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Abstract— Multi-factor authentication (MFA) has been widely
used to safeguard high-value assets. Unlike single-factor authen-
tication (e.g., password-only login), t-factor authentication (tFA)
requires a user always to carry and present t specified factors
so as to strengthen the security of login. Nevertheless, this may
restrict user experience in limiting the flexibility of factor usage,
e.g., the user may prefer to choose any factors at hand for login
authentication. To bring back usability and flexibility without
loss of security, we introduce a new notion of authentication,
called (t, n) threshold MFA, that allows a user to actively choose
t factors out of n based on preference. We further define
the “most-rigorous” multi-factor security model for the new
notion, allowing attackers to control public channels, launch
active/passive attacks, and compromise/corrupt any subset of
parties as well as factors. We state that the model can capture
the most practical security needs in the literature. We design
a threshold MFA key exchange (T-MFAKE) protocol built on
the top of a threshold oblivious pseudorandom function and
an authenticated key exchange protocol. Our protocol achieves
the “highest-attainable” security against all attacking attempts
in the context of parties/factors being compromised/corrupted.
As for efficiency, our design only requires 4 + t exponentiations,
2 multi-exponentiations and 2 communication rounds. Compared
with existing tFA schemes, even the degenerated (t, t) version
of our protocol achieves the strongest security (stronger than
most schemes) and higher efficiency on computational and
communication. We instantiate our design on real-world platform
to highlight its practicability and efficiency.

Index Terms— Threshold, multi-factor authentication, key
exchange, password.

I. INTRODUCTION

MULTI-FACTOR authentication (MFA) has been
deployed in real-world applications to safeguard

high-value assets, e.g., online banking. A user is required
to make use of t factors, at the same time, to execute
secure authentication. This t-factor authentication (tFA)
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Fig. 1. Threshold multi-factor authentication.

naturally brings more challenges, than single-factor
authentication, to attackers since there are t factors that
need to be compromised for an impersonation. For instance,
EMV [1], [2], a widely adopted payment method, allows one
to present his smart card and the password/PIN to pay a bill
on a POS terminal. Attackers cannot steal the money by only
being given the smart card or the password.

A. Motivation
The current tFA schemes require users to present t fixed

factors for authentication. This “static”-factor authentication
mode could not provide flexibility for authentication because
users may not be able to always present the t factors anywhere
and anytime, for example, one of the factors may be left at
home and even be lost. Furthermore, this mode also limits the
preference of factor usage - which factors should users choose
to take. Users, in practice, prefer to leverage those factors
which are at hand. To this end, the usage of factors should be
more dynamic. Besides, the number t becomes a bottleneck
between the security and usability in tFAs. It is clear that a
higher security level requires a larger t (e.g., t = 5) but this
brings lower usability for users.

We propose the notion of (t, n) threshold MFA (T-MFA) to
address the issues. As shown in Fig. 1, T-MFA allows a user to
register n factors and adaptively choose arbitrary t out of n for
authentication, in which t and n can be flexibly set by the user
based on its preference (note that (t, n) T-MFA is naturally
degenerated to tFA, when n = t). Compared with tFA,
(t, n) T-MFA significantly improves usability with the same
security level (attackers need to compromise t factors to
impersonate users). More importantly, T-MFA allows a user to
autonomously increase t to achieve higher security according
to the number of always-at-hand factors. Since the usage of
multiple personal electronic devices at home and workplace
has become common [3], the user may hold several devices,
e.g., a smartphone, a smartwatch, and a tablet, as multiple
factors along with its password (or other types of factor) and
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later, it just uses a subgroup of factors (≥ t) in verification.
T-MFA also allows the user to leverage fixed-location (non-
portable) devices as factors, e.g., a smart speaker at home,
or an intranet server in the workplace. The user may now set a
larger t without compromising usability, e.g., t = 4: using the
password, smartphone and smartwatch as portable factors, and
either smart speaker or server as the unportable one. Besides,
if a device is lost, the authentication can still be successfully
executed with another one. Naturally, the user can also use
more devices, e.g., an old smartphone as a factor, for backup.

B. Design Challenges

The concept of T-MFA seems natural, but, to our best
knowledge, none of the existing studies has paid attention to
it. We state that this is because of the significant challenges in
designing a T-MFA scheme and further analyzing its security.
Note that we here mainly focus on remote authentication rather
than local authentication, since the design for the former is
more challenging and usually can apply to the latter.

One may think that a trivial way to implement T-MFA
can be captured as follows. A user may send any t (may
be in challenge-response mode) out of n registered factors
to a server, so that the server can verify them one by one.
This design is quite similar to the multiple login authentica-
tion. For instance, the user can log in to WeChat via either
option (1): phone number + password, or option (2): phone
number + SMS. But this requires the server to store factors
in a file for (possessing knowledge of) verification, leading
to potential vulnerabilities against server compromise. Via
compromising the server, the attacker can access the file
storing those factors, which yields the possibility of factor
recovery. A classic example could be that the attacker attempts
to recover the password (which is one of the factors) via offline
password guessing. Once the factors are retrieved, the attacker
can impersonate the valid user. It is also probable that all the
accounts that used the same revealed factors will be controlled
by the attacker. Beyond impersonation, the server compromise
may bring even worse consequences - harming user long-term
privacy - if the storage file includes personal biometrics
(e.g., gait [4], electroencephalogram [5]).

Another potential approach is to leverage threshold cryp-
tography. For multiple devices, a trivial T-MFA design can
request each device to share the user’s secret for authentication
via a threshold secret share scheme. This idea is used in some
server-side authentication scenarios, e.g., [6]–[8], requesting
multiple servers to store cryptographic keys. However, this
mechanism still cannot be perfectly compatible with some
types of factors, e.g., passwords and biometrics, which are
not natural cryptographic keys, and require non-server-side
storage.

One may also try to extend the current MFA schemes to
yield a T-MFA. However, even for MFA, it is difficult to
capture the “highest attainable security” with a precise and
well-defined security model and further satisfy the security by
a well-designed protocol. It is not trivial to handle all different
parties and their factors along with all the combinations over
compromise. A single MFA scheme will perform different
security levels according to the various compromise cases.

This brings a great challenge for researchers to precisely
capture the security of MFA, which also applies to T-MFA.
Due to the lack of a precise security model, most MFA
schemes fail to achieve “sound and practical security”. The
industrial MFA schemes (e.g., [9], [10]) cannot resist server
compromise, and most of the academic ones (e.g., [11], [12])
fail to provide forward security, key-compromise imperson-
ation (KCI) security, or suffer from other security issues.
To the best of our knowledge, only Jarecki et al. [13] 2FA
protocol achieves the highest attainable security. But their
protocol requires expensive cost in communication (10 rounds)
so it is not practical for real-world applications. Note the
detailed analysis for the existing MFA schemes will be given
in Section II. Therefore, no current MFA design with both
the highest attainable security and efficiency can be used
to construct T-MFA. And again, the existing MFA schemes
suffer from the “pre-set” limit: the number and the type of
factors are fixed in the very beginning, e.g., the password-and-
device based 2FAs [9], [10], [13], [14], and biometrics-based
3FAs [11], [12]. They cannot be trivially extended to offer the
dynamic and flexible usage of factors to T-MFA.

C. Our Contribution

We here briefly describe the contribution.
Real-world Security. We introduce a game-based model to

precisely capture the security for (t, n) T-MFA key exchange
(T-MFAKE). Our model allows attackers to control communi-
cation on public channels and to compromise any parties and
factors, and considers the use of different types of factors,
including passwords, devices, and biometrics. For each com-
bination of party or factor compromise, we give special secu-
rity bound (i.e., advantage) to capture the highest attainable
security by only allowing inevitable attacks. Specifically, our
novel security notion considers the inevitable attacks against
password via: 1) if t − 1 factors (excluding password) are
compromised, online password guessing attack is inevitable
and allowed; 2) if t − 1 factors (excluding password) are
compromised and server is compromised or corrupted, offline
password guessing attack is also inevitable and allowed;
3) if t factors are compromised, user impersonation is trivially
inevitable; 4) if server is compromised or corrupted, imper-
sonating server is trivially inevitable; 5) otherwise, no other
inevitable attacks are allowed. Note we consider the similar
inevitable guessing attacks for a biometric factor. If a protocol
is secure in our model, it can achieve practical real-world
security (i.e. resisting all the attacks except the “inevitable
ones”).

