
1

Bivariate Polynomial Coding for Efficient
Distributed Matrix Multiplication

Burak Hasırcıoğlu, Graduate Student Member, IEEE, Jesús Gómez-Vilardebó, Senior Member, IEEE,
and Deniz Gündüz, Senior Member, IEEE

Abstract—Coded computing is an effective technique to
mitigate “stragglers” in large-scale and distributed matrix
multiplication. In particular, univariate polynomial codes have
been shown to be effective in straggler mitigation by making
the computation time depend only on the fastest workers.
However, these schemes completely ignore the work done by
the straggling workers resulting in a waste of computational
resources. To reduce the amount of work left unfinished at
workers, one can further decompose the matrix multiplication
task into smaller sub-tasks, and assign multiple sub-tasks to each
worker, possibly heterogeneously, to better fit their particular
storage and computation capacities. In this work, we propose a
novel family of bivariate polynomial codes to efficiently exploit
the work carried out by straggling workers. We show that
bivariate polynomial codes bring significant advantages in terms
of upload communication costs and storage efficiency, measured
in terms of the number of sub-tasks that can be computed per
worker. We propose two bivariate polynomial coding schemes.
The first one exploits the fact that bivariate interpolation is
always possible on a rectangular grid of evaluation points.
We obtain such points at the cost of adding some redundant
computations. For the second scheme, we relax the decoding
constraints and require decodability for almost all choices of
the evaluation points. We present interpolation sets satisfying
such decodability conditions for certain storage configurations of
workers. Our numerical results show that bivariate polynomial
coding considerably reduces the average computation time of
distributed matrix multiplication. We believe this work opens up
a new class of previously unexplored coding schemes for efficient
coded distributed computation.

Index Terms—bivariate polynomial interpolation, coded
computation, distributed computation, distributed matrix
multiplication, polynomial codes

I. INTRODUCTION

The availability of massive datasets and model sizes
makes computation tasks for machine learning applications
so demanding that they cannot be carried out on a single

This work was partially funded by the European Research Council (ERC)
through Starting Grant BEACON (no. 677854) and by the UK EPSRC
(grant no. EP/T023600/1) under the CHIST-ERA program. The work of J.
Gómez-Vilardebó was supported in part by the Catalan Government under
Grant SGR2017-1479, and by the Spanish Government under Grant RTI2018-
099722-B-100 (ARISTIDES).

Burak Hasırcıoğlu and Deniz Gündüz are with the Department of
Electrical and Electronic Engineering, Imperial College London, UK. E-mail:
{b.hasircioglu18, d.gunduz}@imperial.ac.uk

Jesús Gómez-Vilardebó is with Centre Tecnològic de Telecomunicacions de
Catalunya (CTTC/CERCA), Barcelona, Spain. E-mail: jesus.gomez@cttc.es

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Parts of this paper were presented in 2020 IEEE International Symposium
on Information Theory (ISIT) [1] and 2020 IEEE Global Communication
Conference (Globecom) [2].

machine within a reasonable time frame. To speed up learning,
most demanding computation tasks, e.g., matrix multiplication,
are distributed to multiple dedicated servers, called workers.
However, due to unpredictable delays in their service time,
some workers, called stragglers, may become a bottleneck for
the overall computation task. One can mitigate the effects of
stragglers by assigning redundant computations. In particular,
one can treat stragglers as random erasures, and improve
the computation time by creating redundant computations
similarly to channel coding for erasure channels. Assuming
all the workers start computing simultaneously, we define the
computation time as the time from the start until sufficiently
many computations that allow decoding AB at the master are
received. It excludes the communication time as well as the
encoding and decoding times. For the matrix multiplication
task, the authors in [3] propose to partition one of the matrices,
encode its partitions by using an MDS code, and send coded
partitions to the workers together with the other matrix (which
is not partitioned or coded). It is then shown that the full matrix
multiplication can be decoded by using only a subset of the
multiplications between the coded partitions of the first matrix
and the second matrix.

In [4], polynomial codes are proposed to speed up the
multiplication of matrices A and B. In this scheme, a master
partitions A row-wise and B column-wise. Then, two separate
encoding polynomials, whose coefficients are the partitions of
A and B, respectively, are generated. The master evaluates
both polynomials at the same point and sends the evaluations
to the workers, which multiply them and return the result to
the master. Using a subset of the responses from the fastest
workers, the full multiplication can be recovered. This scheme
is optimal in terms of the download rate, which is defined
as the ratio between the total number of bits needed to be
downloaded from the workers and the number of bits needed to
represent the result of the multiplication. In [5], MatDot codes
are proposed, which use an alternative partitioning scheme
for matrices; that is, A is partitioned column-wise and B
is partitioned row-wise. The authors show that, compared to
[4], their approach improves the recovery threshold, which is
defined as the minimum number of responses the master must
receive from the workers to guarantee decoding the product
AB. However, both the amount of computation each worker
should carry out, referred to as the computation cost, and the
download rate are higher than in [4]. Also in [5], PolyDot
codes are proposed as an interpolation between polynomial
codes in [4], and MatDot codes by trading off between the
recovery threshold and the computation and download costs.

2

In [6], the same problem is studied, and entangled polynomial
codes are proposed, which improve the recovery threshold in
[5] under a fixed computation cost and a fixed download rate.
Generalized PolyDot codes are proposed in [7] achieving the
same recovery threshold in [6]. In [8], batch multiplication of
matrices, i.e., AiBi, i ∈ [L] where L > 1, is studied and cross
subspace alignment (CSA) codes are proposed. It is shown
that, in the batch multiplication setting, CSA codes improve
the upload-download cost trade-off compared to applying
entangled polynomial codes separately for each multiplication
task in the batch. Since the decoding process in the polynomial
coding approaches is based on polynomial interpolation,
numerical stability becomes an important research problem
for practical implementations. In [9]–[12], numerically stable
coding schemes are proposed for distributed coded matrix
multiplication problem.

In all of these approaches, the result of all the work
assigned to a worker is communicated to the master only
if it is finished completely. Workers that fail to complete
all their assignments by the time the recovery threshold
is reached are treated as erasures, which implies ignoring
completely the work done by them. Such an approach is
sub-optimal, especially if the workers’ speeds are close to
each other, in which case, the ignored workers have probably
completed a significant portion of the work assigned to them
[13], [14]. To exploit the partially completed work done by
stragglers, a multi-message approach is considered in [14]–
[16], where workers’ tasks are divided into smaller sub-
tasks, and the result of each sub-task is communicated to
the master as soon as it is completed. The approaches in
[14], [16] are based on uncoded computation and a hybrid
of uncoded and coded computation, respectively, and it is
shown that uncoded computation may be more beneficial if
the workers’ computation speeds are similar. In our work,
we allow the workers to be heterogeneous, as encountered
in serverless computing, peer-to-peer applications, or edge
computing, and consider coded computation with multi-
message communication. A similar setting is considered in
[15], and product codes are employed.

