
region, the integrity verification of this region is possible
through offloading.

Attestation of non-monolithic systems. When the Prover
is a non-monolithic platform, its integrity also depends on the
integrity of any attached external peripheral devices. Periph-
eral devices may range from temperature sensors to external
digital-to-analog-converters. In this setting, if an adversary
manages to change the configuration of a peripheral temper-
ature sensor to provide an inaccurate representation of the
temperature, any internal process dependent on this data or
any other system to which this inaccurate data is propagated
may behave in an unintended manner. Therefore, to accurately
verify the Prover, it is necessary to verify the state of any
attached peripheral devices.

The peripheral devices are typically not programmable but
rely on limited interfaces, such as SPI, I2C, and UART, to
read or write to their register contents. These registers, in
the same manner as the on-chip peripherals, determine the
peripheral configurations and contain their data. Consequently,
the contents of these external peripheral registers should be
verified to guarantee Prover’s integrity.

Before authenticating and offloading the registers’ content,
first, the trusted component should read the registers. To
accomplish this, an extra step is added to the attestation
procedure within the trusted component. The Prover uses
the peripheral interface (such as SPI or I2C) to read every
accessible register on the external peripherals. The contents
of these registers now reside within the trusted component
and can be offloaded to the Verifier. The Verifier then verifies
these external peripherals as it verifies the internal ones. The
configuration bits and other data of the peripheral device can
be evaluated by considering legal combinations or through
more rigorous analysis.

77

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on February 10,2022 at 17:50:02 UTC from IEEE Xplore.  Restrictions apply. 



Program flash

Data flash

Readable registers

Write-only registers

Secure RAM

SRAM0

SRAM1..N

SRAMX
Secure Flash

Flash

Boot ROM

Internal
memory-mapped

peripheral

Microcontroller Peripheral device

Configuration registers

Data registers

Status registers

Inaccesible software 
and memory

(cannot be verified)

Peripheral Devices
IoT device

Fully attested

Partially attested

Unattested

Fig. 4: Device memory regions verified by ERAMO

VII. IMPLEMENTATION DETAILS AND PROOF OF CONCEPT

We implement ERAMO protocol on a TrustZone-capable
LPC55S69 running an IoT sensor application on FreeRTOS1.
This application provides temperature readings at a fixed
interval using an external BME280 digital humidity, pressure,
and temperature sensor.

To isolate the RA protocol from the non-trusted device
application, we use the Armv8-M release of ARM TrustZone.
TrustZone is available on various platforms, and unlike other
approaches to hardware-based attestation, does not require any
external hardware. In general, TrustZone separates the device
application into a trusted component allocated to the TrustZone
secure world and a non-trusted component allocated in the
TrustZone non-secure world. In ERAMO’s proof-of-concept
implementation, the application is separated as follows:

• The trusted component includes the RA procedure and
the LPC55S69 hash engine. Additionally, a section of
the RAM and flash is allocated to the secure world. The
attestation code and key are located in the secure flash,
and the key is handled exclusively in secure RAM.

• The non-trusted component includes FreeRTOS, the
IoT sensor application tasks, and associated interrupts and
peripherals. The remaining RAM, flash, and any unused
peripheral are also allocated to the non-secure world.

The trusted attestation protocol is initiated by calling it from
the non-secure communications thread with the nonce N as an
argument (fixed to a length of 8 bytes to prevent inputs of ar-
bitrary length). The protocol performs the authentication using
the LPC55S59 on-chip hash-engine because this significantly
speeds up the hash computation. The chip supports SHA-1 and
SHA-2 with a 256 digest (SHA-256). As SHA-1 has certain
vulnerabilities [33] [34], we use SHA-256 for hashing and the
HMAC. To prevent key leakage, the hash engine is assigned
to the secure world.

Attested memory and device integrity. The developed
attestation procedure successfully offloads the RAM, the boot
ROM, and the flash memory. Certain sections of the memory-
mapped peripheral are write-only, thus, only the readable
addresses are transmitted. For this implementation, the I2C

1https://www.freertos.org

peripheral is offloaded, and the Verifier verifies that the I2C
interface is configured as intended by verifying the configu-
ration (CFG) register, the interrupt settings (INTENSET), and
the settings for the clock and timings (CLKDIV).

The Verifier successfully then verifies the boot ROM and the
region of the flash memory containing the program binary by
comparing the hashes, before moving on to the dynamic areas
of the memory. Currently, no memory forensics is performed
on the RAM, however we discuss its feasibility in Section IX.