Practical Design. We propose a fast and secure (t, n)
T-MFAKE protocol. We allow a user to leverage a password,
multiple devices, and biometrics (optional) as authentication
factors. Because of the advantages of passwords on usability
and deployability [15], we require the user to always type
his password for authentication (cannot use another factor
instead it) in order to provide the last defense for the worst case
where the other factors are all compromised. Our construction
is built on the top of a threshold oblivious pseudorandom
function (TOPRF) and an authenticated key exchange (AKE)
protocol. The core idea is to enhance the password to
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a cryptographic key with any other t − 1 factors (via TOPRF)
and further use the key for authentication (via AKE). Each
factor except the password corresponds to a secret key
in TOPRF: for a device factor, the key is stored in the
device locally; for a biometric factor, the key is converted
by fuzzy extractor [16], which prevents the biometrics from
leaking even if the storage file is compromised. By TOPRF,
our protocol provides factor invisibility, i.e., the server cannot
see which factors are registered and used for authentication.
This means that even if the server is compromised, the factors
can stay safe. Besides, using the refreshment mechanism of
threshold schemes, our protocol can remotely revoke the lost
(or misfunctioned) devices. As for efficiency, our protocol is
extremely light-weight w.r.t. computation and communication
cost, requiring 4+ t exponentiations, 2 multi-exponentiations
and only 2 rounds communication (by parallel running TOPRF
and AKE).

Security Analysis. We further analyze the security of our
T-MFAKE protocol. Our protocol holds against all practical
and real-world attacks (except the inevitable ones), and thus
achieves the highest attainable security w.r.t. arbitrary combi-
nation of party or factor compromise. The degenerated (2, 2)
version of our protocol holds the same security as the state-
of-the-art 2FAKE, OpTFA [13], while (t, t) version achieves
higher security as compared to other existing tFA schemes.

Efficient Implementation. We implement the (2, 2) ver-
sion of our protocol on a real-world system with a smart-
phone, a PC, and a remote server, and further evaluate its
run-time performance. The experimental results show that the
new version is 138.25% and 148.49% faster than OpTFA
on communication and computation, respectively (note that
OpTFA costs 12 exponentiations, 2 multi-exponentiations, and
10-round communication).

To summarize, our main contributions are as follows:
1) The notion of (t, n) threshold multi-factor authentication

(T-MFA), for the first time in the literature, is proposed
to allow users to freely and actively choose t factors out
of n for authentication.

2) A security model is defined to capture the real-world
highest attainable security for T-MFA key exchange
(T-MFAKE) protocol.

3) An efficient T-MFAKE protocol is proposed, only requir-
ing 4 + t exponentiations, 2 multi-exponentiations and
only 2-round communication.

4) A formal security analysis for our protocol is given, pre-
senting that the protocol achieves the highest attainable
security.

5) An efficient implementation and the performance evalu-
ation are demonstrated to highlight the efficiency of our
design in the real-world platform.

II. RELATED WORKS

We here briefly review some typical MFA protocols.

A. MFA Schemes in Industry

In industry, many 2FA schemes are widely implemented in
the web-based authentication, including Google Authentica-
tor [9], FIDO U2F [17], and Duo 2FA [10]. All these schemes

authenticate the factors separately. For example, in password-
and-device authentication mode, the user is requested to send
a password to the server via a server-authenticated secure
channel and meanwhile, the server also needs a PIN generated
from the smartphone. But the verification of the password
and PIN is separate, meaning that these two factors are not
“tightly” bound together as one verification. This may bring
several limits:

1) The server can access the password in plaintext, which
may be leaked accidentally or on purpose, for example,
Github recorded plaintext passwords in secure internal
logs because of some bug [18]. Similar issues have also
happened to Google, Twitter and Facebook [19].

2) The server stores the hash values of passwords (or other
verification values), increasing the leak risk. In practice,
billions of passwords have been leaked from hundreds
of websites [20]. With hash values, an attacker can
efficiently and offline recover the plaintext by exploiting
password guessing algorithms (e.g., [21], [22]). Since
users usually reuse passwords on different accounts [21],
the attacker probably compromises multiple accounts
with the same password.

3) The authentication requires a Public Key Infrastruc-
ture (PKI) to establish the server-authenticated secure
channel. This may not scale well and will leak password
or other factors if PKI is infiltrated.

B. Academic Studies on MFA

Many studies, e.g., [11]–[14], focus on the security analysis
along with new designs for MFA. We first review the methods
of security analysis they use and then make discussions over
their constructions.

1) Security Analysis Methods: Some of the analyses
are based on heuristic attacks, BAN logic or automatic
tools [23]–[26], which cannot provide a sound and solid
analysis. Others (e.g., [11], [12], [27]) are in game-based
security model (usually BPR or ROR model [28], [29]) to
provide a provable security analysis. However, most of the
game-based analyses (except for [13], [14]) fail to model
the highest attainable security of MFA. This is so because
they cannot precisely define the security requirements for
various combinations of party or factor compromise. Taking
an ideally secure 2FA (password-and-device mode) as an
example. 1) if the attacker does not compromise the device
(case I), she cannot impersonate the user except a negligible
probability; 2) if the attacker compromises the device (case II),
she inevitably can carry out online password guessing attacks
to impersonate the user with a non-negligible probability. The
security requirements for the above cases should be speci-
fied respectively. But the current security models just define
an upper-bound attacking advantage to define the security
requirements w.r.t. all the compromise cases. This bound only
captures the security in the worst case (referring to the case
where all factors except for password are compromised), and
thus cannot precisely model the security for other cases (e.g.,
the device is not compromised). Take a further example, if a
2FA protocol suffers from online password guessing attacks
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TABLE I

SUMMARY AND COMPARISON OF EXISTING MULTI-FACTOR AUTHENTICATION SCHEMES

in case I, it satisfies the security requirement of the current
models but is clearly insecure in practice. Thus we state
the limitation of the security models incurs that a concrete
protocol - proved secure by current research works - cannot
satisfy the highest security requirements in all practical cases.
In other words, what has been proved secure is not always
secure in practice.

To tackle the issue, Shirvanian et al. [14] first defined dif-
ferent requirements for 2FA w.r.t. a few cases of compromise
combination, and provided specified security bound for each of
the cases. But their model does not consider the case of server
corruption. Later, Jarecki et al. [13] proposed an improved
model by taking more other cases into account, capturing
the highest attainable security for 2FA. Our security notion
is inspired by theirs but also provides the highest attainable
security for MFA and even T-MFA.

2) More Academic MFA Schemes: Due to the limitation of
the security models, current MFA schemes may suffer from
unexpected real-world attacks which are not considered and
covered in the models, meaning they are insecure in practical
use. Here, we briefly present some examples.

3FA schemes. Zhang et al. [11] proposed a 3FA scheme
combining a password, a device, and biometrics. Although
proved secure in the BRP model (with one security bound),
the scheme still suffers from key-compromise imperson-
ation (KCI) attacks. Expressly, if all factors (α, β, γ ) of a
user are compromised, attackers can impersonate the server
to interact with the user (by leveraging Z = H (α+β+γ )).
Similarly, we find Wazid et al.’s scheme [12] which is proved
in the ROR model but still suffers from KCI attacks and
ephemeral secret leakage (ESL) attacks. Besides, this scheme
cannot hold against offline password guessing, if device and
biometrics are compromised.