In [13], a hierarchical coding framework for the straggler
exploitation problem is proposed, also taking into account
the decoding complexity. This work is extended to matrix-
vector and matrix-matrix multiplications in [17]. It is shown
that while gaining in terms of the decoding complexity, the
computation time of hierarchical coding is only slightly larger
than [15] with univariate polynomial coding. Thus, the benefits
of hierarchical coding are significant mainly if the decoding
time is comparable to the computation time.

In all of the aforementioned polynomial-type coding
approaches [3]–[8], univariate polynomials are used. As we
will show in this paper, under fixed storage capacities at the
workers, in univariate polynomial coding, dividing a task into
sub-tasks by a given factor reduces the fraction of work that
can be done by the workers by the same factor, resulting
in inefficient use of workers’ storage capacity and upload
costs. Product codes proposed in [15], which are basically a
combination of two MDS codes, partially address this issue.
However, in product codes, computations at workers are not

one-to-any replaceable, i.e., some might be redundant, and
hence, not useful, which results in poor performance in various
scenarios. Moreover, univariate polynomial codes, as well
as product codes, impose certain constraints preventing fully
heterogeneous workloads across workers.

In this work, we propose bivariate polynomial codes to
improve the computation time of distributed matrix-matrix
multiplication under limited storage at the workers. The main
contributions of this work can be summarized as follows:
• We first show the limitation of univariate polynomial

codes in terms of both computational and storage
efficiency when extended to the multi-message setting.

• We introduce bivariate polynomial coding schemes
to address these limitations. Interpolation of bivariate
polynomials cannot be guaranteed by simply requiring
all evaluation points to be distinct. Here, we introduce
the concepts of regular (always invertible), and almost
regular (almost always invertible) interpolation matrices.

• We first extend the product coding scheme of [15] to
bivariate polynomial coding, which leads to a regular
interpolation matrix by imposing a particular rectangular
grid structure on the interpolation points. This strategy
attains maximum storage efficiency, but the computation
efficiency can be limited due to redundant computations.

• Next, we propose two novel bivariate coding schemes. We
demonstrate that unlike univariate schemes, for bivariate
coding, the order by which the computations are done
at the workers has a non-trivial impact on decodability;
and hence, we impose a special computation order for
the tasks assigned to each worker. These schemes achieve
maximum computation efficiency by completely avoiding
redundant computations. Their storage efficiency is
limited, yet higher than that of univariate schemes.
We further propose two alternative bivariate polynomial
codes with higher storage efficiency at the cost of a slight
decrease in computation efficiency.

• We numerically validate our findings assuming a shifted
exponential model for computation speeds, and show the
superiority of the proposed bivariate schemes compared
to univariate alternatives and product codes.

• While polynomial codes have been extensively studied
with numerous applications in practice, to the best of
our knowledge, our work provides the first examples
of bivariate polynomial code constructions with superior
performance compared to their univariate counterparts.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In our system, illustrated in Fig. 1, a master server
wants to multiply two matrices A ∈ Rr×s and B ∈
Rs×c, r, s, c ∈ Z+, by offloading partial computations
to N workers with heterogeneous storage capacities and
computation speeds. The master divides A horizontally and B
vertically into K and L partitions, respectively, such that A =[
AT1 AT2 · · · ATK

]T
and B =

[
B1 B2 · · · BL

]
,

where Ai ∈ R r
K×s, ∀i ∈ [1 : K]1 and Bj ∈ Rs× c

L ,

1Given a < b, we define [a : b] , {a, a+ 1, a+ 2, . . . , b− 1, b}

3

Fig. 1: The master computes AB by offloading partial computations to N workers.

∀j ∈ [1 : L]. The master generates and sends to worker
i ∈ [1 : N], mA,i and mB,i coded matrix partitions Ãi,k
and B̃i,l based on A and B, respectively, for k ∈ [1 : mA,i]
and l ∈ [1 : mB,i], where mA,i and mB,i ∈ Z+, and
Ãi,k ∈ R r

K×s, B̃i,l ∈ Rs× c
L . Thus, worker i ∈ [1 : N]

is assumed to store a fraction MA,i =
mA,i

K of A and
MB,i =

mB,i

L of B. How these coded matrix partitions are
generated depends on the specific coding scheme employed.
In this work, they will be obtained as linear combinations of
the original matrix partitions.

Depending on the coding scheme employed, worker i can
compute all, or a subset of the products of coded matrix
partitions assigned to it, i.e., Ãi,kB̃i,l, k ∈ [1 : mA,i],
l ∈ [1 : mB,i] in a prescribed order, which is also specific
to the coding scheme. We denote by ηi the maximum number
of computations worker i can provide, which can be possibly
used by the master for decoding AB. Thus, ηi ≤ mA,imB,i,
and the specific value of ηi depends on the coding scheme. In
order to exploit the partial work done by straggling workers,
the results of these individual products are sent to the master
as soon as they are finished. The master collects the responses
from the workers until the received set of computations allow
the master to uniquely recover AB. Then, the master instructs
all the workers to stop computing and decodes AB. Note
that the recovery threshold, which is defined as the minimum
number of computations that guarantee the decodability of
AB, does not have to be a fixed quantity in our setting.
Depending on the coding scheme, Rth can be a function of
the collected computations by the master.

As is common in the related literature, we specify the
storage capacity at workers separately for each of the two
matrices, i.e., MA,i and MB,i. However, in practice, it is more
appropriate to assume a total storage capacity at each worker,
which can be freely allocated between the partitions of the
two matrices. Assume that the rows of A and the columns of
B require the same amount of storage. We define the storage
capacity of worker i, denoted by si ∈ N+, as the sum of the
total number of rows of A and the total number of columns of

B that the ith worker can store. Accordingly, for a given K,
L, and si, we allocate mA,i and mB,i to maximize ηi subject
to MA,ir +MB,ic = si. Defining Cpart , 1

KL as the fraction
of work corresponding to a single partial product Ãi,jB̃i,l, the
maximum fraction of work that can be done by worker i is
given by

Cmax,i , ηiCpart =
ηi

mA,imB,i
MA,iMB,i. (1)

Under the same storage constraints, a code that can provide
more fraction of work uses its storage more efficiently; hence,
Cmax,i will be used to measure the storage efficiency.

We define Cwasted as the worst-case fraction of wasted
computations with respect to the full product, AB. There are
two sources of wasted computations. Firstly, depending on the
coding scheme, some of the computations completed by the
workers may not be used in decoding AB. Secondly, when Rth
is reached, the master instructs all the workers to stop their
computations and the ongoing computations of the workers are
wasted. We assume that the communication time for the stop
signal to reach from the master to the workers is short enough
that the workers receive this instruction before finishing their
ongoing computations. In the following sections, we compute
the fraction of the wasted computations of the second type
based on this assumption. If this assumption does not hold, the
wasted computations of the second type may increase. While it
is out of the scope of this work, designing coding schemes that
minimize wasted computations of the second type when the
relative speed of communication is comparable to the speed
of a unit computation can be an interesting challenge for a
follow-up study.

