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Abstract

Deep learning (DL) algorithms require, to be fully effective, harvesting
an increasingly large amount of data. These data, typically organized as
millions of small files, stress filesystems and are difficult to manage. In fact,
despite the huge development of DL tools and specialized hardware, data
loading pipeline for DL still lacks behind in ease of use, standardization and
scalability.

In this work we try to rethink the data loading pipeline, by leveraging
NoSQL DBs for storing both data and metadata, making them efficiently
available through the network, and allowing easier data distribution for
parallel DL training. We present our open-source, Apache Cassandra-based
data loader and illustrate its use and performance, which enable easy and
efficient data management and decentralized data distribution for parallel
learning applications.

1 Introduction

Deep learning (DL) techniques are now ubiquitous and have been adopted in
countless applications, and, thanks to ever more powerful GPUs and accelerators,
they produce increasingly accurate predictions. In order to be fully effective,
DL algorithms require processing an increasingly large amount of data that can
easily comprise millions of different files and the associated metadata. However,
while a lot of effort has been spent in optimizing the DL computational process,
the data-loading pipeline still lacks behind in ease of use, standardization and
scalability [8, 30, 33].

As an example, let us consider the key problem of image classification, and
tissue classification in particular, an important problem in Digital Pathology
(e.g., the automated classification of breast or prostate tissue [20, 27]). The input
dataset consists of hundreds or thousands of gigapixel images (slides), from
which smaller portions (patches) are extracted, together with their labels (e.g.,
normal/tumor), to make up the dataset for the DL training. Each patch has
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complex metadata that need to be tracked (coordinates within the slides, patient
id, date, etc.) and which also need to be taken into account when creating
train, test and validation sets. For example, patches must be divided into splits
(e.g., train, validation, etc.) according to the patient id, and some target balance
between classes in the training dataset (i.e., labels) is usually desired (e.g., 1:1
normal/tumor).

The typical workflow [16] requires some custom program to build the DL
dataset, which will consist of millions of small files, saved in a filesystem, with
their path encoding the split and class to which they belong (e.g., train/normal,
validation/tumor, etc.). This process presents many drawbacks, affecting both
usability and performance:

• The dataset is static and if some changes are required (e.g, a different
train/validation ratio) this could imply recreating or moving millions of
files.

• The user needs a custom way to keep track of the metadata (e.g., a database
or a CSV file), since he might need them at later stages of the processing.

• To allow parallel access to the dataset (e.g., for a distributed training or
for different trainings working on the same dataset) one needs to either
move the data to a network storage (which would decrease dramatically
the data-loading performance) or set up a parallel filesystem, which is
a complex task requiring dedicated hardware and careful configurations,
while still often underperforming when accessing small files [5, 13, 19, 21].

In this work we show how these problems can be addressed by adopting a
data management strategy based on NoSQL databases, which can be leveraged
to achieve horizontal scalability and low-latency access to the training data and
metadata, via a user-friendly, flexible interface.

To illustrate our strategy we have developed an Apache Cassandra-based [17]
data-loading module, which is focused on image classification and is being
integrated with the DeepHealth Toolkit [4]. However, its design and architecture
are of general interest and applicability.

The contributions are summarized as follows:

• We present a scalable strategy, based on Cassandra DB, to easily and effi-
ciently manage data and metadata for DL.

• We describe a newly developed data loader, which implements our proposed
management strategy, and analyze its performance and use.

• We extend the EDDL library [4], using Message Passing Interface (MPI), to
support synchronized data parallelism.

• We show how our data loader can be used to easily distribute data, in
a decentralized way, among the workers participating in a distributed
training.

The rest of this manuscript is structured as follows. Section 2 provides some
technology background. In Sec. 3 we describe the high-level design of our data-
loading module, while its implementation is detailed in Sec. 4. Section 5 presents
and discusses the empirical performance of the data loader, and Sec. 6 focuses in
particular on distributed training. Finally, Sec. 7 points the reader to the software
and Sec. 8 concludes the manuscript.
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2 Background

2.1 Related work

Within the TensorFlow framework, an approach to mitigate the small file problem
is provided by TFRecord [28], which is a serialization format that allows for
efficient loading and saving of datasets to/from disks, by grouping more records
into bigger files, and also allows the saving of labels along with the features.
However, it does not support random access to the saved items (and hence, e.g.,
global shuffling of the dataset), nor it removes the disk and network bottlenecks
when accessing the data.