2FA schemes. Shirvanian et al. [14] proposed a 2FA scheme
twisting password and device, based on industrial 2FA design.
The scheme is strengthened to resist server compromise
(i.e., the leakage of server’s data). However, it heavily relies
on PKI and cannot prevent server from accessing plaintext
passwords, which leads to the aforementioned vulnerabilities
identified from the industrial schemes. Jarecki et al. [13]
later proposed an improved 2FA, OpTFA, to address all
the aforementioned vulnerabilities. However, OpTFA is too
complex and inefficient. It requires 12 exponentiations,
2 multi-exponentiations on computation cost and 10 rounds

on communication. Besides, it is designed for 2FA context
only and thus is difficult to be extended to an MFA variant.

III. PRELIMINARIES

In this section, we review the building blocks we are
going to use in our design, including a threshold oblivious
pseudorandom function (TOPRF) and an authenticated key
exchange (AKE) protocol, a password-based authenticated key
exchange (PAKE) protocol and the fuzzy extractor.

A. Threshold Oblivious Pseudorandom Function

Threshold oblivious pseudorandom function (TOPRF) is
introduced by Jarecki et al. [8]. It is a threshold variant of the
client-server oblivious pseudorandom function (OPRF). The
client-server OPRF consists of a PRF F and a client-server
protocol. In the protocol, the server holds a secret key s, and
the client inputs x to get Fs(x) without knowing s. Meanwhile,
the server knows nothing about the input x . This is an appro-
priate method to enhance the low-entropy password pw to a
cryptographic key Fs(pw). TOPRF leverages multiple servers
to collectively control the key to resist server compromise. For
a (t, n) TOPRF, the client needs to run the TOPRF protocol
with t servers. If no more than t servers are compromised
or corrupted, the attacker cannot offline calculate F and has
to interact with some servers. The formal security of TOPRF
is defined in Universally Composable (UC) Framework [30].
Specifically, the executions of a real TOPRF protocol � and
the ideal TOPRF function FTOPRF are indistinguishable.

We will use a TOPRF scheme, 2HashTDH [8], in our
protocol. 2HashTDH is a threshold variant of 2HashDH [31],
an OPRF scheme. We detail 2HashTDH in Fig. 2.
In 2HashTDH, the secret key s is shared by Shamir’s secret
sharing scheme. During the execution of 2HashTDH, s is
used to calculate the PRF but not reconstructed on any
party, which can avoid the leakage of s (unless t servers are
compromised). In addition, the randomness of r guarantees the
servers (and attackers) cannot get any information about x .
Formally, 2HashTDH is secure under the One-More Diffie-
Hellman assumption and in the random-oracle model.

Shamir’s secret sharing used in TOPRF is a typical
threshold method. In (t, n) Shamir’s secret sharing,
a (randomly-generated) secret key s is divided into n shares
{s}ni=1. Arbitrary t shares {sDi }i∈I (where I is the index set of
the t shares) can reconstruct s. This construction is leveraged
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Fig. 2. 2HashTDH.

by a polynomial of degree t ,

f (x) = a0 + a1x + a2x2 + · · · + at x
t ,

where a0 = s, a1, a2, . . . , at are randomly generated. The i -th
share of s is f (i). With t shares {si }i∈I , s is reconstructed as

s =
∑

i∈I

siλi ,

where λi is the Lagrange interpolation coefficient for i in I ,

λi =
∏

j∈I, j �=i

− j

i − j
.

Note that we made a slight modification on the original
2HashTDH [8]. In the original version, Si calculates λi ; in our
version (Fig. 2), C does the calculation. In our way, C does
not need to send I to Si , which saves communication costs
(note the length of I is proportional to t).

B. Authenticated Key Exchange

Authenticated key exchange (AKE) has been studied for
decades and there are many protocols have been proposed,
e.g., [32], [33]. In contrast to 2FAKE and MFAKE, AKE
requires each party to hold a long-lived cryptographic key.
Two parties can establish a temporary session key with the
long-lived keys and encrypting further communications using
the session key without the long-lived keys. The security defin-
ition [32] for AKE protocols is similar to that for MFAKE (see
Section IV), which is also defined by distinguishing the real
session key and a random one. We use Advake

� (A) to denote
the advantage of the attacker A against an AKE protocol �.
We do not detail the security game for AKE protocols, and
readers can refer to [32], [33].

To construct our protocol, we require the AKE protocol to
be secure as defined in [32] and additionally resist KCI attacks.
This means if the long-lived key of a party P is compromised,

Fig. 3. HMQV with implicit authentication. Adding one round as in [28]
can achieve explicit authentication (i.e., adding the message H ��(SK , 1) and
H ��(SK , 2) to the last two rounds respectively, where H �� is a hash function
with the range {0, 1}l ).

the attacker cannot impersonate another party Q to interact
with P by P’s key. To capture the security, the security game
defined in [32] should be modified by including more fresh
instances whose internal states and its partner’s states are not
compromised.

HMQV [33] is a well-known protocol with KCI resistance.
We will use it in our protocol, due to its security and efficiency.
Fig. 3 details HMQV (with implicit authentication). It only
needs one exponentiation and one multi-exponentiation for
each party and two communication rounds. Its message
flows are similar to those of Diffie-Hellman key exchange,
but it additionally uses public key cryptography (kA, K A

for participant A) for authentication. Although HMQV does
not provide explicit authentication, it is trivial to achieve
explicit authentication by adding one round as in [28].
Krawczyk proves the AKE security of HMQV as well as
KCI security/resistance. Formally, in the aforemen-
tioned (modified) game with KCI security, the advantage
Advake

HMQV is negligible under Computational Diffie-Hellman
assumption in the random-oracle model.

C. Password-Based Authenticated Key Exchange

Password-based Authenticated Key Exchange (PAKE) also
has been studied for decades. Some important studies
are [34]–[36]. In symmetric PAKE, two parties share a
long-lived password with low entropy for authentication and
key exchange. In asymmetric PAKE, one party (the user) holds
a password and the other party (the server) holds a non-
password-equivalent verifier of the password.

Informally, a 2FAKE protocol can be seen as a PAKE
protocol if the device is corrupted. So the former may leverage
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Fig. 4. Schematic diagram of OPAQUE.

the latter as a component, e.g., OpTFA [13], to protect the
password for the case of device corruption. However, this
usually leads to complexity and inefficiency. Instead, we are
inspired by the design of a PAKE protocol, OPAQUE [35],
and further use it for our T-MFAKE.

As shown in Fig. 4, OPAQUE leverages an OPRF, an AKE
and an encryption scheme. Its core roadmap is as follows:

1) The client enhances the password pw to a cryptographic
key rw (also called random password) by running OPRF
with the server.

2) The secret keys (kU , KU ) of the user in AKE is
encrypted by rw and the ciphertext is stored on the
server.

3) During the authentication phase, the client recon-
structs rw by running OPRF with the server, gets the
keys in AKE by decrying c, and then runs AKE to estab-
lish the session key. Note that c is sent to the client by
the server along with the messages of OPRF and AKE.

The details of OPAQUE are given in Fig. 5.
Jarecki et al. [35] prove the security of OPAQUE in

the Universally Composable (UC) Framework. This means
that the execution of OPAQUE is indistinguishable from
that of the ideal functionality FSaPAKE, i.e., the distinguish-
ing advantage Advdis

HMQV,FSaPAKE
is negligible. FSaPAKE only

allows two inevitable attacks: 1) the online password guessing
attack; 2) the offline password guessing attack in the case of
server compromise. Therefore in the game GPAKE for PAKE,
we have:

1) If S is corrupted,

Advpake
OPAQUE ≤

1

n
q + Advdis

OPAQUE,FSaPAKE
,

where q is the number of online password guessing
attacks.

2) Otherwise,

Advpake
OPAQUE ≤

1

n
q � + Advdis

OPAQUE,FSaPAKE
,

where q � is the number of offline password guessing
attacks.

