100-Magic Squares of Order 42 With Numbers 00-99

Inder J. Taneja ${ }^{1}$

Abstract

During past years author worked with block-wise, block-bordered and block-wise bordered magic squares. In this work, we shall 100-write magic squares of order 42 with numbers from 00 to 99 . These numbers are equal sums with bordered magic squares of order 6 .

[^0]
Contents

1 Introduction 3
2 Magic Squares of Order 42 4
3 Magic Squares of Order 42 With Numbers 00 to 99 6
3.1 Magic Squares of Order 42 With Number 00 7
3.2 Magic Squares of Order 42 With Number 05 8
3.3 Magic Squares of Order 42 With Number 10 9
3.4 Magic Squares of Order 42 With Number 15 10
3.5 Magic Squares of Order 42 With Number 20 11
3.6 Magic Squares of Order 42 With Number 25 12
3.7 Magic Squares of Order 42 With Number 30 13
3.8 Magic Squares of Order 42 With Number 35 14
3.9 Magic Squares of Order 42 With Number 40 15
3.10Magic Squares of Order 42 With Number 45 16
3.11 Magic Squares of Order 42 With Number 50 17
3.12 Magic Squares of Order 42 With Number 55 18
3.13Magic Squares of Order 42 With Number 60 19
3.14Magic Squares of Order 42 With Number 65 20
3.15Magic Squares of Order 42 With Number 70 21
3.16 Magic Squares of Order 42 With Number 75 22
3.17Magic Squares of Order 42 With Number 80 23
3.18Magic Squares of Order 42 With Number 85 24
3.19Magic Squares of Order 42 With Number 90 25
3.20Magic Squares of Order 42 With Number 95 26
3.21 Magic Squares of Order 42 With Number 99 27
4 Author's Contribution to Magic Squares and Recreation Numbers 28

1 Introduction

During past years author [5, 6, 7, 8, 9, 10, 11] worked with block-wise magic squares from orders 12 to 47. Author [12, 13, 14, 15, 16, 17, 18] also worked with bordered magic squares. The study on bordered magic squares is extended to block-bordered magic squares [19, 20, 21]. This is specially done for the magic squares of orders p and p, where p is a prime number. This study is still extended to block-wise bordered magic squares [22, 23, 24, 25]. The block-wise bordered magic squares as multiples of magic squares of orders $4,6,8,10,12,14 \ldots$ can be seen in [26, 27, 28, 29, 30, 31]. Some connections with Pythagorean triples and area-representations are also made [32, 33, 34, 35, 36]. The main property of bordered magic squares is that if we remove external borders, still we get sub-bordered magic squares, i.e., each layer in itself lead us to magic squares. In many cases, the properties of bordered magic square are seperated by even and odd orders magic squares. In many cases, we get good properties for the even order bordered magic squares. In many cases, we have to use fractional numbers entries, specially to reach minimum perfect square sum of entries. For more study on bordered magic squares refer H. White's [1] and H. Danielsson's [2] web-sites.

The aim of this work is to combine the study of block-wise and bordered magic squares. In this case we considers blocks of magic squares such as magic squares of order 6, and then put them in such a way that every time removing external borders, still we are left with magic squares. Based on this idea, we wrote with block-wise bordered magic squares of orders 108 and 102. Every time when we remove the external border, we are left with block-wise bordered magic squares with minus order 12. For example, in case of order 108, removing external orders we are left with orders $96,84,72$, etc. and in case of orders 102, removing external orders, we are left with orders $90,78,66$, etc. Thus alternatively we complete all order magic squares multiples of 6 . The first two orders 6 and 12 are not block-wise bordered magic squares. From order 12 onwards, we always get block-wise bordered magic squares multiples of 6 , i.e., of orders $12,18,24$, etc. The magic squares of order 6 are considered in two ways. One as normal magic square and another as bordered magic square of order 6 with inner magic square as pandiagonal magic square of order 4. Based on the idea of block-wise bordered magic squares of order 6 , we have written in this work 100 magic squares of order 42 with the numbers 00 to 99