An interesting approach for dealing with parallel filesystem bottlenecks in a
distributed context has been adopted in [14]: instead of allowing full access to the
dataset, each node is allowed to view only a subset of the data and the authors
have developed a custom, multi-threaded data stager which reads partitioned
data from GPFS and distributes them to the computing nodes via MPI calls. Yet,
this procedure amounts to a static pre-distribution of data and hence cannot
handle image metadata nor it can support random access to the images.

FanStore [32] presents a more general approach to overcome filesystem bottle-
necks, by developing a custom, MPI-based, parallel filesystem, which exposes
a POSIX interface, and is tailored for DL application. It offers good scalability,
but since it exposes a filesystem interface, is not designed to easily handle image
metadata.

A further step in overcoming parallel filesystem bottlenecks by completely
avoiding communications can be seen in [15], where instead of transferring the
data needed for the training, they are generated in real-time in each computing
node. This technique, however, can be applied only in limited contexts, in which
training is run on synthetic data.

There have also been approaches connecting DL frameworks to key-value DBs
(e.g., the ml-pyxis plugin for PyTorch, which leverages the Lightning Memory-
Mapped Database [22]), but they lack the scalability and flexibility of the data
loader presented in this paper.

2.2 DeepHealth Toolkit

The DeepHealth Toolkit [4] is an open-source DL toolkit, particularly focused on
enabling easy DL adoption in the medical field. It is written in C++, exposes C++
and Python APIs, and it natively supports cloud computing. Our data-loading
module is written to interface with the DeepHealth Toolkit, but it may be adapted,
without too much effort, to work with other popular DL frameworks, such as
TensorFlow or PyTorch.

2.3 Apache Cassandra

NoSQL databases are data storage systems which support high availability
and horizontal scalability, at the expense of lower consistency guarantees than
standard SQL databases [7]. Apache Cassandra [17] is a distributed, decentralized
and highly scalable NoSQL DB, it is a free and open-source project and is widely
adopted both in industry (e.g., Netflix, Uber [6]) and big data analytics contexts
[25] (e.g., in the CERN ATLAS project [26]). As for the performance, Apache
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Cassandra offers low-latency (typically less than a millisecond), high-bandwidth,
concurrent accesses to the stored data, while supporting easy scalability, high
availability and tunable data redundancy. Also, it does not require special
hardware (apart from fast disks and/or large memory) and thus it could even be
installed on the very same computing nodes, if needed.

3 Architecture

Our effort in rethinking the data loading pipeline is twofold, having both usability
and performance objectives:

• we aim at storing and accessing features and metadata uniformly, i.e., using
the same system (Cassandra DB in our case) for both;

• we want to allow scalable, flexible and fast network access to the data;

• we aim at offering dynamic, random access to the data, allowing full,
unrestricted access to the dataset (since every DL training algorithm based
on Stochastic Gradient Descent needs that data is sufficiently – ideally
uniformly – reshuffled after every epoch [10]);

• we want to decouple storage and splits management, so that different
datasets (also insisting on the same set of images) may be used, also concur-
rently, whenever needed (e.g., initial tests can be run on a smaller subset of
data, and subsets with different characteristics can easily be obtained and
explored by filtering according to metadata);

• we want to simplify the data distribution in parallel DL training.

3.1 Workflow

The workflow that we have designed to achieve the previous objectives is the
following:

• All the images that might be needed for DL are saved as BLOBs in the
Cassandra DB (details in 3.2), together with labels and metadata, and are
identified by a UUID, thus allowing collision-free, distributed, uncoordi-
nated data insertion [18].

• The DB is queried to get the full list of UUIDs and the metadata which are
required for creating the splits.

• The splits (expressed as lists of UUIDs) are then created automatically, based
on target values and constraints involving metadata (see 4).

