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ABSTRACT

Stable carbon isotopic (3'3C) minimum events have been widely described in marine archives recording
the properties of thermocline and intermediate waters during glacial terminations. However, the
mechanisms associated with these events remain ambiguous. Here we present three high temporal
resolution deep-dwelling planktonic foraminifera 3'>C records from the main thermocline and one
benthic 3"3C record from the modern core of Antarctic Intermediate Water (AAIW). Our sediment cores
are distributed along the western South Atlantic from the equator to the subtropics, with the longest
record spanning the last ~300 kyr. The results show that 3'3C minimum events were pervasive features of
the last three glacial terminations and Marine Isotope Stage 4/3 transition in the western South Atlantic.
Two distinct mechanisms were responsible for the 3'C minima at the thermocline and intermediate
depths of the Atlantic, respectively. We suggest that the 5'3C minimum events at the thermocline were
mostly driven by the thermodynamic ocean-atmosphere isotopic equilibration, which is supported by
calculated 3'3C of dissolved inorganic carbon in the subtropical western South Atlantic as well as by
previously published model simulations. On the other hand, intermediate depths 3'>C minimum events
in the tropics were likely caused by the slowdown of the Atlantic meridional overturning circulation and
the associated accumulation of isotopically light carbon at mid and intermediate depths of the Atlantic
Ocean.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

stratification (e.g., Du et al,, 2018; Basak et al., 2018) and the
intensification of upwelling in the SO have been linked to the

Upwelling in the Southern Ocean (SO) connects the deep ocean advection of nutrient-rich >C-depleted waters from the deep ocean

with the atmosphere, by drawing deep waters to the SO surface
(Marshall and Speer, 2012). The deep ocean is hypothesized to have
been the main sink of atmospheric CO;, during glacial periods, as
evidenced by the accumulation of 3C-depleted remineralized car-
bon in poorly ventilated deep waters below ~2500 m water depth
(Hodell et al., 2003; Howe et al., 2016a; Curry and Oppo, 2005).
Across glacial terminations, the breakup of deep-ocean
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to the SO surface (Anderson et al., 2009; Toggweiler et al., 2006).
This was followed by atmospheric CO, increase and stable carbon
isotopic (3'3C) minimum events at thermocline and intermediate
depths of the oceans (between 100 and 1200 m water depth) (e.g.,
Martinez-Boti et al., 2015; Ziegler et al., 2013; Schmitt et al., 2012;
Spero and Lea, 2002). A widely held hypothesis behind these 3'3C
minimum events is the northward transport of 13C-depleted carbon
from the SO surface towards the equatorial regions by Subantarctic
Mode Water (SAMW) and Antarctic Intermediate Water (AAIW)
(Spero and Lea, 2002). This mechanism is named the “oceanic
tunnel” (Liu and Yang, 2003). In the Atlantic Ocean, the “oceanic
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tunnel” hypothesis is supported by the occurrence of 3C mini-
mum events in thermocline and intermediate depth records from
the tropical region (e.g., Poggemann et al., 2017; Mulitza et al.,
1998). However, 3'>C minimum events have also been observed
in regions far from the influence of SAMW and AAIW as, for
example, in the North Atlantic (e.g., Lynch-Stieglitz et al., 2019;
Rickaby and Elderfield, 2005). Additionally, intermediate depth
records in subtropical latitudes of the Southern Hemisphere lack
evidence of 3'3C minimum events. For instance, depth transects
along the southern Brazilian margin (~27°S) do not support the
presence of a'>C-depleted northward flowing AAIW during
Termination I (Lund et al., 2015; Tessin and Lund, 2013; Oppo and
Horowitz, 2000). Accordingly, other mechanisms have been
raised to explain the occurrence of the 3'>C minimum events.

The outgassing of >C-depleted CO, to the atmosphere during
glacial terminations resulted in an atmospheric 3C depletion
similar to that observed in the upper ocean (Eggleston et al., 2016;
Schmitt et al., 2012). Consequently, it has been suggested that
temperature-mediated ocean-atmosphere isotopic equilibration
could explain the widespread occurrence of 8'3C minimum events
in the ocean (Shao et al, 2021; Lynch-Stieglitz et al., 2019;
Ninnemann and Charles, 1997). According to this mechanism, the
ocean-atmosphere isotopic equilibration would globally imprint
the 8!3C minimum signal in the upper ocean and possibly at in-
termediate and mid-depth waters at the formation region of these
water masses.

Alternatively, 5'>C minima at intermediate depths of the tropical
Atlantic may also have been caused by changes in the dynamics of
the Atlantic meridional overturning circulation (AMOC) during
glacial terminations, as indicated by model simulations (Menviel
et al,, 2018; Schmittner and Lund, 2015). Some studies have sug-
gested that the reduced ventilation rate of North Atlantic Deep
Water (NADW), which forms the lower limb of the AMOC, caused
the observed '3C depletion in the mid-depth of the Atlantic Ocean
during the last glacial termination (Campos et al., 2020; Lacerra
et al., 2017; Schmittner and Lund, 2015; Lund et al., 2015).
Accordingly, this northern sourced '3C-depletion may have
expanded upwards into intermediate depths (~1000 m water
depth) in the tropical Atlantic (Voigt et al., 2017; Freeman et al.,
2015). Ultimately, this could imply a northern origin for the 3'3C
minimum signal at intermediate depths of tropical regions.

Here we investigate the occurrence and origin of the 3'3C
minimum events at the thermocline and intermediate depths of the
western South Atlantic during the last three glacial terminations.
We present three new high-resolution planktonic foraminiferal
313C records from South Atlantic Central Water (SACW) and one
record from AAIW extending from the equator to the southern
subtropical latitudes along the Brazilian margin (Fig. 1). Our results
point to two distinct and independent mechanisms governing the
3'13C minimum events at the thermocline and intermediate depths.
At the thermocline, 3C-depletions were mostly driven by the
ocean-atmosphere isotopic equilibration, while AMOC slowdown
was mostly responsible for the '>C-depletion at intermediate
depths.