2 Magic Squares of Order 42

Below are two magic square of order 42 written in such a ways that one of them is equals sums blocks of order 6 . The second one is with equal sums bordered magic squares of order 6 . Below are both the magic squares:

The above magic square of 42 with equal sums magic squares order 6 are with magic sums: $S_{42 \times 42}:=37065$ and $S_{6 \times 6}:=5295$

```
1760 1758 3 1764 4 6 6 174 174 1740 21 1746 22 24 17424 1722 39 1728 40 42 42 1706 1704 57 1710
2
8
10
1756}1774
1759
1346 1344 417 1350 418 420 
416
```



```
424 1340 427 1334 429 1341 44, 1322 445 1316 447 1323 460 1304 463 1298 465 1305
```



```
1345 421 1348 415 1347 419 1327 439 1330 433 1329 437 1309 457 1312 451 1311 455
```



```
398
404}408135
406 13584091352 411 1359 712 1052 715 1046 717 1053 730 1034 733 1028 735 1035
```



```
1363 403 1366 397 1365 401 1057 709 1060 703 1059 707 1039
```



```
380
386 390 1373 396 1371 1379 692 696 1067 702 1065 1073 854 858 905 864 903 911 872 87% 887 882 885
338
1378}1369\mp@code{394 1375 392 387 1072 1063 700 1069 698 693 910 901 862 907 860 855 892 883 880 889 878 873 982 
```



```
368 372 1391 378 1389 1397 674 678 1085 684 1083 1091 836 840 923 846 921 929 818 822 941 828 939 947 800 804 959 810 957 965 566 
370}1139
1396 1387 376 1393 374 369 1090 1081 682 1087 680
```



```
|1418 1416 345 1422 346 348 1112 1110 651 1116 652 654 1130
```



```
350}35
```



```
326}
```



```
334
```



```
1435 331 1438}32
```

The above magic square of 42 with equal sums bordered magic squares order 6 are with magic sums: $S_{42 \times 42}:=37065$, $S_{6 \times 6}:=5295$ and $S_{4 \times 4}:=3530$. The magic squareS of order 4 considered in bordered magic squares order 6 are pandiagonal.

3 Magic Squares of Order 42 With Numbers 00 to 99

There are total 100 magic squares of order 42 having numbers from 00 to 99 . Since it is little difficult to put all the 100 magic square here in this work. We have put only few. The other can be seen in excel file attached with the work. These can also be seen at author's sites: https://inderjtaneja.com/ [3] and https://numbers-magic.com/ [4].

3.1 Magic Squares of Order 42 With Number 00

3.2 Magic Squares of Order 42 With Number 05

3.3 Magic Squares of Order 42 With Number 10

3.4 Magic Squares of Order 42 With Number 15

3.5 Magic Squares of Order 42 With Number 20

3.6 Magic Squares of Order 42 With Number 25

3.7 Magic Squares of Order 42 With Number 30

3.8 Magic Squares of Order 42 With Number 35

3.9 Magic Squares of Order 42 With Number 40

3.10 Magic Squares of Order 42 With Number 45

3.11 Magic Squares of Order 42 With Number 50

3.12 Magic Squares of Order 42 With Number 55

3.13 Magic Squares of Order 42 With Number 60

3.14 Magic Squares of Order 42 With Number 65

3.15 Magic Squares of Order 42 With Number 70

3.16 Magic Squares of Order 42 With Number 75

3.17 Magic Squares of Order 42 With Number 80

3.18 Magic Squares of Order 42 With Number 85

3.19 Magic Squares of Order 42 With Number 90

3.20 Magic Squares of Order 42 With Number 95

3.21 Magic Squares of Order 42 With Number 99

4 Author's Contribution to Magic Squares and Recreation Numbers

For author's contribution to magic squares and recreation numbers please see the links below:

- Inder J. Taneja, Magic Squares, https://inderjtaneja.com/2019/06/27/publications-magic-squares/
- Inder J. Taneja, Recreation of Numbers, https://inderjtaneja.com/2019/06/27/publications-recreation-of-numbers/