• Finally, during the training and validation phases, when the data are needed
they are efficiently pre-fetched by their UUID, and fed to the DL library.
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3.2 Data model

When designing data models for NoSQL databases, particular attention must be
devoted to choosing which keys to adopt and which tables to denormalize, since
from these initial choices it will depend which queries will be allowed and how
the system will perform when answering them. To allow both a fast retrieval of
data as well as an easy access to metadata, we have chosen to organize datasets
in three tables:

metadata_by_nat Each record of this table contains all the metadata, the label,
and a randomly generated UUID. Its partition keys are the “natural” ones
of the dataset, plus the label (see example below).

data_by_uuid Records in this tables contain only the minimum data needed by
the training, i.e., the BLOB of the image files, the label, and finally the UUID
as primary key.

metadata_by_uuid This (optional) denormalized table contains all the fields of
metadata_by_nat, but it has the UUID as primary key.

This data organization is extremely flexible and can easily be adopted in most
image classification contexts.

3.3 CQL tables

The user has to identify the required metadata for each dataset that wants to use,
and create the appropriate tables to store data and metadata in the Cassandra DB.
The list of columns is then passed to the data loader (see Sec. 4 and the example
in Listing 1), that will accordingly use these columns when creating the splits.

As an example, here is a minimal CQL description of the tables that might be
needed for the automated tissue classification.
CREATE TABLE t i s s u e _ p a t c h e s . metadata_by_nat (

p a t i e n t _ i d tex t , // e . g . , P1234
slide_num int , // e . g . , 5 ( out of 10 , f o r t h i s p a t i e n t )
x int , // x coordinate within s l i d e
y int , // y coordinate within s l i d e
l a b e l int , // e . g . , 0 = normal , 1 = tumoral
patch_id uuid , // e . g . , 3d50c252 −9e14 −47 c3 . . .
PRIMARY KEY ( ( pa t ien t_ id , slide_num , l a b e l ) , x , y )

) ;

CREATE TABLE t i s s u e _ p a t c h e s . data_by_uuid (
patch_id uuid ,
l a b e l int ,
data blob , // image f i l e ( JPEG , TIFF , e t c . )
PRIMARY KEY ( ( patch_id ) )

) ;

CREATE TABLE t i s s u e _ p a t c h e s . metadata_by_uuid (
p a t i e n t _ i d tex t ,
slide_num int ,
x int ,
y int ,
l a b e l int ,
patch_id uuid ,
PRIMARY KEY ( ( patch_id ) )

) ;
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Figure 1: System architecture diagram of our data loader. Images are extracted
from the raw dataset and pre-processed to be inserted, together with relevant
metadata, in the Cassandra DB. The DB is subsequently queried to build the list
of splits and to fetch images and labels whenever needed by the DL application.

The metadata_by_nat table is used when creating the splits, and allows to efficiently
retrieve the full list of patients, slides and labels and to fetch the UUIDs of the
patches for any given patient/slide/label combination. Once we have these data
it is relatively easy1to ask the system, e.g., to create 5 splits, with different patients
in each split, using a total of 1 million patches with size ratios [5, 2, 1, 1, 1] among
the 5 splits, and keep balanced labels (1:1 normal/tumor ratio).

The splits are expressed as lists of UUIDs and, once they have been created,
they can easily be saved and loaded as needed. Subsequently, the training process
will only need to access the data_by_uuid table, via efficient queries to single-row
partitions. Note that more than one data table may be created, e.g., one might
also want to save a color-normalized dataset, along with the original one.

Finally, the optional metadata_by_uuid table can be used at later stages of the
DL workflow. E.g., when analyzing the training results one might want to trace
misclassified patches back to the slides from which they have been extracted, to
check for systematic errors in the original labeling.

4 Implementation

The data loader module is written in C++ and Python, and it is made up of three
main classes (as shown in the system architecture diagram of Fig 1):

CassandraListManager This high-level Python class takes care of creating the
splits, given the desired target parameters. Details in Sec. 4.1.

1The problem of optimally partitioning the dataset into splits is in general NP-hard. However,
since in practice optimality is not required, some quick heuristics can be adopted to obtain an
approximate solution [11].
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BatchPatchHandler This low-level C++ class (with Python bindings exposed via
pybind11 [23]) takes care of efficiently retrieving a batch of features and
labels. It accepts in input a list of UUIDs and applies data-augmentation
via the ECVL library [4], if needed. Details in Sec. 4.2.