For a fixed N and a total storage capacity at worker i, si,
our objective is to minimize the average computation time
of AB. This depends on the statistics of the computation
speeds of the workers and is difficult to obtain in closed
form. Instead, we use Cmax,i and Cwasted as proxies for the
performance of a code. These metrics do not depend on the
worker’s speeds and provide general indicators on the code
performance. Note that, especially in heterogeneous settings,

4

in which some workers may be much faster than the others,
the higher fraction of work provided by faster workers helps to
finish the task earlier. Therefore, storage efficiency, or Cmax,i,
is a factor to be optimized to improve the average computation
time. Moreover, low Cwasted implies that more of the available
computation capacity across the workers is exploited towards
completing the desired computation. Therefore, to minimize
the average computation time, we are interested in maximizing
Cmax,i and minimizing Cwasted. Table I summarizes the key
code parameters Cmax,i, Cwasted and system constraints for the
schemes considered in this work. A detailed discussion on
these parameters is postponed to the later sections.

III. UNIVARIATE SCHEMES

We first review the codes based on univariate polynomial
interpolation.

Univariate Polynomial Codes (UPC): With the univariate
polynomial codes presented in [4], the master encodes the
matrix partitions using the polynomials

A(x) = A1 +A2x+ · · ·+AKx
K−1, (2)

B(x) = B1 +B2x
K + · · ·+Bix

(i−1)K + · · ·+BLx
(L−1)K .

(3)

The master sends A(xi) and B(xi) to worker i, i ∈ [1 : N],
for some distinct xi ∈ R. Thus, every worker receives one
coded partition of A and one partition of B, i.e., mA,i =
mB,i = 1 and MA,i = MA = 1/K, MB,i = MB = 1/L,
∀i ∈ [1 : N]. Worker i computes A(xi)B(xi) and returns
the result. No other computations are done at the workers,
and thus ηi = mA,imB,i = 1. Once the master receives any
Rth = KL results, it can interpolate the polynomial

A(x)B(x) =

K∑
i=1

L∑
j=1

AiBjx
i−1+K(j−1) (4)

of degree KL − 1. Observe that the coefficients of the
interpolated polynomial correspond to the KL sub-products
AiBj , ∀i ∈ [1 : K], ∀j ∈ [1 : L] of AB. Finally, notice that

Cmax,i = Cpart =
1

KL
= MAMB . (5)

Observe that with N > Rth, this scheme can tolerate
up to N − Rth stragglers. It helps to reduce the average
computation time thanks to the parallelization afforded by
redundant workers. However, all the work done by the N−Rth
slowest workers are ignored. In the worst case, where the
N −Rth + 1 slowest workers finish simultaneously, we have

Cwasted = (N −Rth)Cpart = (N −Rth)
1

KL
= NMAMB − 1.

(6)
We observe from (6) that without changing the number of
workers N or the storage capacities of workers MA, MB , it
is not possible to improve Cwasted, and thus reduce the amount
of work lost at workers. Next, we provide an extension of
UPC such that Cwasted can be improved by increasing K and
L, exploiting the partial work done at the workers.

Univariate Polynomial Codes with Partial Computations
(UPC-PC): To exploit the partial work done at slower
workers, we present an extension of UPC, which is based
on the multi-message approach and also allow heterogeneous
storage capacities at workers. The main idea is to divide the
task assigned to a worker into smaller sub-tasks, i.e., larger K
and L, and allowing the workers to store multiple partitions.
Specifically, we allow worker i to store mi = mA,i = mB,i

coded partitions of A and B, i.e., MA,i = mi/K and
MB,i = mi/L. For worker i, the master evaluates A(x)
and B(x) at mi different points {xi,1, . . . , xi,mi

} such that
xi,k 6= xj,l if (i, k) 6= (j, l),∀i, j ∈ [1 : N] and ∀k, l ∈
[1 : mi]. Worker i computes A(xi,j)B(xi,j) consecutively for
j ∈ [1 : mi] and sends each result as soon as completed.
Observe that multiplications are only allowed between A(x)
and B(x) evaluated at the same xi,k values, and thus ηi = mi,
∀i ∈ [1 : N]. The master is able to interpolate A(x)B(x) as
soon as it receives Rth = KL responses from the workers.
Thus

Cpart =
1

KL
=
MA,iMB,i

m2
i

, (7)

Cmax,i = miCpart =
MA,iMB,i

mi
. (8)

The total fraction of wasted work in the worst case, in
which all the workers were up to finish its ongoing partial
multiplication once the Rth-th result is received by the master,
is given by

Cwasted = (N − 1)Cpart = (N − 1)
1

KL
=

N−1∑
i=1

MA,iMB,i

m2
i

.

(9)

As opposed to UPC, according to (9), UPC-PC can improve
Cwasted by increasing K and L. Stragglers might be unable
to complete the full task assigned to them, but they might
complete a part of it. Clearly, the smaller are the sub-tasks
executed at workers, the smaller is the work that can be lost
at a straggler. On the other hand, UPC-PC makes quite an
inefficient use of the storage capacity at workers. Observe
that even if a worker has enough storage to fully store A
and B, i.e., MA,i ≥ 1 and MB,i ≥ 1, it, alone, can only
provide min{K,L} partial computations. Indeed, for a fixed
storage capacity at the workers, i.e., MA,i and MB,i are kept
constant, the maximum fraction of work done at a worker,
Cmax,i, decreases while K and L increases to improve Cwasted,
which results in less efficient use of the storage capacities
of the workers. The bivariate schemes presented in the next
section address this problem.

IV. BIVARIATE POLYNOMIAL CODING

For bivariate polynomial coding schemes, we encode the
matrix partitions of A and B by using the following encoding
polynomials

A(x) = A1 +A2x+ · · ·+AKx
K−1, (10)

B(y) = B1 +B2y + · · ·+BLy
L−1. (11)

5

Scheme Cmax,i Cwasted System constraints
UPC MAMB NMAMB − 1 mA,i = mB,i = 1

UPC-PC
MA,iMB,i

mi

∑N−1
i=1

MA,iMB,i

m2
i

mA,i = mB,i = mi ∈ [1 : min(K,L)]

B-PROC MAMB

∑N−1
i=1

MA,iMB,i

mA,imB,i

+(nAMB − 1)(1− MA
mA

)

+(nBMA − 1)(1− MB
mB

)

N = nAnB
mA,i = mA, mB,i = mB

K ≤ nAmB , L ≤ nBmA

BPC-VO MA,iMB,i
∑N−1
i=1

MA,iMB,i

mA,imB,i

mA,i = 1 and mB,i ≤ L or
mA,i ≥ 1 and mB,i = L

BPC-HO MA,iMB,i
∑N−1
i=1

MA,iMB,i

mA,imB,i

mB,i = 1 and mA,i ≤ K or
mB,i ≥ 1 and mA,i = K

BPC-NZO MA,iMB,i

∑N−1
i=1

MA,iMB,i

mA,imB,i

+(µB − 2)(L
µB
− 1) 1

KL

µB | L, µB | mB,i, mA,i = K and mB,i ≤ L or
mB,i = µB ,µB | L, mB,i ≤ L and mA,i ≤ K or
mA,i = 1, mB,i < µB and µB | L

BPC-ZZO MA,iMB,i

∑N−1
i=1

MA,iMB,i

mA,imB,i

+(µA − 2)(K
µA
− 1) 1

KL

µA | K, µA | mA,i, mA,i ≤ K and mB,i = L or
mA,i = µA,µA | K, mA,i ≤ K and mB,i ≤ L or
µA | K, mA,i < µA and mB,i = 1

TABLE I: Comparison of the key parameters and system constraints.