The security of OPAQUE requires the security of OPRF and
AKE (with KCI resistance) as well as a random-key robust
and equivocable authenticated encryption scheme. We briefly
explain the properties required for the encryption:

Fig. 5. OPAQUE with implicit authentication.

1) Authentication. Authenticated encryption provides secu-
rity against chosen ciphertext attacks as well as message
integrity and confidentiality. It can be constructed on the
top of an encryption scheme and a message authentica-
tion code (MAC).

2) Random-key robustness. This property means that
it is difficult to construct a ciphertext c for two
randomly-generated keys k1, k2 such that decrypting c
using both k1, k2 will not fail. Formally, for an arbitrary
PPT attacker A,

Pr
k1,k2 ←$ {0,1}l

[c← A(k1, k2) s.t. Decki (c) �=⊥, i = 1, 2]

is negligible.
3) Equivocability. This property means that the encryption

of a message can be simulated by 1) first creating the
ciphertext without knowing the plaintext and 2) then cre-
ating the key for the given plaintext. Formally, an arbi-
trary attacker A, there exists a simulator S such that the
following two games are indistinguishable:

a) The real game: A gives a message m, generates
(k, m) by k←$ {0, 1}l and c← Enck(m).

b) The simulated game: A gives a message m, gen-
erates (k, m) by c← S(|m|) and k ← S(m).
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D. Fuzzy Extractor

To generate cryptographic key from biometric characteristic
with information protection, several methods have been pro-
posed, e.g., fuzzy vault [37], fuzzy extractor [16]. We choose
the latter for our scheme since it provides stronger security.
Fuzzy extractor generates a uniformly random key R and
transforms the key to a helper string P based on a biometric
input w as

(R, P)← Gen(w)

at initialization. A biometric input w� which is close to w can
extract the key R from P . Formally, if dis(w�, w) ≤ t (t is a
parameter), then

Rep(w�, P) = R.

Fuzzy extractor guarantees that the helper string P does not
leak information of the random key R as well as the biometric
input w, maintaining data security and user privacy. In our
scenario, the initialization and extraction can be done on the
smartphone equipped with the biometric recognition sensor
and storing the helper string P . In this paper, we do not review
specific constructions of the fuzzy extractor, and the reader can
refer to [16] for more details.

IV. SECURITY MODEL FOR THRESHOLD MFAKE

Inspired by the CK-adversary model for AKE [38]–[40] and
Jarecki et al.’s security model [13] for 2FA with a password
and an auxiliary device, we propose a model for threshold
MFAKE (T-MFAKE) supporting various types and various
numbers of factors.

A. Protocol Participants

There are several participants in T-MFAKE: a user U ,
a client C , one or multiple device(s) {Di }i∈I (where I is the
index set), and a server S. The user U leverages a password
pw, and the device(s) {Di }i∈I (maybe with biometrics) as
factors for authentication.

B. Protocol Execution and Communication Model

In the registration phase of a (t, n) T-MFAKE protocol �,
the user U registers the combination of the n authentication
factors on the server S. This registration is assumed to be
securely done. Take opening a bank account as an example,
the registration can be done physically in the bank, which is
regarded as secure execution. Note the user U does not register
the client C , which means U does not leverage a fixed client
and further may use different clients (e.g., public computers in
libraries) in the authentication phase. This brings advantages
to usability.

In the authentication phase of �, the user U leverages t fac-
tors (usually containing the password and device(s) {Di }i∈I � ,
where |I �| = t − 1) to run � with the server S. The
communication between C and S is via a public channel.
After successful authentication, both the server S and the
client C accept each other, and meanwhile, a session key SK
is securely established between them (note SK is unknown
to the device(s) and the attacker). This session key usually is

further used to build a secure channel between C and S. For
this authentication, the server S and the device(s) Di (i ∈ I )
need to generate and store long-lived secrets on themselves
during the registration phase. But the client C is not allowed
to store any long-lived secrets, since the user is allowed to
leverage arbitrary clients for login (which may be different
from the one used in the registration).

Besides, we assume there is an authenticated and secure
channel between the client C and the device Di . For a
smartphone as the device, the channel can be established
by Bluetooth or other means (e.g., QR + Wi-Fi) proposed
in [14]. Unlike our model, Jarecki et al. assume the commu-
nication between C and D is on a public channel but require
a t-bit Short Authenticated String (SAS) channel from C to D,
where the message transmitted cannot be tampered by the
attacker. This t-bit SAS channel assumption is suitable for
some special devices embedded with a small LCD screen
(e.g., RSA SecurID). But for smart devices (e.g., smartphones
and smartwatches), we can directly assume an authenticated
and secure channel between C and Di .

Our model enables the parties to parallel run different
instances (also called sessions) of the protocol �. This is
important to capture the security of � in the context of parallel
running. We use Pi to denote the i -th instance of a party P .

C. Partnering Instances

We use the session id (SID) to define the partnering of the
instances. More specifically, each instance of C or S outputs
a SID sid , a partner id (PID) pid with the session key SK
when it accepts.

Definition 1 (Partnering): Ci and S j are partners, if both
of them accept with SID sid, sid � and PID pid, pid �, respec-
tively and the following requirements hold:

1) Ci and S j output the same SID sid = sid �. This means
their interaction transcripts are matching and the attacker
does not launch active attacks.

2) Ci outputs the PID pid = S and S j outputs the SID
pid � = C . This means they accept each other after a
successful authentication.

D. Attacker Ability

Since the channel between the client and the server is public,
the attacker is allowed to fully control it. This means that the
attacker can overhear, intercept, and synthesize any message
on this channel (as being characterized in Dolev–Yao model).

Besides, the attacker is also allowed to corrupt any partic-
ipants (except the user) of the protocol and fully control the
participants. We here consider the strong corruption, i.e., when
corrupting a participant, the attacker gets its long-lived secrets
and internal states (e.g., the random numbers if they are not
be erased at the moment). Some studies only consider the
weak corruption, where the attacker can only get the long-lived
secrets without the internal states. We, in this paper, also cover
this corruption. To distinguish these two types of corruptions,
we use “Corrupt” to denote the strong corruption operator
and “Compromise” for the weak one.

For the authentication factors, we also allow the attacker to
compromise them. This modeling is to capture the cases where
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the attacker steals the factors, e.g., getting the password via
shoulder surfing attacks.

E. Security Definition

Our security model is game-based, defining the security by
a game within the attacker. The attacker’s ability is formally
modeled by means of queries and responses. The attacker tries
to win the game by these queries, where the winning is defined
to break the protocol. The protocol is (defined to be) secure,
if arbitrary attackers cannot win the game with an advantage
(or a probability) larger than a given bound.

For a T-MFAKE protocol �, the attacker’s goal is to com-
promise the established session keys, more specifically, obtain-
ing any partial information about the session keys. Therefore,
our game requires the attacker to distinguish the (real) session
key and a random number (of the same length). If failing to tell
the difference, then she knows nothing about the real session
key, and otherwise, we say that she breaks �.

In the following, we formally describe the game with the
attacker’s queries for the T-MFAKE protocol �. In the game,
the registration process of � is executed first, then the attacker
can make the queries:

1) Send(P, i, Q, M): Execute � as the instance Pi of the
party P getting the message M from Q, and respond
the response message of Pi to the attacker. Note that M
can be a special message Init with Q =⊥. If M = Init,
initialize Pi and respond the first message(s) of Pi to
the attacker.

2) Reveal(P, i): If Pi has accepted, then respond its ses-
sion key. Otherwise, respond ⊥.

3) ESReveal(P, i): Respond the ephemeral secret of Pi .
4) Corrupt(P): Allow the attacker to fully control P . Note

that as mentioned before, the internal states and the
long-lived secrets are given to the attacker.

5) Compromise(P, U) (where P = S, Di , PW or Bio):
Allow the attacker to get the long-lived secrets on P
about U or directly steal U ’s factors.