CassandraDataset This is the main interface for using the data loader. It is
written in Python and offers simple methods to load split files and fetch
batches of data (features and labels). Its use is pretty straight-forward, as
can be seen in the minimal example in Listing 1.

Listing 1 Example of data-loader use

from cassandra_datase t import CassandraDataset
from cassandra . auth import PlainTextAuthProvider

## Cassandra c o n n e c t i o n p a r a m e t e r s
ap = PlainTextAuthProvider ( username= ’ user ’ , password= ’ pass ’ )
cd = CassandraDataset ( ap , [ ’ cassandra −db ’ ] )

## C r e a t e ( and s a v e ) l i s t o f s p l i t s
cd . i n i t _ l i s t m a n a g e r (

t a b l e = ’ t i s s u e _ p a t c h e s . metadata_by_nat ’ , i d _ c o l = ’ patch_id ’ ,
p a r t i t i o n _ c o l s =[ ’ p a t i e n t _ i d ’ , ’ slide_num ’ , ’ l a b e l ’ ] ,
s p l i t _ n c o l s =1 , num_classes =2)

cd . read_rows_from_db ( )
cd . i n i t _ d a t a t a b l e ( t a b l e = ’ t i s s u e _ p a t c h e s . data_by_uuid ’ )
cd . s p l i t _ s e t u p ( s p l i t _ r a t i o s = [ 7 , 2 , 1 ] , max_patches =1000000)
cd . s a v e _ s p l i t s ( ’ s p l i t s /1 M_3spl i ts . pckl ’ )

## One− l i n e a l t e r n a t i v e :
## l o a d an a l r e a d y e x i s t e n t l i s t o f s p l i t s
# cd . l o a d _ s p l i t s ( ’ s p l i t s / 1 M _ 3 s p l i t s . p c k l ’ )

epochs = 50
s p l i t = 0 # t r a i n i n g
cd . s e t _ b a t c h s i z e ( 3 2 )
for _ in range ( epochs ) :

cd . rewind_sp l i t s ( s h u f f l e =True )
for _ in range ( cd . num_batches [ s p l i t ] ) :

x , y = cd . load_batch ( s p l i t )
## f e e d f e a t u r e s and l a b e l s t o DL e n g i n e [ . . . ]

4.1 CassandraListManager – Split creation

The automatic creation of splits works as follows:

• First, the list of Cassandra DB partitions is read.

• Then, the list of UUIDs contained in each partition is read and they are
aggregated based on the chosen keys (e.g., patches are aggregated based on
patient_id, so that patches of the same patient will all belong to the same
split and thus will either be in the training or in the validation set).

• Each aggregated partition (group) is assigned to a split, so that the target
values for each split and class are approximately met. (In more detail, the
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desired target values are computed for each split/class combination and
groups are assigned in round robin to the splits, provided they do not
make them overflow. Finally, remaining groups are assigned to the splits
randomly.)

• Once a bag of groups for each split has been computed, the rows are
extracted in round robin from each group (to maximize diversity), until the
target values are reached (or no more rows are available).

Note that given the standardized way in which data are stored in the DB and
splits are formed (as lists of UUIDs), it is relatively easy to extend the split
creation process with custom code, using the full list of rows which can be
retrieved from the DB.

4.2 BatchPatchHandler – Performance optimizations

In order to increase the loader throughput, we have adopted the following
optimizations in our code:

• Data for each split are read in parallel by a thread pool (with 32 threads as
default).

• Data are prefetched in background, while the GPU is processing the previ-
ous (mini-)batch.

• Data augmentations are applied in background as well.

• Double-buffering is used to reduce the DB+network latency: i.e., the down-
load of a second batch starts while the first one is still in progress, thus
halving the average batch latency.

• Expensive system resources, such as threads and Cassandra connections,
are allocated lazily. This means that only splits effectively being used do
consume resources and it is thus possible to have many unused splits
without impacting the system performance (see application in Sec. 6).

5 Evaluation and discussion

In this section we analyze our data management strategy, with the objective of
identifying possible performance bottlenecks. In particular we want to measure
the communication performance both on the client (data loader) and server
(Cassandra) side. For the client side, we will measure the maximum throughput
achievable by a single data loader, when it does not have to wait for computations
on the retrieved data (i.e., cutting the actual GPU work). For the server side
we will verify that our Cassandra servers are able to saturate their outgoing
bandwidth, and that their retrieval time does not grow too much under heavy
traffic load.