Depending on the coding scheme, coded matrix partitions
Ãi,k and B̃i,l are either direct evaluations of the encoding
polynomials A(x) and B(y), respectively, or the evaluations
of their derivatives. Hence, the workers obtain evaluations of
the bivariate polynomial

A(x)B(y) =

K∑
i=1

L∑
j=1

AiBjx
i−1yj−1 (12)

or of its derivatives, by multiplying the coded matrix partitions
Ãi,k and B̃i,l’s. Finally, the master interpolates the bivariate
polynomial A(x)B(y) by making use of these products.

In addition to allowing heterogeneous storage capacities
across workers, bivariate coding schemes allow different
numbers of stored coded partitions of A and B for each
worker, i.e., mA,i 6= mB,i in general. The maximum number
of computations a worker can generate is ηi = mA,imB,i,
resulting in Cmax,i = mA,imB,iCpart = MA,iMB,i.

Observe that, unlike univariate polynomial coding schemes,
for a given storage capacity MA,i and MB,i, the maximum
amount of work done at worker i, Cmax,i, does not decrease
with mA,i and mB,i. In univariate schemes, the reason
behind storage inefficiency is that the workers can use each
evaluation of A(x) and B(x) only for one partial computation.
For example, A(xi,k)B(xi,l), for k 6= l, cannot be used
to interpolate A(x)B(x) in a univariate scheme. Bivariate
polynomial coding eliminates this limitation and allows the
workers to provide additional useful computations at no
additional storage cost. Moreover, like UPC-PC, bivariate
polynomial codes can exploit the computational power of the
stragglers.

Since A(x)B(y) has KL coefficients, we need KL partial
computations to interpolate it. However, in some cases, the
set of first KL computations may not be enough to guarantee
decodability and more computations may be required. Thus,
the number of computations needed to guarantee decodability
satisfies Rth ≥ KL. Moreover, at the instant when the Rth-
th computation is completed by a worker, all the ongoing
computations become unnecessary. Therefore, in this setting,
we have two sources of wasted computations: Rth − KL
redundant computations that have been received by the master

but not used for the actual interpolation, and the ongoing
computations at all the workers except the worker providing
Rth-th computation. We consider the worst-case scenario and
assume all these ongoing computations at the remaining N−1
workers are close to end. Thus, we count them as wasted
computations. As a result, the maximum wasted fraction of
computations is given by

Cwasted = (N − 1)Cpart + (Rth −KL)Cpart

=

N−1∑
i=1

MA,iMB,i

mA,imB,i
+
Rth
KL
− 1. (13)

Before presenting the bivariate schemes, we introduce some
basic concepts and definitions from polynomial interpolation
theory.

Definition 1. The interpolation of a bivariate polynomial
of the form A(x)B(y) can be formulated as a system of
linear equations. The unknowns of these equations are the
coefficients of A(x)B(y). We define the interpolation matrix
as the coefficient matrix of this linear system, denoted by M .

Recall that the interpolation matrices we consider result
from evaluations of A(x)B(y) or their derivatives at different
points. The rules the coding schemes impose on the
computations, e.g., computation orders, types of computations
assigned to the workers, etc., may result in det(M) to become
an identically zero polynomial no matter which points are
chosen. This is an undesirable situation, and we should show
that this does not happen for a proposed scheme. Next, we
define two notions in which such undesirable structures are
not imposed on the interpolation matrix.

Definition 2. [18, Definition 3.1.3] An interpolation scheme
is called regular if det(M) 6= 0 for every set of distinct and
non-zero evaluation points. On the other hand, if det(M) 6=
0 for almost all choices of the evaluation points, then
the interpolation scheme is called almost regular. Almost
regularity implies that det(M) is not the zero polynomial in
general and the Lebesgue measure of the evaluation points
making {det(M) = 0} is zero in R2.

6

To understand the practical meaning of almost regularity,
let us assume that we sample our evaluation points uniform
randomly from the interval [l, u], where l, u ∈ R and l < u.
Since the Lebesgue measure of the evaluation points making
det(M) = 0 is zero, the probability of sampling such
evaluation points is exactly zero. Note that this is due to using
an uncountable set to sample our evaluation points and there
are infinitely many possible choices of evaluation points. Even
if we have countably many bad choices of evaluation points,
the invertibility of M is guaranteed almost surely.

Univariate polynomial interpolation is regular if the
evaluation points are distinct and non-zero since the
corresponding interpolation matrix is a Vandermonde matrix,
which is known to be invertible. However, for bivariate
interpolation, there are very few cases for which sufficient
conditions for regularity are known. Next, we consider one
such case.

A. Bivariate Polynomial Interpolation on Rectangular Grids

It is well known that interpolation of A(x)B(y) such
that A(x) and B(y) have degrees K − 1 and L − 1,
respectively, is regular for any rectangular grid of points
{x1, x2, . . . , xK}×{y1, y2, . . . , yL} provided all xi’s and yi’s
are distinct. The interpolation scheme we propose next exploits
this fact. It was originally proposed in [15] using product
codes. Here, we present it using bivariate polynomial codes,
which is equivalent to the product-code form in terms of all
the performance metrics considered in this paper. We further
generalize it to allow mA 6= mB and nA 6= nB , where
N = nAnB .

Bivariate Product Coding (B-PROC): Assume that all the
workers can store mA partitions of A and mB partitions of B,
and N can be factored as N = nAnB such that K ≤ mAnA
and L ≤ mBnB . The master generates nA disjoint sets Xi =
{xi,1, xi,2, . . . , xi,mA

}, i ∈ [1 : nA] and nB disjoint sets Yj =
{yj,1, yj,2, . . . , yj,mB

}, j ∈ [1 : nB], with distinct elements.
Then, it enumerates the workers as (i, j), i ∈ [1 : nA], j ∈
[1 : nB] and sends A(xi,k), k ∈ [1 : mA] and B(yj,l), l ∈
[1 : mB], to worker (i, j). Worker (i, j) can compute any
product A(xi,k)B(yj,l). Altogether, the set of evaluation points
at workers form a rectangular grid of size mAnA ×mBnB .
Observe that, nA workers have the evaluation B(ŷ) for any
ŷ ∈ Yj , and each of them can compute mA distinct evaluations
of the univariate polynomial A(x)B(ŷ), of degree K−1 with
respect to x. Once the first K of these evaluations are received
at the master, A(x)B(ŷ) can be interpolated. Similarly, for a
given x̂ ∈ Xi, A(x̂)B(y) can be interpolated from any L
evaluations as it is a univariate polynomial in y with degree
L−1. As a result, once we have the evaluations of A(x)B(y)
on any rectangular grid of size K×L, either directly received
from the workers or via univariate interpolation, the bivariate
interpolation problem can be solved.