References

```
    - Sites
[1] H. White, Bordered Magic Squares - http://budshaw.ca/BorderedMagicSquares.html
[2] H. Danielsson, Bordered Magic Squares - https://www.magic-squares.info/methods/bordered.html
[3] Inder J. Taneja, Magic Squares - https://inderjtaneja.com/category/magic-squares/
[4] Inder J. Taneja, Recreating Numbers and Magic Squares - https://numbers-magic.com/
```


- Block-Wise Magic Squares

[5] Inder J. Taneja, Block-Wise Constructions of Magic and Bimagic Squares of Orders 8 to 108, May 15, 2019, pp. 1-43, Zenodo, http://doi.org/10.5281/zenodo.2843326.
[6] Inder J. Taneja, Block-Wise Equal Sums Pandiagonal Magic Squares of Order 4k, Zenodo, January 31, 2019, pp. 1-17, http://doi.org/10.5281/zenodo.2554288.
[7] Inder J. Taneja, Magic Rectangles in Construction of Block-Wise Pandiagonal Magic Squares, Zenodo, January 31, 2019, pp. 1-49, http://doi.org/10.5281/zenodo.2554520.
[8] Inder J. Taneja, Block-Wise Equal Sums Magic Squares of Orders $3 k$ and $6 k$, Zenodo, February 1, 2019, pp. 1-55, http://doi.org/10.5281/zenodo.2554895.
[9] Inder J. Taneja, Block-Wise Unequal Sums Magic Squares, Zenodo, February 1, 2019, pp. 1-52, http://doi.org/10.5281/zenodo.2555260.
[10] Inder J. Taneja, Block-Wise Magic and Bimagic Squares of Orders 12 to 36, Zenodo, February 1, 2019, pp. 1-53, http://doi.org/10.5281/zenodo.2555343.
[11] Inder J. Taneja, Block-Wise Magic and Bimagic Squares of Orders 39 to 45, Zenodo, February 2, 2019, pp. 1-73, http://doi.org/10.5281/zenodo.2555889.

- Bordered Magic Squares

[12] Inder J. Taneja, Nested Magic Squares With Perfect Square Sums, Pythagorean Triples, and Borders Differences, Zenodo, June 14, 2019, pp. 1-59, http://doi.org/10.5281/zenodo. 3246586.
[13] Inder J. Taneja, Symmetric Properties of Nested Magic Squares, Zenodo, June 29, 2019, pp. 1-55, http://doi.org/10.5281/zenodo.3262170.
[14] Inder J. Taneja, General Sum Symmetric and Positive Entries Nested Magic Squares, Zenodo, July 04, 2019, pp. 1-55, http://doi.org/10.5281/zenodo.3268877.
[15] Inder J. Taneja, Bordered Magic Squares With Order Square Magic Sums, Zenodo, January 20, 2020, pp. 1-26, http://doi.org/10.5281/zenodo.3613690.
[16] Inder J. Taneja, Fractional and Decimal Type Bordered Magic Squares With Magic Sum 2020. Zenodo, January 20, 2020, pp.1-25. http://doi.org/10.5281/zenodo.3613698.
[17] Inder J. Taneja, Fractional and Decimal Type Bordered Magic Squares With Magic Sum 2021, Zenodo, December 16, 2020, pp. 1-33, http://doi.org/10.5281/zenodo.4327333.
[18] Inder J. Taneja, Inder J. Taneja, Block-Wise and Block-Bordered Magic Squares With Magic Sum 2022, Zenodo, December 28, 2021, pp. 1-38, https://doi.org/10.5281/zenodo.5807789

- Block-Bordered Magic Squares

[19] Inder J. Taneja, Block-Bordered Magic Squares of Prime and Double Prime Numbers - I, Zenodo, August 18, 2020, pp. 1-81, http://doi.org/10.5281/zenodo.3990291.
[20] Inder J. Taneja, Block-Bordered Magic Squares of Prime and Double Prime Numbers - II, Zenodo, August 18, 2020, pp. 1-90, http://doi.org/10.5281/zenodo. 3990293.
[21] Inder J. Taneja, Block-Bordered Magic Squares of Prime and Double Prime Numbers - III, Zenodo, September 01, 2020, pp. 1-93, http://doi.org/10.5281/zenodo. 4011213.