To allow better reproducibility we have tested our data loader using the
standard ImageNet-2017 dataset (166 GB, 1,281,167 images, 1000 classes) [24].
Our test system is a cluster of 18 nodes, up to 2 running Cassandra DB and up
to 16 consuming the data. The nodes are equipped with Intel Xeon E5-2680 v3
CPUs (12 cores, 2 threads/core) and are connected via a 10 Gb/s Ethernet (used
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by Cassandra) and a 56 Gb/s InfiniBand (used by our MPI parallel DL trainer for
exchanging data, see Sec. 6). The nodes do not have GPUs, but since in this work
we are only interested in the data loading stage, we have simply simulated their
presence (by means of appropriate time sleeps) whenever needed.

For portability reasons we chose not to run on bare metal, but we have instead
adopted Docker containerization with Kubernetes orchestration, both for Cassan-
dra servers and for our data loader. The use of containers can introduce some
network overheads, but these are mostly negligible and more than compensated
for by the ease of deploying and managing the system [1].

5.1 Populating the DB

We have resized and center-cropped all the images to the standard resolution
224x224x3 (RGB) and saved them as BLOBs in the Cassandra DB, both as JPEG
(quality: 90, average size: 20 kB) and not compressed TIFF (size: 150 kB). This
data preprocessing step is easily parallelizable and scalable (no synchronizations
are needed) and we implemented it with PySpark [31].

5.2 Performance of the data loader (client)

We have first tested the raw performance of a “short-circuited” data-loader, i.e.,
one which reads as many batches as possible, without actually consuming the
data. Results are shown in Table 1 and Figure 2. For the smaller (JPEG) images
the throughput is between 11,000 and 18,000 images per second, whereas for the
not compressed TIFFs it is between 3800 and 4900 images per second, peaking
when the batch size is 128. Since the thread parallelism is always 32, the smallest
batch size pays the maximum latency out of 32 images, whereas, when the batch
size increases, the latencies are averaged between subsequent rounds of retrieval,
and hence the throughput increases (for example, if the batch size is 128, the
retrieval time of each thread is the sum of 4 sequential transfers). However, as
the batch size continues to grow, so does the stress on the Cassandra server
while serving a batch, increasing the retrieval latency, which in turn decreases the
overall throughput. This behavior is more evident in the case of uncompressed
images as shown in Figure 2. In fact, assuming full bandwidth and a conservative
network latency of 30 µs, transferring 20 KB and 150 KB on a 10 Gb Ethernet
takes, respectively, less than 50 µs and 150 µs. Comparing these network transfer
times with the DB retrieval times shown in Table 2, we can see how the latter
tend to dominate the overall communication time.

As for the computational resources required in the data loading we note that
they depend roughly on the transaction rate (assuming no data augmentation
is performed). At maximum throughput, transferring 18k JPEG/s results in
a CPU load of about 1900% (i.e., 19 threads at full speed, hence close to CPU
saturation), whereas when moving 5k TIFF/s the load is about 400%. Considering
that ResNet-50 [12], the standard network when testing the ImageNet dataset,
consumes about 200 images/s on an NVIDIA TITAN RTX GPU, we can see
that, depending on the chosen batch size, a single data loader can sustain about
50-90 GPUs, when transferring compressed JPEG, and 19-24 when using not
compressed TIFF.
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Table 1: Single data-loader performance (retrieving data from a single Cassandra
server).

Batch Image Time per Throughput
size size [kB] batch [ms] [img/s] [MB/s]

32 20 2.80± 0.018 11440 ± 70 230
64 20 4.87± 0.017 13150 ± 45 260

128 20 7.58± 0.024 16900 ± 55 340
256 20 13.9± 0.065 18400 ± 85 370
512 20 27.9± 0.15 18340 ± 95 370

32 150 7.07± 0.076 4530 ± 50 680
64 150 13.2± 0.13 4830 ± 45 720

128 150 26.3± 0.40 4870 ± 70 730
256 150 61.3± 1.3 4180 ± 90 630
512 150 132± 1.9 3870 ± 60 580