2. Regional settings

The South Atlantic upper-ocean circulation is dominated by the
South Atlantic Subtropical Gyre (SASG) (Fig. 1a). The northernmost
and the southernmost limits of the SASG are marked by the South
Equatorial Current (SEC) and the South Atlantic Current (SAC),
respectively. The westward-flowing SEC gives rise to the
southward-flowing Brazil Current (BC) and the northward-flowing
North Brazil Undercurrent and North Brazil Current. At about 38°S,
the BC converges with the northward-flowing Malvinas Current,
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giving rise to the SAC that flows eastwards. Ultimately, the SAC
feeds the SEC, which returns to the Brazilian coast, closing the gyre
(Peterson and Stramma, 1991).

The water masses filling thermocline and intermediate depths
of the western South Atlantic are SACW and AAIW (Fig. 1b),
together named Southern Ocean intermediate waters (SOIWSs). The
SACW occupies the South Atlantic thermocline between approxi-
mately 100 to 500 m water depth. This water mass shows wide
temperature (5 °C—20 °C) and salinity (34.3—36) ranges (Stramma
and England, 1999). A portion of SACW is formed in the Brazil-
Malvinas Confluence zone (BMC) region at the subtropical
convergence (Sprintall and Tomczak, 1993). During austral winter,
the thick and homogeneous SAMW subducts in the subtropical
convergence, producing SACW, which moves eastward within the
SAC and recirculates in the SASG (Stramma and England, 1999). In
the southeast Atlantic, another portion of SACW is formed by the
injection of Indian Ocean waters into the South Atlantic in the
Agulhas Current retroflection region (Poole and Tomczak, 1999;
Sprintall and Tomczak, 1993; Gordon, 1986). Below the SACW,
AAIW is marked by minimum salinity between approximately 500
to 1500 m water depth (Fig. 1b). The temperature and salinity of the
AAIW range between 2 °C and 6 °C and 33.8 to 34.8, respectively
(Emery and Meincke, 1986). AAIW is mainly formed by overturning
convection in the extreme east of the South Pacific Ocean, enters
the southwestern Atlantic through the Drake Passage, and is carried
northward in the Malvinas Current (England et al., 1993). Northeast
of the Drake Passage and at the BMC, mixing and eddy formation
inject AAIW into the South Atlantic subsurface (Stramma and
England, 1999; Talley, 1996). Additionally, substantial amounts of
AAIW enter the Atlantic from the Indian Ocean through Agulhas
Current leakage around the southern tip of Africa (Stramma and
England, 1999).

Below AAIW, the NADW fills the mid-depth of the Atlantic
Ocean between ~1500 and 4000 m water depth. In the modern
ocean, the core of NADW is centered at 2400 m water depth
(Fig. 1b). However, during the Last Glacial Maximum (LGM), NADW
is estimated to have shallowed to ~1800 m water depth (Gebbie,
2014). This water mass is formed in high latitudes of the North
Atlantic through buoyancy loss and convection of dense upper
ocean waters in the Labrador and Nordic Seas. NADW is featured by
a salinity maximum (above 34.9) at mid-depth of the Atlantic
Ocean (Fig. 1b) and a temperature ranging between 2 and 4 °C
(Tomczak and Godfrey, 1994).

The global deep ocean circulation can be separated in the upper
and lower cells (Toggweiler et al., 2006; Talley, 2013). Over the SO,
the westerlies force northward Ekman transport, which is
compensated by the upwelling of Circumpolar Deep Water (CDW)
in the Antarctic Zone (Marshall and Speer, 2012; Toggweiler and
Samuels, 1995). In the upper cell, which is more limited to the
Atlantic Ocean, SOIWs composed by the lightest portion of CDW
will feed the formation of the NADW in the North Atlantic. In the
lower cell, the densest portion of CDW moves towards the Antarctic
continental shelf to form Antarctic Bottom Water (AABW), which
flows northward, occupying the ocean abyss below approximately
4000 m water depth (Pellichero et al., 2018; Abernathey et al., 2016;
Talley, 2013). In the modern ocean, there is an interplay between
these two cells (Talley, 2013).

The spatial distribution of South Atlantic stable carbon isotopic
composition of dissolved inorganic carbon (33Cpyc) at 250 m water
depth (Fig. 1a) reveals the oligotrophic and high §3Cpic SASG
(warm tones in Fig. 1a), while in the equatorial and eastern tropical
Atlantic (Guinea and Angola domes), reduced ventilation and high
productivity and remineralization of organic carbon result in
13Cpjc-depleted subsurface waters (cold tones in Fig. 1a). The
meridional 3'3Cpjc section from the western tropical and South
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Fig. 1. Location of the sediment cores analyzed in this study (pink diamonds) and other sediment cores discussed within the text (green triangles). a) Atlantic Ocean pre-industrial
stable carbon isotopic composition of the dissolved inorganic carbon (3'3Cpic) at 250 m water depth (Eide et al., 2017). Black arrows schematically represent the large-scale
geostrophic currents between 100- and 500 m water depth. The dashed line depicts the Subantarctic and Polar Fronts (Orsi et al., 1995). Orange arrows depict the Agulhas
leakage rings (adapted from Stramma and England, 1999). BC: Brazil Current; EUC: Equatorial Under Current; MC: Malvinas Current; NBC: North Brazil Current; NECC: North
Equatorial Countercurrent; SAC: South Atlantic Current; SEC: South Equatorial Current; SECC: South Equatorial Countercurrent. b) Western Atlantic Ocean meridional section of
salinity (Zweng et al., 2018); c) Western Atlantic Ocean meridional section of the pre-industrial 3*Cpyc (Eide et al., 2017). In both sections, AABW: Antarctic Bottom Water; AAIW:
Antarctic Intermediate Water; CDW: Circumpolar Deep Water; NADW: North Atlantic Deep Water; SACW: South Atlantic Central Water. In all panels, purple diamonds indicate
sediment cores GL-1248, GL-1180, and GL-1090 (this study), while green triangles indicate the sediment cores M125-95-3 (Campos et al., 2020), GS07-150-17/1 GC-A (1 GC-A in the
figure) (Freeman et al.,, 2015), M78/1-235-1 (Poggemann et al.,, 2017), KNR159-5-90GGC (Lund et al., 2015), KNR-159-5-36GGC (Tessin and Lund, 2013), and MD02-2588 (Ziegler
et al., 2013). The figure was partially generated using the software Ocean Data View (Schlitzer, 2017). (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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Atlantic Ocean (Fig. 1c) exhibits the pattern of >C-depletion at
thermocline and intermediate depths in the tropics. Oppo et al.
(2018) show that remineralization is responsible for up to 1%o of
313Cpic depletion at thermocline and intermediate depth in the
western tropical Atlantic. Approximately, 60% of this reminerali-
zation occurs near the formation site of AAIW, while the rest occurs
as AAIW advects northward. The vertical 3'3Cpjc profile at about
20°S is marked by a decrease from the oligotrophic SASG (~1.5%o)
downward through the SACW and AAIW until reaching the mini-
mum of ~0.7%o at 1300 m water depth, reflecting the influence of
Upper Circumpolar Deep Water. Below that, 3'3Cpc increases again
due to the 3Cpic-enriched NADW (~1%o) that flows southward
between 1500 and 4000 m water depth. Finally, in the South
Atlantic abyss, the 3Cpc-depleted AABW (~0.5%o) flows northward,
underlying NADW.