Observe, however, that the computations that were already
interpolated from previous results are redundant. To minimize
such computations, in [15], for the particular case of mA =
mB , nA = nB , different heuristics to schedule computations
at the workers were discussed.

x3,3x3,2x3,1x2,3x2,2x2,1x1,3x1,2x1,1 x5,3x5,2x5,1x4,3x4,2x4,1

y1,1

y3,5

y3,4

y3,3

y3,2

y3,1

y2,5

y2,4

y2,3

y2,2

y2,1

y1,5

y1,4

y1,3

y1,2

worker (4,2)

X1 X5X4X3X2

Y3

Y2

Y1

Fig. 2: The case in Example 1.

Example 1. Let us assume that both matrices A and B
are divided into K = L = 10 partitions, and there are
N = 15 workers, while every worker can store MA = 3/10
of A and MB = 5/10 of B. We take nA = 5 and
nB = 3. Worker (i, j) stores {A(xi,1), A(xi,2), A(xi,3)} and
{B(yj,1), B(yj,2), B(yj,3), B(yj,4), B(yj,5)}. Let us assume
that the order of computations is random within a worker.
Fig. 2 shows an instance of the received responses from the
workers. Each worker is represented by a 3 × 5 rectangle
and each filled circle represents a received computation by
the master. To clarify how a worker’s finished computations
look like, worker (4, 2) is emphasized in the figure. All the
elements in the columns and the rows coloured by green can
be interpolated, i.e., decoded, by using the received responses
on the same column or the row. Observe that there are
columns/rows coloured by green even if they have less than 10
computations, e.g., the column of x4,1. Such rows and columns
can be decoded after decoding rows and columns with at least
10 computations, by utilizing all the elements in these columns
and rows after decoding. Since there must be at least 10 green
columns and 10 green rows in order to decode A(x)B(y), in
our example, the received responses are not sufficient, although
there are 110 > KL = 100 responses received by the master.

The total fraction of the work wasted in the worst case
depends on the heuristics employed. If we consider uniform
random computation order at the workers, which is reported
to perform well in [15], then the computations can be received
at any order by the master. In the worst case, there may be
K− 1 fully computed columns, that is, in every column there
are exactly nBmB computations, and one column with exactly
L computations. Thus, in this case, nBmB −L computations
in each of the K − 1 fully computed columns are wasted. On
the other hand, there may be L− 1 fully computed rows and
one row with exactly K computations. In this case, nAmA−K
computations in each of the L − 1 fully computed rows are

7

x3,3x3,2x3,1x2,3x2,2x2,1x1,3x1,2x1,1 x5,3x5,2x5,1x4,3x4,2x4,1

y1,1

y3,5

y3,4

y3,3

y3,2

y3,1

y2,5

y2,4

y2,3

y2,2

y2,1

y1,5

y1,4

y1,3

y1,2

X1 X5X4X3X2

Y3

Y2

Y1

Fig. 3: Worst case scenario.

wasted. Thus, in total, we have (nBmB − L)(K − 1) +
(nAmA − K)(L − 1) wasted computations. Therefore, the
worst-case Rth of B-PROC is

RB−PROCth = KL+(nBmB−L)(K−1)+(nAmA−K)(L−1).
(14)

Note that this expression is a worst-case value and depending
on the received responses, the actual number of computations
that guarantee decodability may be much lower. If we plug
(14) into (13), the fraction of wasted computations for B-
PROC in the worst case becomes

Cwasted =

N−1∑
i=1

MAMB

mAmB
+ [(nBmB − L)(K − 1)

+ (nAmA −K)(L− 1)]
1

KL

=

N−1∑
i=1

MAMB

mAmB
+ (nBMB − 1)

(
1− MA

mA

)
+ (nAMA − 1)

(
1− MB

mB

)
. (15)

The expression is highly dependent on how nA and nB are
allocated. Increasing the memory, i.e., MA and MB , while
K and L remain constant, or increasing K and L while the
memory remains constant both increase Cwasted. However, it is
worth noting that Cwasted we calculated here is for the worst-
case scenario, and the situation may not be that bad most of
the time. For the setting in Example 1, we visualize the worst-
case situation in Fig. 3.

B-PROC requires additional constraints on the system, i.e.,
N = nAnB , K ≤ nAmA, L ≤ nBmB and homogeneous
storage capacities at workers, and yet it is not possible to
ensure that the first KL results arriving at the master form
a regular interpolation problem. To address these issues, in
the next subsection, we propose novel bivariate polynomial
codes. However, showing the regularity of these schemes is a

hard problem, if not impossible. Therefore, instead, we use the
notion of almost regularity, which is a relaxation of regularity
and propose almost regular bivariate interpolation schemes.

B. Almost Regular Bivariate Interpolation Schemes

For the almost regular bivariate interpolation schemes we
propose, the polynomial A(x)B(y) is interpolated from the
evaluations of it and its derivatives. Such an interpolation is
known as Hermite interpolation in the literature [19, Chapter
3.6].

1) Encoding: The almost regular interpolation schemes we
describe in the sequel have a common encoding procedure.
Consider the polynomials in (10) and (11). To each worker i ∈
[1 : N] the master assigns a distinct evaluation point (xi, yi) ∈
R2, and sends the evaluations of A(x) and B(y), and their
derivatives up to order mA,i − 1 and mB,i − 1, respectively,
at (xi, yi). Thus, the values generated and sent to the worker i
by the master are Ai ,

{
A(xi),

dA(xi)
dx , . . . , d

(mA,i−1)A(xi)

dx(mA,i−1)

}
and Bi ,

{
B(yi),

dB(yi)
dy , . . . , d

(mB,i−1)B(yi)

dy(mB,i−1)

}
. For brevity, in

the remaining of the paper, we use ∂kA(xi) and ∂lB(yi) to
denote dk

dxkA(xi)and dl

dyl
B(yi), respectively.

2) Computations at workers: For all the coding schemes,
after receiving Ai and Bi from the master, each worker i
starts computing, one by one, all the cross products between
elements in Ai and those in Bi, and sends the result of each
computation to the master as soon as it is completed. We
require each worker to follow a specific computation order
for these multiplications according to the priority score of
each computation, which we will define shortly for each
scheme. We note that a lower priority score gives more
priority to a computation. Specifically, for any worker i, each
computation ∂kA(xi)∂lB(yi) for k ∈ [0 : K − 1] and
l ∈ [0 : L− 1] is assigned a priority score denoted as S(k, l).
Worker i computes ∂kA(xi)∂lB(yi) once all the computations
∂k̃A(xi)∂l̃B(yi), k̃ ∈ [0 : K− 1] and l̃ ∈ [0 : L− 1] such that
S(k̃, l̃) < S(k, l) are already computed. Notice that priority
scores S(k, l) are defined for computations that might not be
available at worker i, i.e., K > k ≥ mA,i or L > l ≥ mB,i.
Whenever such a computation has the lowest priority score
among all the remaining computations at worker i, the worker
must discard all the remaining computations and stop.