Figure 2: Throughput (MB/s) of the “short-circuited” data-loader (reading as
many batches as possible) at different batch sizes. The graph presents two plots,
showing the data rate for compressed (JPEG, dashed line) and not compressed
(TIFF, solid line) images. As explained in 5.2, the not compressed case exhibits
some performance degradation as the batch size increases.
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5.3 Performance of Cassandra DB (server)

In this section we investigate the behavior of Cassandra server nodes under heavy
load. We are interested in particular in seeing whether they can saturate the
outgoing bandwidth (10 Gb/s) when flooded by data requests, and if they can
service these requests while keeping the DB latency stable. To this purpose we
have measured the distribution of Cassandra retrieval latency (via the nodetool

tablehistograms command) both with 1 and 16 active, short-circuited data
loaders (with batch size = 256) which try to read as many data as possible from
the servers. The results, in Table 2, show that the network can be saturated
both when retrieving compressed and not compressed images and that read
latencies up to the 95th percentile remain almost constant even when the network
is saturated, whereas the 99th percentile grows approximately by a factor 2. As
for the computational intensity, on a heavy-loaded Cassandra node we measure
1000% CPU usage when retrieving JPEGs and 700% with TIFFs.

The image rates at saturation are about 50,000 images/s for 20 kB JPEGs
and 7000 images/s for not compressed 150 kB TIFFs, which amounts to serving
enough data to feed, respectively, 250 and 35 GPUs, per Cassandra node.

5.4 Scaling up/down Cassandra DB

Cassandra DB allows for nodes to be added/removed to/from an existing ring
(i.e., a Cassandra cluster), without any service disruption. We have verified
that, when activating a second Cassandra node under heavy load, the outgoing
bandwidth on both nodes is still saturated, and that when the second node is
subsequently deactivated the load on the first one remains stable. Note that
the scaling up/down of the ring has been performed while 16 loaders were
continuously retrieving data from the DB, without any service interruption.

5.5 Discussion

5.5.1 Performance comparison with parallel filesystems

Our data loader, compared to high-end parallel filesystems, has a major per-
formance disadvantage: communications to Cassandra servers are TCP based,
whereas in parallel filesystems there can be RDMA transfers directly from the
storage to the consuming nodes (if the network supports them) and this impacts
both network latency and CPU usage. However, since the retrieval latency dom-
inates the network one, the performance gap is not too wide: for example, a
parallel filesystem installation using BeeGFS has latency in the order of 100 µs
and can support up to 250,000 operations/s per node [3]. In our case, we can
fetch 150 KB images with latency of about one millisecond and we can reach
bandwidth saturation at rate of 50,000 transfers/s per server node for 20 KB
images, using a 10 GbE network and general purpose nodes. Parallel filesystem,
on the other side, do not simplify the management of splits and metadata, as our
approach does. Overall, we think that our design can be of particular interest for
small and medium size systems, showing a good trade-off among performance,
cost and ease of deployment.
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(a) Compressed images

(b) Not compressed images

Figure 3: Throughput of the Distributed Deep Learning use case. The rows repre-
sent the results, using compressed (JPEG) and not compressed (TIFF) images. The
columns show the different behavior as the number of worker per node increases
from 1 (on the left most column) to 4. For all the graphs the horizontal and
vertical axis are duplicated to show complementary information. The horizontal
axes show respectively the number of actual workers used by the application
(bottom) and the number of active nodes the workers are running on (top). The
vertical axes show two different measures of throughput: the number of images
per second processed (left axis) and the data rate in MB per second (right axis).
Each graph presents two plots, showing the training and the validation tasks.
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Table 2: Cassandra read latencies at medium load and at network saturation
(10 Gb/s Ethernet). Batch size = 256. The leftmost tables refer to 1 data loader,
whereas the rightmost ones to 16 data loaders.