3. Methods
3.1. Sediment cores

In this study, we present new data from sediment cores GL-1248
(0°55'20” S, 43°24'10” W, 2264 m water depth, 19.29 m long) from
the Brazilian equatorial margin, GL-1180 (8°27'18" S, 33°32/53"” W,
1037 m water depth, 17.32 m long) from the Brazilian tropical
margin and GL-1090 (24°55'12” S, 42°30'36” W, 2225 m water
depth, 19.14 m long) from the Brazilian subtropical margin (Fig. 1).
All sediment cores were provided by the Brazilian oil company
Petrobras. A visual analysis of the core sections does not indicate
any sedimentation disturbance, except for a hiatus between 2.18
and 1.70 m in core GL-1248 (Venancio et al., 2018). The three cores
were sampled at 2 cm resolution with sample volume of approxi-
mately 10 cm>. Samples were wet-sieved to retain the fraction
larger than 63 pm. The retained material was dried at 50 °C for 24 h
and stored in acrylic containers. Foraminifera shells were hand-
picked using a binocular microscope.

3.2. Age model

We used the published age model of core GL-1248 (Venancio
et al.,, 2018), based on twelve calibrated radiocarbon ages and the
visual alignment of its Ti/Ca ratio to the Greenland stable oxygen
isotope (5'80) record (NGRIP community members, 2004), using
the extended Greenland Ice Core Chronology (GICCO5modelext)
(Wolff et al., 2010). This alignment assumes that Ti/Ca peaks
resulting from increased precipitation in the northeast Brazilian
region correspond to North Atlantic cold events (e.g., Zhang et al.,
2017). GL-1248 was sampled relatively close to the Parnaiba River
mouth and was significantly influenced by terrigenous input during
periods of low sea levels and high precipitation periods in north-
eastern Brazil (Venancio et al., 2018). The age model was built using
the software Clam 2.2 (Blaauw, 2010), with GL-1248 spanning the
last 124 ka, and was described in detail by Venancio et al. (2018).

The age model of core GL-1180 was published by Nascimento
et al. (2021) and is based on six calibrated radiocarbon ages (Sup-
porting Information, Table S1) and the alignment of the benthic
3180 record of Cibicides spp. with the global 880 stack LRO4
(Lisiecki and Raymo, 2005) (Table S2 and Fig. S1). The benthic 5'80
tie point uncertainties were calculated following the recommen-
dations by Govin et al. (2015). The calculation used the un-
certainties of the reference stack and of the alignment procedure, as
well as the resolutions of the reference stack and of the target re-
cord. Radiocarbon ages were calibrated using the IntCal13 calibra-
tion curve (Reimer et al., 2013), with a reservoir effect of 400 + 200
without any additional local reservoir effect. The age model (Fig. S1)
was built using the software Bacon v 2.3 (Blaauw and Christen,
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2011); it shows that sediment core GL-1180 spans the last 300
kyr. More details about the age model can be found in Nascimento
et al. (2021).

For core GL-1090, we use the age model previously published by
Santos et al. (2017) and improved by Ballalai et al. (2019) and Santos
et al. (2020). It is based on ten calibrated radiocarbon ages and the
alignment of its benthic 3'80 record of (Cibicides wuellerstorfi) with
the benthic 8'80 records from the reference curves LRO4 (Lisiecki
and Raymo, 2005) and MD95-2042 (Govin et al.,, 2014). The age
model was built using the software Bacon v 2.3 (Blaauw and
Christen, 2011), with GL-1090 covering the last 182 kyr.

3.3. Foraminifera stable carbon isotopes (6'°C) analysis

Our 33Cpjc reconstruction of SACW is based on the §'3C data
from thermocline-dwelling foraminifera Neogloboquadrina duter-
trei (GL-1248), Globorotalia truncatulinoides (dextral) (GL-1180),
and Globorotalia inflata (GL-1090). The apparent calcification depth
(ACD) of N. dutertrei was estimated to be 150 m in the region of core
GL-1248 (Venancio et al., 2018), in line with previous estimates in
the tropical Atlantic (Cléroux et al., 2013; Farmer et al., 2007; Steph
et al., 2009). G. truncatulinoides presents a wide vertical migration
range during its life cycle but primarily calcifies at the main ther-
mocline (Steph et al., 2009; Regenberg et al., 2009; Cléroux et al.,
2007; LeGrande et al., 2004), which is consistent with an ACD of
~250 m in the region of core GL-1180 (Nascimento et al., 2021). In
the western South Atlantic, the G. inflata ACD stably ranges from
350 to 400 m water depth (Groeneveld and Chiessi, 2011).

Between 5 and 10 shells of N. dutertrei (350—415 um),
G. truncatulinoides (dextral; 300—425 um), and G. inflata
(250—300 pm) were handpicked from samples of cores GL-1248,
GL-1180, and GL-1090, respectively. The sampling resolution var-
ied between 2 and 4 cm downcore.