Definition 3. Derivative Order Space. The derivative order
space of a bivariate polynomial A(x)B(y) is defined as the
2-dimensional space of all its possible derivative orders. When
A(x) and B(y) have degrees K − 1 and L− 1, respectively,
the derivative order space becomes {(k, l) : 0 ≤ k <
K, 0 ≤ l < L}, where the tuple (k, l) represents the derivative
∂kA(x)∂lB(y).

Bivariate Polynomial Coding with Vertical Computation
Order (BPC-VO): In this scheme, workers follow the vertical
computation order, illustrated in Fig. 4a for K = L = 6. In the
vertical computation order, a worker first completes a column
k in the derivative order space, i.e., all the computations in
{∂kA(xi)B(yi), ∂kA(xi)∂1B(yi), . . . , ∂kA(xi)∂L−1B(yi)}
before moving on to the computations from column k + 1.

8

0
k

l

4 5321

0

5

4

3

2

1

(a) Vertical order

0
k

l

4 5321

0

5

4

3

2

1

(b) Horizontal order

0
k

l

4 5321

0

5

4

3

2

1

(c) N-zig-zag order

0
k

l

4 5321

0

5

4

3

2

1

(d) Z-zig-zag order

Fig. 4: Computation orders at the workers proposed in this
work.

Specifically, for any worker i, computation ∂kA(xi)∂lB(yi)
for k ∈ [0 : K − 1] and l ∈ [0 : L − 1], has a priority score
of SV(k, l) , (K − 1)L

(⌈
l
L

⌉
− 1
)

+ L(k − 1) + l. Because
only the computations ∂kA(xi)∂lB(yi) k ∈ [0 : mA,i − 1],
and l ∈ [0 : mB,i − 1] can be computed by worker i, in order
to satisfy the vertical computation order without discarding
any computations, worker i can store either:

1) a single coded partition of A, and any number of coded
partitions of B not more than L, i.e., mA,i = 1 and
1 ≤ mB,i ≤ L, or

2) coded partitions of B equivalent to the full matrix B in
size, and not more than K coded partitions of A, i.e.,
1 ≤ mA,i ≤ K and mB,i = L.

Bivariate Polynomial Coding with Horizontal Computation
Order (BPC-HO): In this scheme, workers follow the
horizontal computation order, illustrated in Fig. 4b
for K = L = 6. In the horizontal computation
order, a worker first completes a row l in the
derivative order space, i.e., all the computations in
{A(xi)∂lB(yi), ∂1A(xi)∂lB(yi), . . . , ∂K−1A(xi)∂lB(yi)}
before moving on to the computations from row
l + 1. Specifically, for any worker i, computation
∂kA(xi)∂lB(yi) has a priority score of SH(k, l) ,
K(L − 1)

(⌈
k
K

⌉
− 1
)

+ K(l − 1) + k. As for the
vertical computation order, because only computations
∂kA(xi)∂lB(yi) k ∈ [0 : mA,i−1], and l ∈ [0 : mB,i−1] can
be computed by worker i, in order to satisfy the horizontal
computation order without discarding any computations,
worker i can store either:

1) a single coded partition of B, and any number of coded
partitions of A not more than K, i.e., 1 ≤ mA,i ≤ K
and mB,i = 1, or

2) coded partitions of A equivalent to the full matrix A,
and any number of coded partitions of B not more than

L, i.e., mA,i = K and 1 ≤ mB,i ≤ L.

Bivariate Polynomial Coding with N-zig-zag Computation
Order (BPC-NZO) : For this scheme, we relax the vertical
computation order by dividing the derivative order space
into L/µB equal horizontal blocks, where µB is a design
parameter such that µB | L. For computation ∂kA(xi)∂lB(yi),
we assign an N-zig-zag order priority score of SN (k, l) =

(K − 1)µB

(⌈
l
µB

⌉
− 1
)

+ µB(k − 1) + l. In Fig. 4c, we
illustrate the N-zig-zag order for K = L = 6 and µB = 3. For
this computation order, we simply apply vertical computation
order inside each horizontal block in the derivative order
space starting from the lowermost block. Only when all the
computations in a block are completed, the computations from
the next block can start. Although they are more relaxed than
the vertical computation order, in order to satisfy the N-zig-
zag order without discarding any computations at worker i,
one of the following conditions must be imposed on mA,i and
mB,i:

1) mB,i is a positive integer multiple of µB , and mA,i =
K, or

2) mB,i = µB and 1 ≤ mA,i ≤ K, or,
3) mA,i = 1 and 1 ≤ mB,i ≤ µB
Observe that by setting µB = L, the N-zig-zag order

reduces to the vertical computation order.
Bivariate Polynomial Coding with Z-zig-zag Computation

Order (BPC-ZZO): For this scheme, we relax the horizontal
computation order by dividing the derivative order space into
K/µA equal vertical blocks, where µA is a design parameter
such that µA | L. For the computation ∂kA(xi)∂lB(yi),
we define the Z-zig-zag order priority score as SZ(k, l) =

(L − 1)µA

(⌈
k
µA

⌉
− 1
)

+ µA(l − 1) + k. In Fig. 4d, we
visualize the Z-zig-zag computation order when K = L = 6
and µA = 3. For this computation order, we apply horizontal
computation order inside each vertical block starting from the
leftmost block. Again, only when all the computations in a
block are completed, the computations from the next block
can start. In order to satisfy the Z-zig-zag computation order
without discarding any computations at worker i, we need to
impose one of the following constraints on mA,i and mB,i:

1) mA,i is a positive integer multiple of µA, and mB,i = L,
or

2) mA,i = µA and 1 ≤ mB,i ≤ L, or
3) mB,i = 1 and 1 ≤ mA,i ≤ µA

Observe that setting µA = K, we recover the horizontal
computation order conditions.

3) Decoding Procedure of Almost Regular Interpolation
Schemes: For all of the computation orders defined in this
section, the master receives responses from the workers and
decodes AB by solving a bivariate polynomial interpolation
problem. That is, A(x)B(y) is interpolated from the
evaluations of A(x)B(y) and its derivatives. Since the degree
of A(x)B(y) is KL, to solve the interpolation problem, the
master needs at least KL computations returned from the
workers. In this case, assuming, without loss of generality,
the responses are received from all N workers, we have an
interpolation matrix as in (16).

9

M =

1 x1 x2
1 x3

1 · · · xK−1
1 · · · xK−1

1 yL−1
1

0 1 2x1 3x2
1 · · · (K − 1)xK−2

1 · · · (K − 1)xK−2
1 yL−1

1

0 0 2 6x1 · · · (K − 1)(K − 2)xK−3
1 · · · (K − 1)(K − 2)xK−3

1 yL−1
1

...
...

...
...

. . .
...

. . .
...

