The radio luminosity function and redshift evolution of low- and high-excitation AGN

Mike Pracy

In collaboration with: Elaine Sadler, Scott Croom, John Ching, WiggleZ team and GAMA team

Motivation: Radio mode feedback

- Radio jets and AGN are thought to play a critical role in Galaxy evolution (particularly in LERGs)
- Radio jets inhibit gas cooling and suppress star formation in massive galaxies (e.g. Croton et al. 2006; Bower et al. 2006)
- Solves the cooling flow problem
- Explains the sharp downturn at the bright end of the optical galaxy luminosity funciton
- ◆ There is good observational evidence for radio mode feedback in massive galaxies with hot gas halos

Motivation: two different accretion modes in AGN

High Excitation Radio Galaxies (HERGs)

Motivation: two different accretion modes in AGN

Low Excitation Radio Galaxies (LERGs)

Motivation: Evolution

Is the high-low-excitation split are true dichotomy?

We expect the two modes to evolve differently, Do they?

A new spectroscopic survey (John Ching's PhD thesis)

Optical spectroscopy the key!

- Spectroscopy classification used to separate high- and low excitation AGN
- Star forming galaxies rejected using BPT and Hα-radio star-formation correlation

The Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS)

- Matched FIRST 1.4GHz with SDSS photometry to faint optical limit i<20.5
- Spectroscopy from archival sources such as SDSS (bright galaxies) and from a dedicated `spare-fibre' campaign on the AAT piggy-backing on the WiggleZ and GAMA AAT large surveys
- No colour selection
- Point sources included
- Over 10,000 good quality spectra in catalogue ~20x larger sample than the only other measurements of high and lowexcitation RLFs outside the local Universe

Constructing the bivariate LF

$$\Phi(M_{\rm i}, L_{\rm 1.4GHz}) \Delta M_{\rm i} \Delta \log L_{\rm 1.4GHz} = \sum_{\rm gal} \frac{w_{\rm gal}}{V_{\rm max}({\rm gal})}$$

Weight = reciprocal of completeness. We calculate in colour-magnitude plane

Volume over which galaxy could have been detected (K-corrections in optical and radio)

We construct our luminosity functions in three redshift bins:

Can then make Radio LFs by marginalizing over optical magnitude......

The local radio galaxy luminosity function

The local radio galaxy luminosity function

Fitting the LF and quantifying the evolution

Double power law

Pure Density

$$\Phi(L) = \frac{\Phi^*}{(L^*/L)^{\alpha} + (L^*/L)^{\beta}}$$

Pure Luminosity

$$\Phi(z) = (1+z)^{K_D} \Phi(0)$$

$$L^*(z) = L^*(0)(1+z)^{K_L}$$

Redshift Evolution of the High Excitation RGs

Similar to that found by Best et al. 2014 comparing a sample of 123 HERGs at 0.5<z<1.0 with the SDSS at z<0.3

Redshift Evolution of the Low Excitation RGs

Some tension with that found by Best et al. 2014 comparing a sample of 45 LERGs at 0.5 < z < 1.0 who found positive evolution in LERGs at the bright end and a decrease at the faintest radio powers at $z\sim1$

Summary

 Bright end cut-off in the HERGs LF about 1dex higher than the LERGs.....this is consistent with different accretion modes/rates

- ~Zero evolution in the Low excitation radio galaxies to z = 0.75
- Rapid evolution in the HERGs out to z=0.75
- Evolving in space density ~(1+z)³