Our reconstruction of seawater 8'3C for intermediate depth is
based on 8'3C from benthic foraminifera Cibicides spp. from core
GL-1180 (1037 m water-depth). To do so, between 5 and 10 shells of
Cibicides spp. (300—350 um), composed by Cibicides pachyderma,
Cibicides refulgens, and Cibicides kullenbegi (Supporting Informa-
tion, Text S1), were handpicked at 4 cm resolution.

Analyses of planktonic foraminifera from the cores GL-1248 and
GL-1090, and benthic foraminifera from GL-1180 were carried out
in the Center for Marine Environmental Sciences (MARUM), Uni-
versity of Bremen, Germany, using a Finnigan MAT 251 isotope ratio
mass spectrometer (IRMS) equipped with an automated carbonate
preparation device (Kiel I). Data were calibrated against the in-
house standard (Solnhofen limestone), and the standard devia-
tion of the in-house standard over the measurement period was
0.03%o. Analyses of planktonic foraminifera from core GL-1180 were
performed in the Paleoceanography and Paleoclimatology Labora-
tory, University of Sao Paulo, Brazil, using a Thermo™ Scientific
MAT 253 IRMS coupled to a Thermo™ Kiel IV automated carbonate
preparation device (Kiel IV) (Crivellari et al., 2021). Data were
calibrated against the NBS 19 standard. The standard deviation of
NBS 19 over the measurement period was 0.02%o. All data are
presented in parts per thousand (%o) relative to the Vienna Pee Dee
belemnite (VPDB).

4. Results

The 3'3C of N. dutertrei (GL-1248) ranges between 1.11 and
2.29%0 (mean 1.70 + 0.17%o), while the §'3C range is from 0.23 to
1.93%0 (mean 1.21 + 0.21%o) for G. truncatulinoides (GL-1180), and
between 0.06 and 1.47%o (mean 0.80 + 0.19%o) for G. inflata (GL-
1090) (Fig. 2). Planktonic 3'3C records from all studied cores present
a similar pattern with remarkable negative excursions during
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Fig. 2. Carbon isotopic composition (3'C) of planktonic and benthic foraminifera analyzed in this study. a) 3'>C of Neogloboquadrina dutertrei (GL-1248, green line), Globorotalia
truncatulinoides (GL-1180, blue line), Globorotalia inflata (GL-1090, orange line), Cibicides spp. (GL-1180, dark-red line). Blue bars indicate 3'3C minimum events during glacial
terminations and the Marine Isotope Stage (MIS) 4/3 transition. Dark colored lines depict the three points running average, while light colored lines depict the original data. Zooms
of deep-dwelling and benthic 3'C records for b) zoom into Termination I (TI); ¢) zoom into MIS4/3 transition; d) zoom into Termination Il (TII); e) zoom into Termination IlIb (TIIIb)
colors as in a). MIS are indicated at the top of panel a. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

glacial terminations that only recover after the onset of the
following interglacial period (Fig. 2). The records show little dif-
ference between glacial and interglacial 5'3C values. A prominent
negative excursion is also observed during the transition between
Marine Isotope Stage (MIS) 4 and MIS 3. In general, the benthic 3'3C
record from core GL-1180 is similar to the thermocline 3'3C records
(Fig. 2a). The average benthic 5'3C is 0.64 + 0.17%o, and the values
range between 0.02 and 1.49%, similar to G. inflata 3'3C from core
GL-1090.

Termination IlIb (Fig. 2d) is only recorded in sediment core GL-
1180, which covers the last 300 kyr. G. truncatulinoides and Cibicides
spp. 813C records show a drop of 0.4 and 0.5%o, respectively, relative
to MIS 8. 83C minima are also observed during Termination Illa at
the transition between MIS 7 d and MIS 7c. A more pronounced
33C minimum occurred during Termination 11 (Fig. 2c), when

G. truncatulinoides and G. inflata 83C values drop by ~0.8 and
~0.4%o, respectively. Similarly, during Termination II, the benthic
313C record dropped by ~0.6%o relative to MIS 6 (Fig. 2c). The
N. dutertrei 3'3C record spans the last 124 ka only, and its oldest
samples indicate that 3!3C is recovering from a minimum of at least
1.40%o to reach interglacial values of ~1.8%o at 121 ka. All records
show negative 8'3C excursions during MIS4/3 transition. These
excursions are equivalent to those observed during glacial termi-
nations. The largest drops are exhibited in N. dutertrei (GL-1248)
and G. inflata (GL-1090), where §'3C values decrease by ~0.5%o.
G. truncatulinoides and Cibicides spp. (GL-1180) show a 3'3C
decrease of ~0.3%.. During Termination I, G. inflata and
G. truncatulinoides 5'3C drops approximately 0.4%o relative to MIS 2
(Fig. 2b). G. truncatulinoides 5'3C presents several short-lived 3'3C
drops within a broad negative excursion that started at ~18 ka. For
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G. inflata and G. truncatulinoides records, fully interglacial values are
reached at ~7 ka. GL-1248 presents a hiatus between 29 and 14 ka,
but we note that 33C is low at the end of Termination I and reaches
interglacial values in the mid-Holocene. During Termination I, the
313C record of Cibicides spp. shows two negative excursions of up to
~0.4%o relative to the Last Glacial Maximum (LGM) (Fig. 2b).