6) Test(P, i): If Pi has accepted, flip a coin b.

a) If b = 1, respond the (real) session key of Pi ;
b) If b = 0, randomly generate a number with the

same length of the session key and respond the
number.

This query does not capture the attacker’s ability.
Instead, it is used to challenge the attacker to know the
partial information about the real session key. Note that
this Test(·, ·) query can only be made once.

At the end of the game, the attacker A needs to output a
guess b� for the coin b. If and only if b� = b, the attacker wins
the game. The advantage of A is defined as

Advt-mfake
� (A) = |2 Pr[b� = b] − 1|,

and max advantage is denoted as

Advt-mfake
� = max

A
Advt-mfake

� (A).

Note that the attacker can trivially get the session keys of
some instances, e.g., by making Reveal or Corrupt queries

to the instances. Therefore, we only allow the attacker to Test
a fresh instance, which is expected to be secure in our model.
The freshness is formally defined as follows.

Definition 2 (Freshness): An instance Pi is fresh,
if Reveal(P, i) and Reveal(Q, j) were not made, where
Q j is the partner instance of Pi (if it exists), and one of the
following conditions holds:

1) None of the queries Corrupt(C), Corrupt(S),
Compromise(S, U) was made, and meanwhile at least
one factor of the user is honest (not corrupted and not
compromised).

2) The internal states of Pi and Q j (if exists) are not
compromised, and no rogue Send(P, i, Q, ·) queries
were made.

The attacker can passively deliver the messages among the
instances by the Send queries. She also can actively intercept
and synthesize the messages. We say the Send queries in
the second case are rogue.

Definition 3 (T-MFAKE): A (t, n) T-MFAKE � is secure,
if for a uniform password distribution on a dictionary of size n,
an arbitrary probabilistic polynomial time (PPT) attacker A,
and the security parameter κ , the advantage of A is bounded
as follows:

1) If t − 1 factors without the password are compromised
(or corrupted):

a) If S is not compromised,

Advt-mfake
� (A) ≤ 1

n
(qC + qS)+ negl(κ),

where, qC (resp. qS) denotes the number of rogue
Send(C, ·, S, ·) (resp. Send(D, ·, C, ·)) queries
that the attacker made, negl(κ) denotes a negli-
gible amount in κ .

b) If S is compromised or corrupted,

Advt-mfake
� (A) ≤ 1

n
q �S + negl(κ).

Here q �S denotes the number of (offline) operators
that the attacker made on S’s long-lived secrets.

2) Otherwise,

Advt-mfake
� (A) ≤ negl(κ).

In the definition, we assume the password follows the
uniform distribution for simplification. This can be naturally
extended to an arbitrary password distribution. For a distrib-
ution with the cumulative probability function f , the terms
1
n (qC + qS) and 1

n q �S in the bounds should be f (qC + qS) and
f (q �S), respectively.

F. Explanations of the Bounds

In Case 2, a secure T-MFAKE protocol achieves the same
security as a secure AKE protocol. Therefore, the bound
is negligible as AKE security. In Case 1, the T-MFAKE
protocol achieves the same security as a secure PAKE pro-
tocol. Specially, in Case 1a, the attacker can carry out an
unavoidable online password guessing attack. If the attacker
successfully guesses the password, then she gets the session
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key (to win the game). For each guess, the attacker needs
to make a rough Send queries and has 1

n probability to
guess the right password, which defines the security bound.
In Case 1b, the attacker can launch an unavoidable offline
password guessing attack. Similarly, for each offline guess,
the attacker should do the corresponding offline operators,
which gives the bound.

G. 2FA Security

To facilitate understanding the definition of T-MFAKE
security, we here present the 2FAKE security degenerated from
Definition 3. Note that in 2FAKE, there only exists one device
denoted as D.

Definition 4 (2FA Security): A 2FAKE protocol � is
secure, if for a uniform password distribution on a dictionary
of size n, an arbitrary probabilistic polynomial time (PPT)
attacker A, and the security parameter κ , the advantage of A
is bounded as follows:

1) If D is not corrupted,

Adv2fa
� (A) ≤ negl(κ).

2) If only D is corrupted (or compromised),

Adv2fa
� (A) ≤ 1

n
(qC + qS)+ negl(κ).

3) If only D and S are corrupted (or compromised),

Adv2fa
� (A) ≤ 1

n
q �S + negl(κ).

Here, qC , qS, q �S are the same as in Definition 3.
This definition for 2FA security is similar to that given

in [13]. If the attacker does not compromise D, then she
cannot impersonate the user or the server except a negligible
probability; otherwise, she inevitably can carry out online
password guessing attacks (only one time per session) to per-
form impersonation with a non-negligible probability. Further,
if D and S are compromised at the same time, the attacker
inevitably can launch offline password guessing (as many
times as she prefers to) to obtain the password plaintext with
a non-negligible probability, so that she can impersonate the
user with the password and D’s long-term secret. Note she
is also able to impersonate the server via the S’s long-term
secret.

H. Support for Fuzzy Factors

In the above T-MFA security, we require each factor except
the password can provide to a high-entropy cryptographic key,
e.g., a smartphone (storing a cryptographic key). However,
this does not work for fuzzy factors. The factors, in practice,
may not have sufficient entropy and can be easily cracked
like a simple password. More importantly, their readings may
have some noise, which leads to false acceptances and false
rejections (also called false positives and false negatives) with
a small probability.

Therefore, the security definition (more specifically,
the security bound) must be revised to adapt fuzzy factors.
Here we only consider one fuzzy factor. If there are multiple

fuzzy factors, we will combine them into one factor with a
smaller probability of false acceptances and false rejections
(e.g., by multimodal machine learning for biometrics [41],
[42]), instead of using them separately.

Definition 5 (T-MFAKE With a Fuzzy Factor): This defini-
tion is the same as Definition 3, except the modified security
bounds. For a uniform password distribution on a dictionary
of size n, a fuzzy factor with the min-entropy Hmin and
the probability pfalse of false acceptances, an arbitrary PPT
attacker A, and the security parameter κ , the advantage of A
is bounded as follows:

1) If S is not compromised,

Advt-mfake
� (A) ≤ pc(qC + qS)+ negl(κ).

2) If S is compromised or corrupted,

Advt-mfake
� (A) ≤ pcq �S + negl(κ).

Here, qC , qS, q �S are the same as in Definition 3, and pc is
defined as follows:

1) If t−2 factors without the password and the fuzzy factor
are compromised (or corrupted):

pc = 1

n
(

1

2Hmin
+ pfalse).

2) If t −1 factors without the password or the fuzzy factor
or both are compromised (or corrupted):

a) If the password is compromised but not the fuzzy
factor:

pc = 1

2Hmin
+ pfalse.

b) If the fuzzy factor is compromised but not the
password:

pc = 1

n
.

c) If none of the fuzzy factor and the password are
compromised:

pc = max{1
n
,

1

2Hmin
+ pfalse}.

3) Otherwise,

pc = 0.

Note that the fuzzy factor can be guessed as the password.
We use the min-entropy Hmin to bound the probability of one
guess for the fuzzy factor. Recall that the min-entropy Hmin(X)
of a random variable X is defined as

Hmin(X) = − log2 max
x∈Range(X)

Pr[x].

Therefore, Pr[x] ≤ 1
2Hmin(X) , for x ∈ Range(X). For the

fuzzy factor, the probability that a guess is correct is not more
than 1

2Hmin
. Besides, there is a small probability pfalse of false

acceptances. Therefore, the cracked probability of each guess
is not more than 1

2Hmin
+ pfalse.

If compromising sufficient factors, the attacker can make
online guessing for the password or the fuzzy factor or both
to compromise the session keys. If the server is also corrupted,
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offline guessing becomes possible. We use pc to denote the
cracked probability of one guess (for the password, the fuzzy
factor or both if necessary). For guessing the password and
the fuzzy factor,

pc = 1

n
(

1

2Hmin
+ pfalse).