Attestation of non-monolithic systems. To illustrate the
possibilities of verifying non-monolithic devices, the accessi-
ble registers of the BME280 external peripheral sensor are
offloaded to the Verifier. The trusted attestation procedure
on the device performs an I2C burst read on the BME280,
resulting in the register contents being transferred to the
trusted component’s I2C buffer. The burst read is performed
using polling to not rely on the interrupts associated with
the non-trusted component. The procedure then transmits the
memory to Vrf as its internal memory. While offloading the
memory allows Vrf to verify with a variety of methods, the
current implementation will confirm that certain bits of register
0xF2 (ctrl hum), 0xF4 (ctrl meas), and 0xF5 (config) are
configured as intended. The dynamic and reserved register
are ignored. Additionally, the device-specific calibration values
(0xE1-0xF0 and 0x88-0xA1) are read and logged such that
they can be compared with internal values used in the device.

Furthermore, analyzing the IoT application used in the
implementation, reveals that statically allocated FreeRTOS
structures (tasks, queues, timers) are located at a fixed and
predictable location in RAM. For instance, the task (thread)
responsible for reading the temperature at a fixed interval will
be identifiable in the memory dump. This is a very promising
property which helps in improving the RA performance, as
discussed in Section IX.

VIII. EVALUATION

The efficiency of ERAMO highly depends on the choice of
hardware. The memory transmissions depend on the choice of
communication and its transmissions speed. The time required
for authentication depends on Prover’s computational capabil-
ities and its available hardware to assist with the process.
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We conducted the experiments, and the runtime measure-
ments of the procedure were measured on the LPC55S69
running at 150MHz. To simplify the connection to the Verifier,
a serial connection was established using the on-chip UART
configured to a baud rate of 806400. The LPC55S69 hash
engine was used to compute the necessary authentication using
SHA-256 for hashing and the HMAC. The procedure was
tested on different memory sizes, increasing in steps of 1KB.
The memory offloaded was the 240KB of non-secure RAM
associated with the IoT application.

The time used for the offloading procedure is proportional to
the offloaded memory size, as shown in Figure 5. Furthermore,
the time used for memory authentication scales the memory
size, but it is negligible compared to the time required by data
transmission. The duration also scales w.r.t. size but is slightly
noisy and requires at least 0.23 ms, as shown in Figure 6.
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Fig. 5: Time used to transmit memory
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Fig. 6: Time used to authenticate memory

This offloading RA approach can be combined with cur-
rent methods of static attestation through program checksum
comparison. In that case, the code memory (and boot ROM)
can be attested through hash comparisons, while offload-
ing the dynamic memory: the RAM, any data region of
the flash/EEPROM and internal/external peripheral registers.
When combining these methods on the aforementioned IoT

sensor application, offloading the RAM, external peripheral
registers, and the I2C peripheral, while only transmitting the
hash of the flash and boot ROM, the entire process takes
3.94 seconds using the previously specified hardware and
communication setup. The experimental results are overall
comparable with other RA schemes [32] and confirm the
feasibility of ERAMO.

IX. DISCUSSION

ERAMO approach opens the possibilities of various RA
schemes, such as allowing ranges of values, complex combina-
tions of settings or even using machine learning to determine
the validity of the dynamic memory. Due to the increased
computational power of the Verifier, memory forensics tools
[28] may be used on the memory dump allowing the Verifier
to distinguish a legal state of memory from exploited memory.

Opportunities of multithreaded systems. The recent IoT
revolution leads towards multifunction IoT devices that can
provide more than one service, e.g., multisensor devices.
The result of our analysis that statically allocated FreeRTOS
structures (tasks, queues, timers) are located at a fixed and
predictable location in RAM is very promising. This insight
brings opportunities in improving RA performance in general,
and in particular, in memory offloading RA approaches. For
instance, by exploiting the knowledge that a given task (thread)
allocates a fixed interval, it becomes feasible to perform
forensics on the memory and reveal whether it deviates from
the legitimate memory. Furthermore, this insight could also be
useful in designing a context-aware RA approach, e.g., in a
given setting, only certain prioritized tasks will be sent to the
Verifier. This could also reduce significantly the RA overhead.

Mobile adversary and memory locking mechanism.
While ERAMO aims to improve mobile adversary detection
by attesting many memory regions, still during the attestation,
a mobile adversary may evade detection by relocating itself
in different memory blocks within one memory region. If the
trusted component on the Prover deploys a memory locking
technique, it would be possible to guarantee the result’s
integrity while allowing the execution of regular operations
to run simultaneously with the attestation. Memory locking
is already used in Linux to lock memory pages in RAM.
Recently, it has been proposed for embedded systems [35].