5. Discussion
5.1. 6"3C values of planktonic foraminifera

We present 3'3C values of three deep-dwelling planktonic
foraminifera species in order to reconstruct 313Cpyc of thermocline
waters in the western South Atlantic. Although 3'3C of the calcite
reflects 83Cpc, it is not in isotopic equilibrium with seawater
(Ravelo and Hillaire-Marcel, 2007). Offsets between 3'>Cpjc and
313C of calcite are related to abiotic kinetic fractionation, which
causes an offset of 1.0 + 0.2%. (Romanek et al., 1992), changes in
foraminifera metabolic rate (Bemis et al., 2000), seawater carbonate
ion concentration (Spero et al., 1997; Wilke et al., 2006), and pho-
tosymbiosis (Spero and Deniro, 1987). The &3C from
G. truncatulinoides and G. inflata is known to be dependent on shell
size (Birch et al., 2013; Friedrich et al., 2012; Elderfield et al., 2002).
This is likely an effect of high metabolic rates of individuals in early
ontogenetic stages but analyzing shells larger than 250 pm largely
avoids this effect (Birch et al., 2013; Friedrich et al., 2012). Even so,
the 3'3C average of 11 core-tops (1.0%0 + 0.2) from the western
South Atlantic (Chiessi et al., 2007) shows that G. inflata is ~0.5%o
lighter than the pre-industrial 3'3Cp;c provided by Eide et al. (2017)
in the same region between 350 and 400 m water depth. The same
result was found in sediment trap samples from the Cape Basin
(Wilke et al., 2006), suggesting that this offset is a widespread
feature of this species in the South Atlantic. In the opposite direc-
tion, plankton tow samples from the equatorial Atlantic reveal that
N. dutertrei 3'3C is about 0.5%o higher than 8'3Cpc (Mulitza et al.,
1999). Therefore, 3'3C differences or similarities between forami-
nifera species may not only result from habitat depth but also from
offsets between 3'3Cp;c and 3'3C of calcite. Yet, these effects mostly
affect the absolute 3'3C values and are not expected to influence
temporal changes in the downcore records, which is the central
aspect discussed here.

The §'3C of G. truncatulinoides is considered a robust proxy for
nutrient content in the thermocline (Mulitza et al, 1998).
G. truncatulinoides 8'3C record from GL-1180 presents a positive
offset of ~0.5%o relative to the same species in the Agulhas Plateau
(MDO02-2588, 41°S) (Ziegler et al., 2013) and in the western South
Pacific (ODP1123, 41°S) (Hu et al., 2020) (Fig. 3b). Since sites MD02-
2588 and ODP1123 are near central waters formation latitudes, we
would presume their G. truncatulinoides 3'>C values to be higher
than in the aged central waters in the tropics. The positive offset of
G. truncatulinoides 3'>C in the tropics relative to the subtropics may
be related to ecological distinctions between organisms living in
these regions, morphotype (dextral or sinistral), and the shell size.
In the stratified tropical Atlanticc the ACD range of
G. truncatulinoides is estimated to extend from the base of the
seasonal thermocline to ~400 m water depth (Mulitza et al., 1997).
In the subtropics, this species extends its life cycle from the weakly
stratified ocean surface to ~800 m water depth (Mulitza et al., 1997;
Ujiié et al., 2010; Hu et al., 2020). In fact, this large difference in the
depth range may favor the G. truncatulinoides secondary calcite
crust, which forms deeper in the water column (Mulitza et al.,
1997), to record lower 3'3C values in the subtropics relative to the
tropical ocean. Additionally, in contrast to Hu et al. (2020) and
Ziegler et al. (2013) who analyzed the sinistral morphotype of
G. truncatulinoides, we used the G. truncatulinoides dextral. Indeed,
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it was suggested that the dextral morphotype shows a shallower
ACD and prefers a more stratified thermocline than the sinistral
(Feldmeijer et al., 2014; Ujiié et al., 2010). Besides, the size fraction
analyzed in our study is larger than in the aforementioned studies,
reducing the effect of metabolic rate on the 8'3C of calcite (Birch
et al,, 2013; Friedrich et al., 2012). Mixing with high 83C of SASG
waters (Fig. 1a, ¢) may also contribute to increasing the thermocline
33C in the tropics relative to the subtropics (Fig. 3b).

Despite the difference in location and species measured within
GL-1090 (i.e. G. inflata from the SASG) to those of Ziegler et al.
(2013) and Hu et al. (2020) (i.e. G. truncatulinoides from Agulhas
Plateau and western South Pacific, respectively), the three records
present similar 8'3C values (Fig. 3b). We ascribe this similarity to
the negative ~0.5%o offset of G. inflata 8'3C relative to 3'>Cpjc (Wilke
et al., 2006) and to the deep ACD of G. inflata in the western South
Atlantic (Groeneveld and Chiessi, 2011). The higher averaged 5'3C
values observed in the N. dutertrei record (GL-1248) (Fig. 2a) may
reflect the shallow habitat within the thermocline and the addi-
tional positive offset (0.5%0) relative to 3'>Cpic observed in the
equatorial Atlantic (Mulitza et al., 1999).

5.2. Mechanisms behind 6">C minimum events at thermocline and
intermediate depth

5.2.1. The oceanic tunnel hypothesis

The deglacial 3'>C minimum events shown by our records can be
potentially explained by the transport of >C-depleted carbon from
the deep ocean to the SO surface and its equatorward advection by
SOIWs (Spero and Lea, 2002), the so-called “oceanic tunnel” hy-
pothesis (e.g., Pena et al., 2013), in reference to Liu and Yang (2003).
The deep ocean is hypothesized as the main sink of atmospheric
CO, during glacial periods. During glacial terminations, the SO
warmed (WAIS (West Antarctic Ice Sheet Project) members, 2013;
Barker et al., 2009), the sea-ice cover shrank (WAIS (West Antarctic
Ice Sheet Project) members, 2013; Gersonde and Zielinski, 2000),
and the Southern Hemisphere westerlies are thought to have
shifted southward and strengthened (Menviel et al., 2018;
Toggweiler et al., 2006). The reduction in brine rejection due to
reduced sea-ice cover, together with the stronger westerlies,
resulted in the breakup of deep ocean stratification and enhance-
ment of its ventilation (Du et al., 2018; Basak et al., 2018; Skinner
et al,, 2010), transporting nutrient-rich and >C-depleted waters
from the deep ocean to the SO surface (Anderson et al., 2009;
Ziegler et al., 2013). Finally, the low 8'3C signal was transmitted
northward by the SOIWs (Spero and Lea, 2002). Spero and Lea
(2002) hypothesized a correspondence between the 3Cpc sig-
nals of central waters and AAIW for the “oceanic tunnel” hypothesis
to be valid. Indeed, our planktonic records share a similar structure
with the benthic record from GL-1180 (Fig. 2a). Since modern SACW
and AAIW have a similar source and formation mechanism
(Pellichero et al., 2018; Abernathey et al., 2016; Tomczak and
Godfrey, 1994), our results, at least theoretically, corroborate the
subsurface link between the SO and low latitudes, which resulted in
the 5'3C minima observed in the western South Atlantic over the
last three glacial terminations.