For guessing the password,

pc = 1

n
.

For guessing the fuzzy factor,

pc = 1

2Hmin
+ pfalse.

For guessing the password or fuzzy factor (since the attacker
can choose one of them for guessing),

pc = max{1
n
,

1

2Hmin
+ pfalse}.

If there are not enough factors that are compromised,
the guessing attack cannot be carried out. In this case, we let

pc = 0.

With the above definition of pc, we complete all the security
bounds for T-MFAKE with a fuzzy factor.

V. OUR THRESHOLD MFAKE PROTOCOL

In this section, we first propose an efficient T-MFAKE
protocol and formally prove its security in our model.

A. A Variant of TOPRF

The main component of our T-MFAKE protocol is the
TOPRF. We do not perform a direct use of the TOPRF but
require its specific variant. Specifically, in the variant with n
parties, running PRF needs a fixed party and arbitrary t − 1
parties from the rest (not arbitrary t parties).

This variant can be achieved by leveraging access structure
schemes [43]. Access structure is generalized from the notion
of threshold secret sharing. In the access structure, the party
combinations for secret reconstruction can be freely specified.
The only requirement is monotonicity, i.e., if a combination A
can construct the secret, then any combination B including
A can construct the secret. With an access structure scheme
(e.g., [43]), setting our required party combinations can natu-
rally construct a variant of TOPRF we need. However, this
construction usually is inefficient. Instead, we use another
method to achieve the required TOPRF variant. Informally,
the fixed party holds half of the secret and each of the rest
holds 1

t−1 of the other half secret. From this, we can use a
(2, 2) secret sharing and a (t − 1, n − 1) secret sharing to
construct the variant. Specifically, the secret key s of OPRF
is divided to s1, s2 by a (2, 2) secret sharing, and further s2 is
divided to {s2i }n−1

i=1 by a (t−1, n−1) secret sharing; the fixed
party holds s1, and each of the rest holds s2i . To construct
s for running PRF, s1 is needed along with t − 1 shares in
{s2i }n−1

i=1 . Therefore, the constructed variant of TOPRF satisfies
our requirement.

Fig. 6. Schematic diagram of our threshold MFAKE protocol.

B. Our T-MFAKE

As shown in Fig. 6, our T-MFAKE protocol is built on the
top of TOPRF and AKE. It works as follows.

1) The user/client first leverages the above variant of
TOPRF to enhance the password pw to a cryptographic
key rw (also called random password), with the server
(as the fixed party) and arbitrary t−1 devices. Note that
the commutation between the client and the device is on
a mutual-authenticated and secure channel.

2) The user uses rw to decrypt the ciphertext c to get the
keys kU , KS for AKE, where the ciphertext is stored on
the devices and sent to the client.

3) The user runs AKE with the keys kU , KS with the server
and outputs the session key of AKE, where kU is the
private key of the user and KS is the public key of the
server.

We use the 2HashTDH and HMQV to instantiate the
TOPRF and AKE components. The details of our protocol are
given in Fig. 7. With the instantiation, our T-MFAKE protocol
only needs two commutation rounds by parallel running the
TOPRF and AKE protocols. To make this point clear, we give
the communication flows in Fig. 8.

1) Discussions on Our Design: The main challenge to
achieve T-MFAKE security is to prohibit the password guess-
ing attack as much as possible. A natural and potential way to
achieve security is to leverage the technique of well-studied
PAKEs (e.g., [34]–[36], [44]). In many PAKE protocols,
we find the construction of OPAQUE [35], i.e., OPRF+AKE,
is easily extended to T-MFAKE. In OPAQUE, the password
is enhanced to a cryptographic key rw (in the OPRF part)
and used for further authentication (in the AKE part). In our
T-MFAKE protocol, we can further extend this enhancement
by leveraging multiple devices to provide stronger security.

Informally, if less than t − 1 devices are corrupted or
compromised, the cryptographic key rw cannot be recon-
structed even with the password, and therefore the attacker
cannot do further authentication. In this case, our T-MFAKE
protocol is secure as the AKE protocol. If t − 1 devices
are corrupted or compromised, our T-MFAKE protocol down-
grades to OPAQUE (not precisely but closely). Therefore,
in this case, our T-MFAKE protocol is secure as OPAQUE.
More specifically, our T-MFAKE protocol only suffers from:
1) inevitable online password guessing attacks in the case
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Fig. 7. Our threshold MFAKE protocol.

Fig. 8. The message flows of our 2FAKE within only two rounds.

where t − 1 devices are corrupted or compromised; 2) offline
password guessing attacks in the case where t − 1 devices
are corrupted or compromised and meanwhile the server is
corrupted or compromised.

Note that if we use original TORPF instead of our variant,
then the attacker compromising t devices can offline run the
PRF without the help of the server, and further can carry
out offline password guessing. In contrast, using our TOPRF
variant prohibits offline password guessing except the server
is also corrupted or compromised.

2) Support for Fuzzy Factors: Our T-MFAKE in Fig. 7
requires the password and n−1 devices as the n authentication
factors. It is not suitable for users who only have smartphones
without other devices. A practical way to provide strong secu-
rity is to leverage biometric characteristics as authentication
factors.

To support fuzzy factors (including biometric factors),
we leverage fuzzy extractor to convert the fuzzy factor to
a cryptographic key R, and use R as one share in TOPRF.
Therefore, the fuzzy factor can replace one device in the
authentication phase.

Note that the reconstruction of R needs the helper string P
and fuzzy input. Therefore, P should be stored on the devices.
If one device is corrupted or compromised, the attacker can
get the helper string, and try to reconstruct the key by guessing
fuzzy input. Excepts that, our T-MFAKE with a fuzzy factor
achieves the same security as the original version.

C. The Security of Our T-MFAKE Protocol

Since the security requirements of T-MFAKE are relatively
complex, we will analyze the security step by step. Recall
that 2FAKE and MFAKE are the special cases of T-MFAKE.
Based on this, we first prove the security of our 2FAKE
((2, 2) T-MFAKE) protocol, then extend it for MFAKE and
finally T-MFAKE.

Theorem 1: Our 2FAKE ((2, 2) T-MFAKE) protocol (with
a password pw and a device D as factors) is secure as in
Definition 3. Specifically:

1) If D is not corrupted,

Advt-mfake
Our2FAKE(A) ≤ Advake

HMQV + qC(
1

2κ
+ Advauth

Enc ).

2) If D is corrupted,

Advt-mfake
Our2FAKE(A) ≤ Advpake

OPAQUE :
a) If S is not corrupted,

Advpake
OPAQUE ≤

1

n
(qC + qS)+ Advdis

OPAQUE,FSaPAKE
.

b) Otherwise,

Advpake
OPAQUE≤

1

n
min{q �S, q �D}+Advdis

OPAQUE,FSaPAKE
.

Proof: In the analysis, our 2FAKE protocol achieves
different security bounds. We present the bound for each case,
as we need to construct different games and reductions.

Case I (D Is Not Corrupted): As discussed above, if D is
not corrupted, the attacker does not know extra information
about the key in the AKE protocol. Following this intuition,
we reduce the security of our 2FAKE to the security of the
AKE protocol. The main process of proof is to 1) slightly
modify the real attack game G0 (for 2FAKE) to G1, and
2) reduce the game GAKE for AKE to G1.

Let G1 simulate the messages of 2HashTDH without exe-
cuting it. Specifically, G1 is the same as G0 except the
following:
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1) When Ci is initializing (getting Send(C, i,⊥, Init)),
pick α←$ G and send it to the attacker as aimed at S.
Meanwhile run HMQV.

2) When getting Send(C, i, S, β), check if β = αsS . If not,
abort Ci , otherwise, run HMQV.