Percentile Read latency
[%] [µs]

50 88.15
75 105.78
95 152.32
98 182.79
99 263.21

(a) JPEG, 370 MB/s

Percentile Read latency
[%] [µs]

50 88.15
75 105.78
95 152.32
98 263.21
99 454.83

(b) JPEG, 1060 MB/s

Percentile Read latency
[%] [µs]

50 454.83
75 545.79
95 943.13
98 1629.72
99 1955.67

(c) TIFF, 630 MB/s

Percentile Read latency
[%] [µs]

50 454.83
75 545.79
95 1131.75
98 1955.67
99 4055.27

(d) TIFF, 1060 MB/s

5.5.2 Floating point vs integer data

Our use case utilizes integer data (i.e., RGB images), but in many scientific
application this does not happen: for example one might apply DL techniques to
general tensors, where each spatial point is associated with floating point data
(e.g., 64-bit), and, if the data are not compressed, an 8x increase in the required
bandwidth has to be taken into account (compared to our not compressed TIFF
case). This means that a 10 GbE can sustain only up to 4 GPUs. One approach
that could be explored to help scaling the computation in this case (apart from
using a faster network connection) would be using each computing node also as a
Cassandra server, somehow resembling the solution adopted in [15] for synthetic
data.

6 Distributed Deep Learning

An application that can benefit hugely from our data loading solution is dis-
tributed DL [2]. In this section, after a brief introduction to parallelization
methods for DL, we present a simple distributed training that leverages our data
management strategy and we analyze its implementation and performance.

6.1 Data and model parallelism

The two main approaches to parallelize DL algorithms are data and model
parallelization [2].

A general workflow for data parallelism is the following:
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• the neural network (NN) to be trained is copied to all the computational
devices (e.g., GPUs);

• at every iteration, the current (global) mini-batch of samples is divided into
chunks (local mini-batches), that are mapped to the local copies of the NN;

• at the end of each iteration the local gradients, computed after a back-
propagation pass, are aggregated among all (or almost all) the workers, to
compute the global gradient and update the network parameters.

In a distributed system the average of the gradients is typically implemented
with an All-Reduce operation, followed by a local update of the parameters. This
synchronization step affects the parallel efficiency of the distributed training, thus
limiting the scalability of the computation. Another, subtler, scalability issue is
related to the mini-batch size: as the parallelism increases, so does the global
batch size and this can affect the generalization capability of the model [2].

In model parallelism the computations of different parts of a neural network
are performed by different devices (e.g., GPUs). In this case the mini-batch size is
independent of the parallelism, and hence there is no reduction of generalization
capabilities as in data parallelism. On the other hand, the main drawback of
this approach is given by the high communication costs due to the dependencies
among different parts of the NN. Some enhanced architectures have been pro-
posed in literature to mitigate this overhead by using redundant computations,
however model parallelism is typically used when the NN cannot fit on a single
computational device or if the particular NN architecture (e.g., LSTM models)
can be efficiently split across different devices.

6.2 Decentralized data distribution

In order to stress our data loading pipeline, we have implemented a basic version
of synchronized data parallelism for the EDDL library [4], extending the SGD
optimizer by using Open MPI to compute the average of gradients, the losses and
the performance metrics among all the parallel ranks. Note that this approach
applies transparently to both inter- and intra-node communications.

We chose to keep a copy of synchronized parameters on each worker (an
approach also called mirrored strategy [9]), instead of using a centralized parame-
ters server, as we are not interested on implementing more complex distributed
schemas like asynchronous updates. We also chose to update NN parameters at
each iteration to closely mimic the behavior of the original SGD algorithm.

Our data management strategy allows to easily distribute (and uniformly,
globally permute) data among the MPI ranks, without the need for centralized
process, as it is exemplified by the following procedure for a parallel system of
size n:

• At startup, each rank reads the full list of the images hosted by the Cas-
sandra servers. This can be done either by querying directly the DB or by
reading a pre-shared file (of size about 60 MB for ImageNet).

• The data loader and the network on each rank are initialized with the same
seed (e.g., broadcasted by rank 0).

• Each data loader creates 2n splits: n for training and n for validation (as
described in § 4.1).
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• Rank i will read training data from split i and validation data from split
n + i.

• At the end of an epoch the UUIDs in the training splits are shuffled (again,
using the same seed on each rank) and the next epoch can start.

Some observations:

• In EDDL is currently impossible to set the seed for the network initialization,
hence at startup we broadcast the network parameters from rank 0, to be
able to start the training everywhere in the same state.

• Since resources consumed by splits are lazily allocated, the load on each
rank remains constant when the parallelism grows.