Ninnemann and Charles (1997) speculated that regions with
little or no influence of SOIWs should have a different 8'3C signal
from that seen in the Southern Hemisphere. However, 5'>C minima
have also been found in thermocline records of the subtropical
North Atlantic, far from the influence of SOIWs (Lynch-Stieglitz
et al, 2019). Besides, at intermediate depth, the occurrence of
these events was limited to the tropical (e.g., Poggemann et al.,
2017; Freeman et al., 2015; Arz et al,, 1999) and North Atlantic
(e.g., Oppo et al., 2015; Rickaby and Elderfield, 2005). In contrast,
intermediate depth 3'3C records from subtropical latitudes of the
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southern Brazilian margin (~27°S) revealed no evidence of 3C-
depleted northward-flowing AAIW during the last glacial termi-
nation (Lund et al, 2015; Tessin and Lund, 2013; Oppo and
Horowitz, 2000). Analogous results were reported at intermediate
depth of the eastern subtropical Pacific Ocean (Pahnke and Zahn,
2005; Bostock et al., 2004). Additionally, intermediate depth A'4C
records (a proxy of water mass ventilation) from the SO do not
point to a poorly ventilated AAIW during the last termination
(Burke and Robinson, 2012). Similarly, A™C records from the
southern Brazilian margin (Sortor and Lund, 2011) and equatorial
Atlantic (Cléroux et al., 2011; Chen et al., 2020) give support to
persistent well-ventilated thermocline and intermediate waters
during Termination 1. Together, stable and radiogenic carbon iso-
topes, suggest that the SOIWs were not a pathway for aged and 13C-
depleted carbon accumulated in the deep ocean during glacial
periods. Therefore, the “oceanic tunnel” mechanism is not expected
to have played a major role in causing the 3'>C minimum events in
our records and in other records from the tropical and North
Atlantic.

5.2.2. The thermodynamic ocean-atmosphere isotopic equilibration
hypothesis

3'3C minimum events in the atmosphere (Fig. 4a) (Eggleston
et al., 2016; Schmitt et al., 2012) have also been ascribed to the
enhanced upwelling around the Antarctica and the outgassing of
13C_depleted CO; from the SO ocean surface (Schmitt et al., 2012).
Previous studies have suggested that the atmosphere can work as a
bridge, globalizing its low atmospheric 8'3C signal in the upper
ocean through the temperature-mediated ocean-atmosphere iso-
topic equilibration, also named thermodynamic equilibration (Shao
et al,, 2021; Lynch-Stieglitz et al., 2019). Accordingly, the deglacial
313C minima observed in thermocline and intermediate depths in
the western South Atlantic (Fig. 2a) may have been caused by the

thermodynamic equilibration in the formation regions of the water
masses that fill these depths (Lynch-Stieglitz et al., 1995, 2019;
Lynch-Stieglitz and Fairbanks, 1994; Broecker and Maier-Reimer,
1992). This hypothesis explains, for example, the presence of low
313C signal in oceanic regions where the nutrient concentrations
are thought to have been always low and in regions that are not
affected by the northward flowing SOIWs, as the North Atlantic
(Lynch-Stieglitz et al., 2019; Ninnemann and Charles, 1997).
Empirical experiments indicate that the 5'3C at the ocean sur-
face tend to be 0.1%o higher relative to the atmospheric value per
degree of cooling (Zhang et al., 1995). To estimate the influence of
the thermodynamic equilibration in the western South Atlantic, we
used the sea surface temperature (SST) record from site GL-1090
(Fig. 4b) (Santos et al., 2017) and the isotopic composition of at-
mospheric CO, over the last 150 kyr (Fig. 4a) (Eggleston et al., 2016)
to estimate the predicted 613CDIC at the ocean surface. We applied
the thermodynamic isotopic-equilibrium equation published by
Zhang et al. (1995), where epcg = (1051 =+ 0.05) -
(0.105 + 0.002) x T. This equation was derived from direct mea-
surement of the isotope fractionation between DIC of seawater and
atmospheric CO, for a temperature and carbonate ion fraction
range of 5—25 °C and 0.05 to 0.2, respectively (Zhang et al., 1995).
By using the SST record from GL-1090 (24°S), we assume that this
region in the South Atlantic Subtropical Gyre is representative of
where the ocean exchanges CO, with the atmosphere and that
these surface waters will be eventually pumped to the South
Atlantic thermocline. It is also noteworthy that this estimate only
assumes the effect of thermodynamic equilibration on the 33Cpic.
The predicted 3'3Cpyc (Fig. 4d) strongly resembles the G. inflata 8'3C
record (Fig. 4c), showing similar millennial and long-term varia-
tions and with similar magnitude of 83C drops to those presented
by our planktonic foraminifera record. Therefore, we argue that the
ocean-atmospheric thermodynamic equilibration can substantially
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modulate the thermocline 3'3C in the western South Atlantic in
orbital time-scales. Indeed, this result agrees with recent numerical
modeling, which demonstrates that thermodynamic equilibration
dominates the upper ocean 5'3Cp;c minimum anomaly during the
last glacial termination (Shao et al, 2021). Previous modeling
outputs also support the role of thermodynamic equilibration on
the upper ocean 3'3Cp;c (Menviel et al., 2018; Schmittner and Lund,
2015).

The average of our predicted 3'3Cpc record (1.48%o) is ~0.7%o
higher relative to the average of our G. inflata '3C record (0.8%o).
This result is expected since 33Cpc was predicted for the ocean
surface. Additionally, as mentioned in section 5.1., G. inflata 3'3C
shows a negative offset relative to 3'>Cpjc (e.g., Wilke et al., 2006).
Besides, the thermocline 8'3Cpyc in the western tropical and South
Atlantic is also affected by the 8!3C signal of the remineralized and
preformed components of DIC (Oppo et al., 2018).