G0 and G1 are indistinguishable except β �= αsS but Ci does
not abort. This only happens in G0 when (the incorrect) β
yields to the correct rw (a hash collision) or a successful
decryption of c (breaking the authentication). Therefore,

| Pr[A wins in G0]−Pr[A wins in G1]|≤qC(
1

2κ
+Advauth

Enc ).

Then we extend the game GAKE for AKE to G1 by
simulating 2HashTDH (as above) and do the reduction to
the AKE security. Leveraging the attacker A for G1, we can
naturally construct an attacker A� for GAKE. A is the same as
A� except the 2HashTDH part:

1) If A makes Send(C, i, S, (U, X, α)) query, then A�
makes Send(C, i, S, (U, X)) query.

2) If A makes Send(S, j, C, (Y, βS)) query, then A� makes
Send(S, j, C, (U, Y )) query.

If A wins in G1, then A� will win in GAKE. Therefore,

Pr[A wins in G1] ≤ Pr[A� wins in GAKE] ≤ Advake
HMQV.

Finally,

Advt-mfake
Our2FAKE(A) ≤ Advake

HMQV + qC( 1
2κ + Advauth

Enc ).

Case II (D Is Corrupted): If D is corrupted, our 2FAKE
protocol is downgraded to OPAQUE. Based on this idea,
we reduce the security of our 2FAKE to the security of the
PAKE protocol. The main process of proof is to 1) modify the
real attack game G0 (for 2FAKE) to G1, and 2) slightly reduce
the game GPAKE for PAKE to G1. The process is similar to
that of the first case, but the constructed game G1 and the
reduction are totally different.

We modify G0 to G1 by slightly changing the query to H .
G0 and G1 are the same except:

1) If (x, y) is queried for H (by A or participants), return
H (x, y/H �(x)sD).

Since both H and H � are random oracles, G0 and G1
are totally indistinguishable. Therefore, Pr[A wins in G0] =
Pr[A wins in G1].

Then we extend the game GPAKE for PAKE to G1 and do
the reduction to the PAKE security. Specifically, GPAKE is
extended to G1 by simulating the interaction of C and D as
follows:

1) If (U, X, α) aimed at S is responded to the attacker
in GPAKE, then respond the same message as well as
(U, S, α) aimed at D in G1.

Leveraging the attacker A for G1, we construct an attacker A�
for GPAKE which is the same as A except the following case:

1) If A makes Send(S, j, C, (Y, βS)) query and sends
(βD, c) to C as the corrupted D, then A� makes
Send(S, j, C, (Y, βSβD/αsD , c)) query.

Note that Ci does the same calculation in G0 with A as in
GPAKE with A�. More specifically,

rw← H (pw, (βDβS)1/r/H �(pw)sD )

in G0 is equal to

rw← H (pw, (βDβS/α
sD )1/r )

in GPAKE, since α = H �(pw)r and (βDβS)
1/r/H �(pw)sD =

(βDβS/α
sD )1/r . Therefore, if A wins in G1, then A� wins in

GPAKE. Consequently,

Pr[A wins in G1] ≤ Pr[A� wins in GPAKE] ≤ Advpake
OPAQUE.

Further,

Advt-mfake
Our2FAKE(A) ≤ Advpake

OPAQUE.

Due to the PAKE security of OPAQUE, Advpake
OPAQUE is

bounded as explained in Section III-C (in the cases where
S is corrupted or not). This gives the corresponding bounds
for our 2FAKE protocol in these two cases. Note that for an
online password guess, the attacker needs to make a rough
Send(C, ·, S, ·) or Send(D, ·, C, ·) query, therefore, q ≤ qC+
qS; for an offline password guess, the attacker needs to make
an offline operator on S’s long-lived key as well as an operator
on D’s key, therefore, q � ≤ min{q �C , q �S}.

Theorem 2: Our MFAKE ((n, n) T-MFAKE) protocol (with-
out fuzzy factors) is secure as in Definition 3.

Our MFAKE protocol is the same as our 2FAKE variant,
except a single device is expanded to multiple. If at least one
device in MFAKE is honest, then the attacker cannot carry
out effective attacks. Informally, the corruption of the device
in 2FAKE corresponds to the corruption of all devices here.
The proof for Theorem 2 can easily make use of the analysis
result from Theorem 1, we thus omit it.

Theorem 3: Our MFAKE ((n, n) T-MFAKE) protocol (with
a fuzzy factor) is secure as in Definition 5.

Proof: Due to the security of the fuzzy extractor, the cryp-
tographic key can only be reproduced from the fuzzy input.
Therefore, without the (right or close) fuzzy input, the attacker
cannot get the random password and fail to distinguish the
real session key with a random number. Besides, the attacker
only has as most 1

2Hmin
+ pfalse probability to reproduce the

key ( 1
2Hmin

for guessing the correct input, pfalse for the false
acceptance). Consequently, we can achieve the corresponding
bound in Definition 3.

In the following, we give a formal analysis. In the cases
where one device factor is not compromised or corrupted,
the proof is trivial. In the cases where the biometric factor
is compromised or corrupted, the proof is similar to that for
Theorem 2. We only consider other cases.

Let G0 be the real attack game. G1 is the same as G0 except
that the helper string P � generated by a randomly-generated
key R� (not the right one R used in TOPRF) is given to the
attacker instead of the real helper string P . Therefore, G0 and
G1 are indistinguishable, except the attacker reproduces the
right key R, reconstructs rw and further uses rw to decrypt
c. If the password is compromised, then the probability of
reconstruction is not more than

pc = 1

2Hmin
+ pfalse

for each guess. Otherwise, the attacker has to guess the
password as well as the fuzzy input, therefore the probability
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of reconstruction is not more than

pc = 1

n
(

1

2Hmin
+ pfalse)

for each guess.
In the case where S is not corrupted, each guess requires at

least one (usually several) Send(C, ·, S, ·) or Send(C, ·, S, ·)
query. Therefore, we have

| Pr[A wins in G0] − Pr[A wins in G1] ≤ pc(qC + qS).

Further, since Pr[A wins in G1] is negligible (without
knowing R),

Advt-mfake
OurMFAKE2(A)=Pr[Awins inG0]≤ pc(qC+qS)+negl(κ).

In the case where S is corrupted, each guess requires at
least one (usually several) offline operation on S’s and on D’s
long-lived secrets. Similar to the above reasoning, we have

Advt-mfake
OurMFAKE2(A) ≤ pcq �S + negl(κ).

Therefore, our MFAKE is secure as in Definition 5.
Theorem 4: Our T-MFAKE without (or with) a fuzzy factor

meets the requirements in Definition 3 (or 5).
The analysis for our (t, n) T-MFAKE is also similar to

that for our (t, t) T-MFAKE (with or without a fuzzy factor).
We omit it here.

D. Extensions for Refreshment and Anonymity

1) Refreshment: Besides the advantages of usability, our
T-MFAKE also brings benefits to security by the refreshment.
Refreshment is a mechanism that periodically refreshes the
shares in the threshold context to avoid massive (t) shares
being compromised over time. If the attacker does not com-
promise t shares in the current period, then it needs to
re-compromise them in the next period.

In our T-MFAKE, we refresh the secret keys in TOPRF
without the password and updates the ciphertext c without
changing the private key kU . Specifically, the refreshment is
designed as follows:

1) The client C generates a new secret key s� in TOPRF and
each shares s�i of s�, sends the shares to the correspond-
ing parties; calculates rw� ← H1(pw, H �1(pw)s �), and
encrypts kU , KS with rw� to c�; sends c� to the device(s).

2) The server S updates its share with the new one s�n .
3) The device Di updates its share and the ciphertext with

the new ones s�i and c�.
As well as to resist (factor) compromise by periodic exe-

cutions, this refreshment can be used to revoke lost devices
by active executions. The user only needs to refresh the keys
without the lost devices like the above process.

Note that we do not require the user to change the password,
which will bring an extra burden on memory and cannot
achieve expected security (for instance, a new password is
just slightly modified from the old one [21]).