Using the memory-locking technique, it is possible to lock
a memory block, preventing it from being changed until it
is again unlocked. This can be used to lock the memory
before being attested and gradually unlock it as soon as it
is offloaded or attested. Consequently, any malware or effects
caused by malware and memory exploits will be locked in
memory until it is offloaded, causing it to be detected by the
Verifier. Furthermore, TrustZone will ensure that any malware
present on the non-trusted component cannot interfere with
the trusted offloading procedure, ensuring that the offloading
procedure can run securely simultaneous with Prover’s regular
operations.
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X. CONCLUSIONS AND FUTURE WORKS

In this paper, we have provided a first investigation and
experimental results on using memory offloading as part of
remote attestation. To this end, a new RA protocol (ERAMO)
based on memory offloading to verify the Prover’s integrity
effectively has been designed and presented. The proof-of-
concept implementation and the conducted experiments show
that ERAMO allows the verification of more dynamic memory
areas (such as the internal and external peripheral) which is
not covered by existing RA schemes. We believe that these
initial results help upcoming research works that explore the
memory offloading approach in the RA context.

While advanced forensics tools are required to perform a
detailed RAM verification, this paper shows that even a simple
implementation of this approach to attestation is able to ensure
the integrity of internal and external peripheral, along with any
data stored in flash/EEPROM, given that the Verifier possesses
knowledge regarding the correct configurations.

As future work, we plan to implement the proposed mem-
ory locking scheme and evaluate it w.r.t. its effects on the
efficiency of the attestation procedure. Furthermore, it is of
interest to investigate how this approach can be used in large
scale IoT networks.
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[23] S. F. J. J. Ankergård, E. Dushku, and N. Dragoni, “State-of-the-Art
Software-Based Remote Attestation: Opportunities and Open Issues for
Internet of Things,” Sensors, vol. 21, no. 5, 2021.

[24] C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang, “Remote
attestation to dynamic system properties: Towards providing complete
system integrity evidence,” in 2009 IEEE/IFIP Int. Conf. on Dependable
Systems Networks, 2009, pp. 115–124.

[25] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and imple-
mentation of a tcg-based integrity measurement architecture,” in 13th
USENIX Security Symposium, 2004.

[26] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control data
attacks,” in IEEE Symposium on Security and Privacy (SP), 2016.

[27] M. Conti, E. Dushku, L. V. Mancini, M. Rabbani, and S. Ranise,
“Remote Attestation as a Service for IoT,” in 2019 Sixth Int. Conf.
on Internet of Things: Systems, Management and Security, 2019.

[28] (2021) The Volatility Foundation. [Accessed 30-April-2021]. [Online].
Available: https://www.volatilityfoundation.org/

[29] S. Pinto and N. Santos, “Demystifying Arm TrustZone: A Comprehen-
sive Survey,” ACM Comput. Surv., vol. 51, no. 6, 2019.

[30] W. Arthur and D. Challener, “A Practical Guide to TPM 2.0: Using the
Trusted Platform Module in the New Age of Security,” 2015.

[31] T. Abera, N. Asokan, L. Davi, F. Koushanfar, A. Paverd, A.-R. Sadeghi,
and G. Tsudik, “Invited – Things, Trouble, Trust: on Building Trust in
IoT Systems,” in Proceedings of the 53rd Annual Design Automation
Conference. ACM, 2016, p. 121.

[32] M. Ambrosin, M. Conti, R. Lazzeretti, M. Rabbani, and S. Ranise,
“Collective Remote Attestation at the Internet of Things Scale: State-
of-the-art and Future Challenges,” IEEE Communications Surveys &
Tutorials, no. c, pp. 1–1, 2020.

[33] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov,
“The First Collision for Full SHA-1,” in Advances in Cryptology, 2017.

[34] G. Leurent and T. Peyrin, “Sha-1 is a shambles: First chosen-prefix
collision on sha-1 and application to the PGP web of trust,” in 29th
USENIX Security Symposium (USENIX Security 20), 2020.

[35] K. Eldefrawy, X. Carpent, G. Tsudik, and N. Rattanavipanon, “Temporal
consistency of integrity-ensuring computations and applications to em-
bedded systems security,” in Proceedings of the 2018 on Asia Conference
on Computer and Communications Security (ASIACCS), 2018.

80

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on February 10,2022 at 17:50:02 UTC from IEEE Xplore.  Restrictions apply. 


		2021-09-03T16:00:27-0400
	Preflight Ticket Signature