Both the predicted and the G. inflata 3'3C records show a

remarkable drop (~0.5%o) during the MIS 4/3 transition (Fig. 4c and
d). This drop is similar to that found in 8'3C of atmospheric CO,
(~0.5%0) (Eggleston et al., 2016). The MIS 4/3 transition can be
considered an unfinished glacial termination following the
maximum extension of Southern Hemisphere glaciers at ~65 ka
(MIS 4) (Schaefer et al., 2015). Indeed, several lines of evidence
point to the Southern Hemisphere under full glacial conditions
during MIS 4 (Kohfeld and Chase, 2017; Schaefer et al., 2015; Barker
and Diz, 2014). During MIS 4/3 transition, Antarctica showed a
substantial warming, equivalent to the beginning of a full glacial
termination (Wolff et al., 2009). In addition, the atmospheric CO;
concentration increased by ~30 ppm (Bereiter et al., 2012). We
argue that the climatic conditions around MIS 4/3 transition were
akin to the beginning of a full termination. Consequently, the
enhancement of the SO upwelling during this transition resulted in
the transfer of *C-depleted carbon from the deep ocean to the
atmosphere, which ultimately imprinted its signal in the upper
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ocean.

A reduction of the biological pump efficiency may also have
contributed to the negative 5'3C anomaly in the thermocline during
glacial terminations, due to the accumulation of isotopically light
carbon in the upper ocean (Lund et al., 2019; Hertzberg et al., 2016;
Schmittner and Lund, 2015). However, 5'3C depletions are observed
in regions where changes in the biological pump are not expected
to have occurred, e.g., site GL-1180 (8°S), which is in the northern
portion of the oligotrophic South Atlantic Subtropical Gyre. We also
found thermocline 3'3C depletions in regions where the primary
productivity is thought to have increased during the last termina-
tion, as indicated by Pereira et al. (2018) for the region of sediment
core GL-1090 (24°S). However, a weaker biological pump at the
Subantarctic Zone (SAZ), due to reduced dust-borne iron supply
during Termination I (Martinez-Garcia et al., 2014; Jaccard et al,,
2013), may have caused the advection of >C-enriched waters to
the western South Atlantic. These changes in the biological pump at
the SAZ can be particularly relevant to the thermocline 3Cpc
depletion in the domain of SAMW, but it would have minimal in-
fluence on the thermocline 3'3C minima seen in the Northern
Hemisphere (e.g., Lynch-Stieglitz et al., 2019).

Although the thermodynamic equilibration may have provided
a substantial contribution to the thermocline 3*Cpic minimum
during glacial terminations, the absence of a'*C-depleted signal at
intermediate depth in the South Brazilian margin (27°S) (Tessin and
Lund, 2013; Lund et al., 2015) implies that the isotopic equilibration
through southern-sourced waters did not imprint the low 613CDIC
signal at intermediate depth of the South Atlantic. Alternatively, the
signal of the thermodynamic equilibration in AAIW may have been
overcome by other processes. For example, a weaker biological
pump at the SAZ may have reduced the export of organic matter
and its remineralization at intermediate depth, thus causing the
increase in the 3'3Cpc observed in the AAIW domain (Hertzberg
et al,, 2016). Such a hypothesized reduction of the biological
pump at the SAZ agrees with the role of the regeneration of organic
matter in modulating the 3'3Cpjc signal at intermediate depth of
the tropical and South Atlantic, as shown by Oppo et al. (2018).

Therefore, in agreement with previous studies (e.g., Shao et al.,
2021; Lynch-Stieglitz et al., 2019) we suggest that the atmosphere
acted as a bridge during the early deglaciation, spreading the 5'3C
minimum signal globally in the upper ocean. Although thermody-
namic equilibration may have modulated the 613CDIC minimum
events, changes in preformed and remineralized components of
DIC can also affect 3'3Cpyc, particularly in the domain of SAMW
(Oppo et al., 2018). Finally, in the South Atlantic, the signal of
thermodynamic equilibration was mostly seen in the thermocline
so that an alternative mechanism and/or pathway is warranted to
explain the 3'C minimum events observed in the benthic 3'3C
record from GL-1180 (1037 m, 8° S).

5.2.3. 6'3C minimum events at intermediate depth of the tropical
Atlantic: the AMOC slowdown hypothesis

As discussed in sections 5.2.1 and 5.2.2, neither the “oceanic
tunnel” nor thermodynamic equilibration through southern-
sourced waters can explain the 3'>C minimum events observed in
our GL-1180 benthic 3'3C record. Here we point to a North Atlantic
origin of 3'>C minimum events at the intermediate depth of the
tropical Atlantic. Over the last glacial termination, *C-depleted
waters have been observed in the mid-depth of the North, tropical,
and South Atlantic (Campos et al., 2020; Lacerra et al., 2017; Voigt
et al.,, 2017; Oppo et al., 2015; Lund et al., 2015; Tessin and Lund,
2013). This depletion is likely linked to the reduced NADW venti-
lation rate during Heinrich Stadial 1 and the Younger Dryas,
resulting in the accumulation of respired carbon at mid-depth of
the Atlantic Ocean (Lacerra et al., 2017; Schmittner and Lund, 2015).
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Fig. 5. Comparison between the stable carbon isotopic composition (3'3C) of benthic
foraminifera from intermediate and mid-depth of the South Atlantic and radiochemical
data from the North Atlantic. a) 23'Pa/>*°Th record from sediment core GeoB16206-1
(Mulitza et al., 2017). Note inverted y axis. b) Benthic 3'>C from sediment core GS07-
150-17/1 GC-A (Freeman et al., 2015). c) Benthic '3C of sediment core GL-1180 (this
study). d) Benthic 8'3C of sediment core M125-95-3 (Campos et al., 2020). Blue bars
indicate Heinrich Stadial 1 (HS1) and the Younger Dryas (YD). (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of
this article.)

Indeed, reduced NADW ventilation rate is supported by 23'Pa/?*Th
values (Fig. 5a) from mid-depth of the Atlantic Ocean (e.g., Mulitza
et al., 2017; Voigt et al., 2017). Accordingly, this mid-depth 3C-
depleted signal could have affected intermediate depth (~1000 m)
313Cpjc signal at the Brazilian equatorial margin during Termination
I, as observed in benthic 8'3C record (Fig. 5b) from site GS07-150-
17/1 GC-A (Fig. 1) (Freeman et al., 2015).