2) Anonymity: In some scenarios (e.g., secret ballot), par-
ties may choose to hide their usernames to protect privacy.
We should provide user anonymity so that:

1) the attacker cannot identify the user ID in a session.
2) the attacker cannot tell if two sessions correspond to the

same user.
Our 2FAKE and MFAKE do not provide anonymity like

OpTFA [13], since our protocols directly send the username
on the public channel. A trivial way to achieve user anonymity
is to establish a server-authenticated secure channel first and
then run our protocol on the channel. This requires a public
key of the server to establish this channel, which can be stored
on the device(s). However, this method requires two extra
communication rounds.

For our design, there is a faster and simpler way to achieve
anonymity - encrypting the username by a probability pub-
lic encryption scheme (e.g., ElGamal). With the encryption,
the username is only known by the server and two ciphertexts
of the same username are different. Therefore, the attacker
cannot extract any information about the username from that.
Besides, the attacker cannot extract any information about or
linked to the username from the other transmitted messages (as
they are all random numbers). This method will only slightly
require the encryption and decryption operations of the public
encryption scheme without an extra round for communication.

E. Discussions on Security

Since our T-MFAKE protocol is secure as in Definition 3
or 5, it can resist ephemeral secret leakage, replay, man-in-
the-middle, impersonation and privileged-insider attacks. Here
we briefly present some discussions on these attacks and our
design.

1) Ephemeral Secret Leakage Attacks: The main component
of our design, HMQV [33], can resist the attacks, and the
protocol benefits from this security feature. More specifically,

for the session key SK = H2((Y K
H �2(Y,KU )

S )x+H �2(X,KS)kU )
(calculated by the client) in HMQV, if the attacker gets
the ephemeral secret x , she cannot calculate SK without
the private key kU . So the session key SK is safe. Even
if capturing both x and SK , the attacker cannot calculate
the private key kU except breaking the hash function and
solving the discrete logarithm problem. Thus, the keys of other
sessions are kept safe. Further, if the attacker compromises
the long-term secret kU , these sessions without leaking the
ephemeral secrets are still safe.

2) Replay Attacks: For each session, the client is able to
randomly choose an ephemeral exponent as well as the server,
so that the attacks cannot be carried.

3) Impersonation Attacks: As we proved previously, our
protocol can resist impersonation attacks in arbitrary cases
except the two trivial ones: 1) impersonating the user by
compromising the user’s t−1 factor and the password (where
the password may be captured by online/offline guessing
attacks); and 2) impersonating the server by compromising
the server’s long-term secret. In normal (but not excep-
tional) cases, without at least t − 1 factor and the password,
the attacker cannot impersonate the user to run TOPRF and
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Fig. 9. Analysis results for our T-MFAKE using AVISPA with the CL-AtSe and OFMC back-ends.

therefore cannot execute SaPAKE to calculate the session key.
Similarly, without compromising the server’s long-term secret,
the attacker also cannot obtain the session key by executing
SaPAKE (as the server does).

4) Man-in-the-Middle Attacks: Based on our analysis on
the impersonation attacks, the attacker can only launch man-
in-the-middle attacks by compromising the credentials of both
the user and the server.

5) Privileged-Insider Attacks: In the registration phrase,
the user generates the shares of TOPRF and the private key
on the client, but the server does not know the devices’ shares
of TOPRF and the user’s private key. Thus, our protocol can
resist privileged-insider attacks.

F. Automated Security Analysis With AVISPA

We leverage an automated validation tool, AVISPA
(Automated Validation of Internet Security Protocols and
Applications), to evaluate the security of our protocol. AVISPA
can automatically check if a given protocol achieves the
target security goals via running the protocol. It also can
investigate potential security risks and further provide the
attacking paths to help improve the protocol. Due to the advan-
tages, it has been widely used in the study on authentication
protocols [45]–[47].

We first describe our protocol and the security goals in High
Level Protocol Specification Language (HLPSL), and then run
AVISPA with two back-ends, namely CL-AtSe and OFMC.
The analysis results, shown in Fig. 9, confirm that our protocol
meets the security requirements.

VI. IMPLEMENTATION AND PERFORMANCE

We implement our protocol and evaluate its performance on
computation and communication. Here, we only implement a
(2, 2) variant of our protocol. We note the (t, n) protocol only
requires extra computation and communication cost (among
extra devices), but does not increase the total running time of
the protocol due to the parallel running.

A. Implementation Details

1) Participant: We need the following three parties in the
implementation.

1) The server S in a Docker container running on a
remote server in Alibaba Cloud. The Docker container is
assigned with 2 CPUs (Intel Core i5-7300HQ CPU @
2.50Hz 2.50Hz) and 2.0GB memory. In the container,
Ubuntu 18.04 with Apache 2.0, PHP 7.4 and MySQL
7.4.8 is deployed.

2) The client C is a web browser, Chrome 85.0.4183.102 on
a PC with Windows 10. The PC is equipped with
an Intel Core i5-7300HQ CPU, 16.0GB memory and
Bluetooth 5.0 adapter. To support our protocol on the
client, we implement a Chrome Application to perform
the calculation and communication.

3) The device D is a smartphone, Huawei P30
(ELE-AL00), with Huawei Kirin 980, 8.0GB memory,
Bluetooth 5.0 adapter and Android 10. We also
implement an APP on the device for the protocol.

2) Communication: The communication between the server
and the client is on the Internet. The round trip time between
them is approximately 80 ms. The client and the device are
connected via the Bluetooth channel and meanwhile, their
physical distance is less than half a meter when running
the experiments. The round trip time of this channel takes
around 1 ms.

3) Computation: The client, server, and device leverage
SJCL, OpenSSL 1.1.1g, and javax.crypto to support the cryp-
tography algorithms, respectively. To instantiate cryptography
algorithms, we use SHA-256 for the hash operator, HMAC-
SHA256 for HMAC, AES for symmetric encryption, Encrypt-
then-MAC with AES and HMAC-SHA256 for authentication
encryption, and NIST P-256 for exponentiation.

4) Storage: The user needs to remember the password,
while the client does not store anything. Each device stores its
shares of TOPRF and the ciphertext (of the user’s private key
and the server’s public key). The server stores the shares of
TOPRF, its private key and the user’s public key. Note that we
use the compressed form to represent an ECC point without
the first 8 bits (0× 04) indicating the compressed form [48].

5) User Operations: A user first enters the username and
the password on a PC - more specifically, on the web page
of the server shown in the browser. Then he clicks the login
button on the page, and gets a notice from the smartphone.
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Fig. 10. Performance comparison.

TABLE II

PERFORMANCE COMPARISON

After approving the login via a click on the APP installed on
the smartphone, the user can log in the server.

B. Performance Evaluation

To present a fair and comprehensive performance evalua-
tion, we run our protocol 1,000 times along with OpTFA for
comparison (although there are some other MFA protocols,
none of them achieve the strong security defined in this paper).
Note that we here directly simulating the computation cost
and ignore the cost a user spends in information entering and
button clicking.

Fig. 10 shows the time cost for each experiment while
Table II gives us a general picture of the average values.
The experimental results show that our protocol achieves a
significant improvement in efficiency as compared to OpTFA
- 138.25% and 148.49% faster on communication and com-
putation, respectively. Besides, our storage cost is quite close
to that of OpTFA - 512 bits less cost on the server, and just
128 bits more on the device. From the experimental results,
we conclude that our protocol is efficient and practical enough
for real-world applications.

VII. CONCLUSION

We propose a new notion of (t, n) threshold multiple-factor
authentication (T-MFA), allowing users to autonomously
choose t at-hand factors out of n for authentication. It brings
advantages to usability and security. We also construct a
T-MFA key exchange protocol and prove that it achieves the
highest attainable security. Our protocol only requires 4 + t
exponentiations, 2 multi-exponentiations and 2 communication
rounds. Via the implementations and experiments, we show
that our design is fast, secure and practical in the real-world
applications.
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