6.3 Simulation of multi-GPU training

We have adapted our MPI distributed learner to simulate the load on the Cassan-
dra servers induced by different training configuration (up to 16 nodes, up to 4
GPUs per node) in the following way:

• The GPU computations have been replaced by appropriate time sleeps,
obtained by actual performance measures on an NVIDIA TITAN RTX GPU.

• The communications are normally carried out, using the UCX module [29]
(in our system: inter-node via InfiniBand, intra-node via shared memory).

We have chosen to assign 6 threads per MPI rank (i.e., options --map-by

node:pe=6 --bind-to core of mpirun) and we have specified in the hostfile a
number of slots per each node equal to the number of simulated GPUs.

After the initial setup phase, in which the splits are created, each worker
starts the loop across the epochs. During each epoch two inner loops across
the local batches are performed, respectively to train and validate the model.
From the point of view of the data loader the operations performed are identical,
because the only difference is the split index used to get the local batch. However,
the operations simulated on the retrieved data are different. The training loop
involves a local forward and backward propagation (simulated by time sleeps),
followed by the gradient average operation (which is instead performed in full,
exactly as in the case where GPUs are available), run to keep the network copies
synchronized at the end of every iteration. The validation loop, on the other hand,
computes only a local forward pass (simulated) followed by a global average for
losses and metrics (fully performed). Since these average operations involve only
floating point communications, their overhead is negligible and the validation
task behaves as an embarrassing parallel algorithm and scales linearly (up to
saturation of the outgoing bandwidth of the Cassandra servers). Accordingly to
the difference in the operations, the sleeps for training (forward and backward)
and validation (only forward) are different, so as to match the actual values we
have measured on GPUs.

The throughputs obtained by simulating distributed trainings with com-
pressed and not compressed images are shown in Tables 3 and 4, and Figures 3a
and 3b. As can be seen by the data, the validation measurements show a linear
relationship between the number of running workers and the throughput. There
is an exception for the validation of not compressed images with 64 workers,
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Table 3: Data loading during distributed training. Compressed files (JPEG, 20 kB),
batch size = 28.

# Nodes Node Training Validation
load [img/s] [MB/s] [img/s] [MB/s]

1 1 194 3 340 6
2 1 263 5 677 13
4 1 479 9 1353 27
8 1 912 18 2710 54

16 1 1739 34 5420 108

1 2 279 5 681 13
2 2 487 9 1356 27
4 2 918 18 2713 54
8 2 1723 34 5428 108

16 2 3303 66 10848 216

1 4 478 9 1363 27
2 4 902 18 2725 54
4 4 1648 32 5422 108
8 4 3101 62 10841 216

16 4 5908 118 21602 432

where the throughput saturates the bandwidth of the 2 Cassandra servers being
used.

7 Software availability

Our software is free, distributed under the MIT License. The code used in this arti-
cle is available in the branch distributed of the following GitHub repository: https:
//github.com/deephealthproject/promort_pipeline. Up-to-date code, as well
as future updates, can be found here: https://github.com/deephealthproject/
CassandraDL.

8 Conclusion and future work

In this work we have introduced a novel strategy to efficiently and scalably
manage data in DL processes by leveraging Apache Cassandra NoSQL DB, and
we have shown the ease of use and performance of our newly developed data
loader in the context of image classification. In the future we would like to extend
our data loader to include more DL frameworks (e.g., TensorFlow or PyTorch)
and extend its functionalities to include, e.g., support for image segmentation
problems.
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Table 4: Data loading during distributed training. Not compressed files (TIFF,
150 kB), batch size = 28. Throughput during the validation phase in the last row
(16 · 4 = 64 MPI ranks) saturates the combined bandwidth (20 Gb/s) of the 2
Cassandra servers in our ring.

# Nodes Node Training Validation
load [img/s] [MB/s] [img/s] [MB/s]

1 1 195 29 340 51
2 1 263 39 677 101
4 1 478 71 1354 203
8 1 916 137 2705 405

16 1 1747 262 5414 812

1 2 274 41 677 101
2 2 492 73 1355 203
4 2 913 137 2712 406
8 2 1733 260 5421 813

16 2 3310 496 10802 1620

1 4 472 70 1350 202
2 4 891 133 2706 405
4 4 1655 248 5415 812
8 4 3123 468 10788 1618

16 4 6059 908 14198 2129 ∗
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