Numerical modeling supports a decrease of 83Cpic from the
surface to mid-depth of the Atlantic Ocean during periods of AMOC
slowdown, although this decrease is more expressive at interme-
diate and mid-depths of the tropical and North Atlantic (Menviel
et al., 2018; Schmittner and Lund, 2015). These simulations agree
with 3'3C records of benthic foraminifera (e.g., Campos et al., 2020;
Voigt et al., 2017; Oppo et al., 2015). Therefore, we suggest that the
313C depletion observed at intermediate depth of the western
tropical South Atlantic (e.g., site GL-1180) was likely caused by the
reduction of the North Atlantic overturning and accumulation of
isotopically light carbon at intermediate and mid-depths. Indeed,
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over the last deglaciation, our benthic 5'3C record (Fig. 5¢) presents
the same “W-like” shape observed in benthic 3'3C record of core
M125-95-3 (Fig. 5d), collected from the mid-depth of the tropical
South Atlantic (Fig. 1) (Campos et al., 2020). The early 813C decrease
in the GL-1180 benthic record relative to other benthic records
shown in Fig. 5 may result from the limited chronologic control (6
radiocarbon ages) and the lower sampling resolution of GL-1180
over the early deglaciation. No substantial chronological differ-
ence is found by calibrating the radiocarbon ages of GL-1180 with
the Marine 20 calibration curve (Heaton et al., 2020) (Supporting
Information, Text S2). Given the location and resemblance of GL-
1180 benthic record relative to sediment cores M125-95-3
(Campos et al., 2020) and GS07-150-17/1 GC-A (Freeman et al.,
2015) (Figs. 1 and 5), it is reasonable to assume that over the
Termination I, the bottom of the water column at these sites were
influenced by a 3'3C signal of similar origin. Together, these results
support that the 13C-depletion at intermediate depth of the tropical
Atlantic is mostly caused by the aged North Atlantic sourced waters.
This interpretation can be applied to 3'>C minimum events that
occurred during previous glacial terminations, as seen in our
benthic record (Fig. 2a). Importantly, this hypothesis is dissociated
from the “ocean tunnel” and the ocean-atmosphere isotopic
equilibration.

However, it has also been hypothesized that the thermodynamic
equilibration could be equally responsible for the 8'3C minimum
observed at mid-depth of the Atlantic Ocean over the last termi-
nation by affecting the formation region of the NADW (Lynch-
Stieglitz et al., 2019). However, a recent study showed that mid-
depth benthic 3'>C minimum leads the planktonic counterpart
and atmospheric 3'3C by ~800 years (Lund et al., 2019). If the ocean-
atmosphere isotopic equilibration was responsible for 3'>C mini-
mum at mid-depth of the Atlantic Ocean, one would expect the
atmosphere to lead the ocean. Therefore, the lag of the atmosphere
relative to the ocean implies that the ocean-atmosphere isotopic
equilibration through northern-sourced waters is unlikely to have
been the main driver of the 3'>C minimum event at intermediate
and mid-depths of the Atlantic Ocean during Termination I.

In contrast to our reasoning of a northern-sourced 3'>C mini-
mum at intermediate depth, Poggemann et al. (2017) suggested an
injection of nutrient-rich *C-depleted AAIW at intermediate depth
of the tropical North Atlantic during the last deglaciation (site M78/
1-235-1; Fig. 1). This conclusion was based on benthic 3!3C and
seawater-dissolved cadmium (Cdy), a proxy for phosphate con-
centration in seawater. However, as stressed above, the low 3'3C
signal contradicts depth transects from the southern Brazilian
margin (Lund et al., 2015; Tessin and Lund, 2013; Oppo and
Horowitz, 2000). While part of this Cd,, increase shown by
Poggemann et al. (2017) may result from the remineralization of
organic matter and nutrient accumulation due to the AMOC slow-
down, another part must be decoupled from the 33Cpc since re-
cords from the upper North Atlantic show that increases in Cd,, are
not simultaneous with 3'3C decreases (Lynch-Stieglitz et al., 2019).
Indeed, a recent study showed that although the 3'3Cpjc signal of
upwelled deep waters is strongly affected by ocean-atmosphere
isotopic equilibration in the SO surface, nutrients are still trans-
ported northward through the “oceanic tunnel” decoupled from
313Cpic signal (Shao et al., 2021). Therefore, this result can help to
conciliate Cd,, and benthic 3'3C records from intermediate depth of
the tropical Atlantic.

6. Conclusions
We present three high temporal resolution thermocline and

intermediate depth (1037 m) foraminiferal 8'3C records from the
western South Atlantic spanning the last 300 kyr. The planktonic

10

Quaternary Science Reviews 272 (2021) 107224

and benthic records show remarkable 8'3C minimum events during
the last three glacial terminations, as well as during the MIS 4/3
transition. Benthic 8'3C depth transects from the south Brazilian
margin, as well as intermediate depth 3'3C records from the Pacific
Ocean, contradict the long-held hypothesis of a northward advec-
tion of 13C-depleted carbon from the SO surface by SAMW and
AAIW. Instead, we suggest that the 5'3C minima at the thermocline
and intermediate depths were governed by two distinct and in-
dependent mechanisms. The good correspondence between pre-
dicted 33Cpjc and planktonic 3'3C from the southern Brazilian
margin indicates that the thermodynamic ocean-atmosphere iso-
topic equilibration strongly modulated the 8'3Cpc signal in the
western South Atlantic thermocline. This mechanism can explain
the global occurrence of 3'>C minimum events in the upper ocean
and agrees with recent numerical modeling. Indeed, the thermo-
dynamic equilibration is a leading driver of the *C-depleted signal
in the western South Atlantic thermocline during glacial termina-
tions and MIS 4/3 transition. However, in the domain of SAMW,
changes in the biological pump in the SAZ must also be considered.
We propose that the origin of the 3'>C minimum events at inter-
mediate depths of the tropical Atlantic is related to the slow rate of
NADW formation during glacial terminations and the accumulation
of remineralized carbon at mid and intermediate depths of the
tropical and North Atlantic. Importantly, the latter mechanism does
not evoke the deep ocean and upwelling in the SO as a source of
13C-depleted carbon to intermediate depths of the Atlantic Ocean.
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