1 xN x2
N x3

N · · · xK−1
N · · · xK−1

N yL−1
N

0 1 2xN 3x2
N · · · (K − 1)xK−2

N · · · (K − 1)xK−2
N yL−1

N

. (16)

In this example, the master received 3 responses from
worker 1, and 2 responses from worker N . Since we see the
derivatives are taken with respect to x, we can conclude that
this interpolation matrix belongs to BPC-HO or BPC-ZZO.

The next theorem and the corollary characterize the number
of computations needed to decode A(x)B(y) in the worst-case
scenario by considering the invertibility of the interpolation
matrix.

Theorem 1. a) For BPC-NZO, the worst-case recovery
threshold is RNZOth , KL+ max

{
0, (µB − 2)(L

µB
− 1)

}
.

b) For BPC-ZZO, the worst-case recovery threshold is
RZZOth , KL+ max

{
0, (µA − 2)(KµA

− 1)
}

.

Thus, if the number of computations received by the master
is at least RNZOth and RZZOth for BPC-NZO and BPC-ZZO,
respectively, then det(M) 6= 0 for almost all choices of the
evaluation points.

The proof of Theorem 1 is given in Section VI.

Corollary 1. BPC-VO and BPC-HO can be obtained by
setting µB = L and µA = K in BPC-NZO and BPC-ZZO,
respectively. Therefore, the recovery thresholds of BPC-VO
and BPC-HO are RV Oth = RHOth , KL, meaning any KL
computations received by the master results in det(M) 6= 0
for almost all choices of the evaluation points.

According to Corollary 1, for BPC-VO and BPC-HO, every
partial computation sent by the workers is useful at the
master, i.e., Rth = KL. Therefore, for these schemes, the
computations are one-to-any replaceable. Thus, according to
(13), we have

Cwasted, BPC-VO = Cwasted, BPC-HO =

N−1∑
i=1

MA,iMB,i

mA,imB,i
. (17)

This is the main advantage of these schemes over B-PROC.
On the other hand, while in the BPC-HO and BPC-VO, ηi
is limited by the constraints imposed on mA,i and mB,i,
in B-PROC, all the available storage can be fully exploited.
Therefore, B-PROC has a better storage efficiency Cmax,i

compared to BPC-VO and BPC-HO. The main motivation
of introducing BPC-NZO and BPC-ZZO is to relax these
constraints. According to Theorem 1, this can be done at
the cost of potentially introducing redundant computations;
however, the number of redundant computations needed is
much less than those needed for B-PROC. Specifically, from

(13), we have

Cwasted, BPC-NZO =

N−1∑
i=1

MAMB

mAmB
+ (µB − 2)

(
L

µB
− 1

)
1

KL
,

Cwasted, BPC-ZZO =

N−1∑
i=1

MAMB

mAmB
+ (µA − 2)

(
K

µA
− 1

)
1

KL
.

(18)

The following example illustrates the storage efficiency of
bivariate polynomial codes.

Example 2. Assume K = L = 8, i.e., the size of partitions of
A and B are equal, and each worker can store 8 coded matrix
partitions in total, i.e., mA,i +mB,i = 8. Univariate schemes
can only carry out ηi = mA,i = mB,i = 4 computations.
Instead, B-PROC can set mA,i = mB,i = 4, resulting in
ηi = 16 computations. On the other hand, in BPC-VO and
BPC-HO, the same worker can generate at most ηi = 7
computations by setting mA,i = 1,mB,i = 7 for BPC-VO,
or mA,i = 7,mB,i = 1 for BPC-HO. It is not possible
to satisfy condition 2 of BPC-VO and BPC-HO under this
storage capacity. Finally, for BPC-NZO or BPC-ZZO, by
setting µA = µB = 4 and mA,i = mB,i = 4, we can also
reach ηi = 16. Note that BPC-NZO and BPC-ZZO may not
always obtain the B-PROC storage efficiency, but they can
usually perform very close.

Remark 1. Note that RNZOth and RZZOth provided in
Theorem 1 are worst-case values. Depending on the number
of computations each worker sends to the master, smaller
values, even KL computations may be enough. In Section VI,
Lemma 3 presents certain conditions under which the
computations received from the workers are useful. If the
number of computations provided by all workers satisfies
these conditions, then all computations are useful and KL
computations are enough. Otherwise, we need to discard some
computations and since we need to compensate for these
discarded computations, the recovery threshold may increase
up to the values presented in Theorem 1. In Section VI, the
discussion after Lemma 3 explains what kind of computations
we discard to guarantee almost regular decodability.

Remark 2. When the conditions of Theorem 1 are satisfied,
the bivariate polynomial interpolation problem has a unique
solution. The interpolation problem can be solved simply via
inverting the interpolation matrix and multiplying it with the
vector of responses collected from the workers. This has a
complexity of O(rs(KL)2). However, such an interpolation
strategy may result in large numerical errors; and hence,
more sophisticated methods, such as Newton interpolation,

10

0 20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

Storage (mA +mB)

E
xp

ec
te

d
co

m
pl

et
io

n
tim

e
(s

)

UPC-PC
B-PROC
BPC-VO & BPC-HO
BPC-NZO & BPC-ZZO
Lower bound

6 8 10 12 14 16 18 20

20

40

60

80

100

120

Fig. 5: Average computation times of univariate and bivariate
polynomial codes as a function of available storage when
partitions of A and B have equal size.

may be needed in practice [20], [21]. This aspect is worth
investigation, but lies beyond the scope of this work. We leave
it as a future research direction.

Selecting between computation orders: When the partitions
of B are smaller than those of A, i.e., c/L < r/K, under
a fixed storage capacity, reducing mA,i by 1 will increase
mB,i at least by 1. Since, in this case, the constraints of
vertical-type computation orders BPC-VO and BPC-NZO can
be satisfied more easily than those of BPC-HO and BPC-
ZZO, the schemes having a vertical-type computation order
should be chosen. Similarly, when r/K < c/L, we should
prefer horizontal ordering schemes BPC-HO or BPC-ZZO.
Choosing between BPC-HO and BPC-ZZO when r/K < c/L,
or between BPC-VO and BPC-NNO when c/L < r/K,
depends on the storage capacity per worker and is discussed
further in Section V.

Alternative formulation of almost regular interpolation
schemes: The reason why we formulate almost regular
interpolation schemes in terms of Hermite interpolation
throughout the paper is to shorten the proof of Theorem 1.
Alternatively, instead of interpolating A(x)B(y) from the
evaluations of its derivatives, i.e., Hermite interpolation,
almost regular interpolation schemes can also be formulated
as the interpolation of A(x)B(y) from its evaluations, as
done in B-PROC. Such an approach is equivalent to the
Hermite interpolation-based formulation, under the almost
regularity condition. We include a more technical discussion
about this in the supplementary material. Before reading it,
we advise the reader to go through Section VI, since the
content in supplementary material is based on the definitions
and techniques therein.

V. NUMERICAL RESULTS

In this section, we compare the schemes presented
throughout the paper in terms of the average computation time.