- Block-Wise and Block-Bordered Magic Squares

[22] Inder J. Taneja, Block-Wise and Block-Bordered Magic and Bimagic Squares With Magic Sums 21, 21^{2} and 2021. Zenodo, December 16, 2020, pp. 1-118, http://doi.org/10.5281/zenodo.4380343.
[23] Inder J. Taneja, Block-Wise and Block-Bordered Magic and Bimagic Squares of Orders 10 to 47. Zenodo, January 14, 2021, pp. 1-185, http://doi.org/10.5281/zenodo.4437783.
[24] Inder J. Taneja, Bordered and Block-Wise Bordered Magic Squares: Odd Order Multiples, Zenodo, Feburary 10, 2021, pp. 1-75, http://doi.org/10.5281/zenodo. 4527739
[25] Inder J. Taneja, Bordered and Block-Wise Bordered Magic Squares: Even Order Multiples, Zenodo, Feburary 10, 2021, pp. 1-96, http://doi.org/10.5281/zenodo. 4527746
[26] Inder J. Taneja, Block-Wise Bordered and Pandiagonal Magic Squares Multiples of 4, Zenodo, August 31, 2021, pp. 1-148, https://doi.org/10.5281/zenodo.5347897.
[27] Inder J. Taneja, Inder J. Taneja, Block-Wise Bordered Magic Squares Multiples of Magic and Bordered Magic Squares of Order 6, Zenodo, September 10, pp. 1-99 https://doi.org/10.5281/zenodo.5500134.
[28] Inder J. Taneja, Inder J. Taneja, Block-Wise Bordered Magic Squares Multiples of 8, Zenodo, September 17, pp. 1-80, https://doi.org/10.5281/zenodo.5514396.
[29] Inder J. Taneja, Inder J. Taneja, Block-Wise Bordered Magic Squares Multiples of 10, Zenodo, September 17, pp. 1-170, https://doi.org/10.5281/zenodo.5514398.
[30] Inder J. Taneja, Inder J. Taneja, Block-Wise Bordered and Pandiagonal Magic Squares Multiples of 12, Zenodo, September 23, pp. 1-170, https://doi.org/10.5281/zenodo. 5523608
[31] Inder J. Taneja, Inder J. Taneja, Block-Wise Bordered Magic Squares Multiples of 14, Zenodo, September 26, pp. 1-198, https://doi.org/10.5281/zenodo.5528867

- Perfect Square Sums and Pythagorean Triples

[32] Inder J. Taneja, Block-Wise and Block-Bordered Magic Squares Generated by Pythagorean Triples: Orders 3 to 47, May 28, 2021, pp. 1-119, Zenodo, http://doi.org/10.5281/zenodo.4837454.
[33] Inder J. Taneja, Sequential Pythagorean Triples and Perfect Square Sum Magic Squares, Zenodo, June 21, 2021, pp. 1-595, http://doi.org/10.5281/zenodo.5009204.
[34] Inder J. Taneja, Magic Squares With Perfect Square Sum of Entries: Orders 3 to 31, Zenodo, July 19, pp. 1-181, 2021, http://doi.org/10.5281/zenodo.5115214.
[35] Inder J. Taneja, Minimum Perfect Square Sum Bordered and Block-Wise Bordered Magic Squares: Orders 3 to 31, Zenodo, July 20, pp. 1-82, 2021, http://doi.org/10.5281/zenodo.5116408.

- Creative Magic Squares
[36] Inder J. Taneja, Creative Magic Squares: Area Representations, Zenodo, June 22, pp. 1-45, 2021, http://doi.org/10.5281/zenodo.5009224.

[^0]: ${ }^{1}$ Formerly, Professor of Mathematics, Federal University of Santa Catarina, Florianópolis, SC, Brazil (1978-2012). Also worked at Delhi University, India (1976-1978).
 E-mail: ijtaneja@gmail.com; Web-sites: http://inderjtaneja.com; or https://numbers-magic.com
 Twitter: @IJTANEJA; Instagram: @crazynumbers.