10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

Storage (mA + 2mB)

E
xp

ec
te

d
co

m
pl

et
io

n
tim

e
(s

)

UPC-PC
B-PROC
BPC-VO
BPC-HO
BPC-ZZO
BPC-NZO

Fig. 6: Average computation times of univariate and bivariate
polynomial codes as a function of storage capacity, when
partitions of B are twice larger than partitions of A.

We only focus on the computation time since the bivariate
polynomials to be interpolated in B-PROC, BPC-VO, BPC-
HO, BPC-NZO and BPC-ZZO schemes have the same number
of coefficients, and thus, the variations in their encoding and
decoding times are considered negligible. We also assume
that the communication time is negligible. We model the
computation speed of the workers by the shifted exponential
model [3], [22], which is commonly used in the literature
to analyze coded computation schemes. In this model, the
probability that a worker finishes at least p computations by
time t is F (p, t) = 1− e−λ(t

p−ν), if t ≥ pν, and 0, otherwise.
Thus, the probability of completing exactly p computations by
time t is given by P (p, t) = F (p, t) − F (p + 1, t) assuming
F (0, t) = 1, and F (pmax + 1, t) = 0, where pmax is the
maximum number of computations a worker can complete.
In F (p, t), ν is the minimum duration of one computation.
The scale parameter λ controls the variance of computation
times. The smaller is λ the more variance, and thus more
heterogeneous computation speeds among the workers. To
cover more heterogeneous cases, we choose ν = 0.01 and
λ = 0.1.

We run Monte Carlo simulations to compute the expected
computation time for each scheme under different memory
availability. We consider two scenarios in which the sizes of
the partitions of A and B are equal, i.e., c

L = r
K , and the

size of the partitions of B is twice larger than those of A, i.e.,
c
L = 2r

K . In both cases, we assume that the workers have the
same storage capacity, as required by B-PROC. Thus, MA,i =
MA and MB,i = MB , ∀i ∈ [1 : N]. We set K = L = 10
and assume N = 15. In both scenarios, we set µB = 5 and
µA = 5 for BPC-NZO and BPC-ZZO, respectively. For each
memory value, we run 104 experiments. The results of the
first scenario and the second scenario are given in Fig. 5 and
Fig. 6, respectively. For each scheme, the minimum memory
required to complete KL = 100 computations with N = 15

11

workers is different. Thus, we plot each scheme starting from
a different minimum memory value.

Let us first consider the scenario in which the partitions of A
and B have equal size. In this case, since we also have K = L
and µA = µB = 5, there is no difference between BPC-HO
and BPC-VO, and also no difference between BPC-NZO and
BPC-ZZO. In Fig. 5, we observe that BPC-NZO and BPC-
ZZO result in a much lower expected computation time than
the other schemes for low storage capacities. Even though we
allow partial computations, the univariate polynomial coding,
which is UPC-PC, performs far worse than all the others due
to inefficient use of the memory resulting in a much less
fraction of work done per worker compared to other schemes.
In B-PROC, despite the optimality in the memory allocation
between mA,i and mB,i, we see that the higher number of
useless computations aggravates the average computation time.
For the same reason, increasing the storage capacity does not
improve the average computation time beyond a certain point.
While simulating B-PROC, we use a random computation
order at the workers, which is reported to perform well in
[15] and stop the computation as soon as the master is able
to decode. On the other hand, for BPC-NZO and BPC-ZZO,
we consider the worst-case scenario, in which the master
starts decoding only after (µB − 2)(L

µB
− 1) computations

for BPC-NZO or (µA − 2)(KµA
− 1) computations for BPC-

ZZO are collected. Thus, we can expect the performance of
BPC-NZO and BPC-ZZO to be even better than what we
observe in Fig. 5. We also observe that BPC-VO and BPC-
HO performs significantly better than B-PROC and UPC-
PC for the intermediate and large memory values. For this
storage regime, we also observe that BPC-HO and BPC-
VO perform slightly better than BPC-ZZO and BPC-NZO
due to the first constraint of these schemes. For instance,
in BPC-NZO, when mA,i = K, we need mB,i to be a
multiple of µB . Therefore, increasing storage capacity while
keeping mA,i = K improves the expected computation time
at some specific memory values. This is the reason for the
improvement we observe in the expected computation time
of the BPC-NZO in Fig. 5 when the storage is 20. On the
other hand, in the low storage regime, there is a significant
performance degradation of BPC-VO and BPC-HO due to the
restrictive constraints of these schemes at small storage values.
Since in BPC-NZO and BPC-ZZO, the constraints of BPC-VO
and BPC-HO are relaxed especially for small storage values,
we observe that BPC-NZO and BPC-ZZO are superior in low
storage regimes. To evaluate the performance of our schemes,
we also plot a lower bound on the average computation time of
any bivariate polynomial-based coding scheme, assuming there
are no redundant computations and the memory allocation
between mA,i and mB,i is optimal. We observe that the
average computation time of the proposed bivariate schemes is
quite close to this lower bound especially for the intermediate
and high storage regimes. In a low storage regime, we observe
that BPC-NZO and BPC-ZZO perform close to the lower
bound although for very low values of storage, the gap between
BPC-NZO/ZZO and the lower bound increases. This is due to
the third constraint of these schemes which forbids optimal

memory allocation between mA,i and mB,i. This suggests
that there might be still room for improvement in the trade-
off between the expected computation time and the storage
capacities of the workers.

On the other hand, when we consider the scenario in which
the partitions of B is twice larger than those of A, in Fig. 6,
we observe that neither BPC-NZO and BPC-ZZO nor BPC-
VO and BPC-HO are equivalent. Recall the discussion at the
end of Subsection IV-B discussing how we select between
computation orders. Since the partitions of B is larger in our
case, decreasing mB,i by one may increase mA,i more than
one. Therefore, satisfying the constraints of horizontal-type
schemes, i.e., BPC-ZZO and BPC-HO, is easier in this case.
Therefore, we expect they perform better than the schemes
with vertical-type order. We verify this in Fig. 6, in which
the performances of BPC-ZZO and BPC-HO are superior
especially in the low storage regime. We also observe that for
low and intermediate values of the storage, the performance of
BPC-VO degrades close to that of UPC-PC. That is because
the computations are done column-by-column in BPC-VO,
see Fig. 4a, and to assign one more computation twice more
storage availability is needed compared to BPC-HO and BPC-
ZZO. BPC-NZO suffers from the same problem, but since
in the zig-zag order, the constraints are relaxed, i.e., the
computation grid is divided into blocks, its performance stays
reasonable. We observe that it performs similarly to the BPC-
HO in the intermediate and large storage values. Finally,
similar to Fig. 5, we observe that for the large storage regime,
almost regular schemes perform close to each other and much
better than B-PROC and UPC-PC.

VI. PROOF OF THEOREM 1

Without loss of generality, we assume [1 : n], 1 ≤ n ≤ N is
the set of workers which provide at least one computation by
the time the master collects sufficient responses to decode AB.
Consider the interpolation matrix M as defined in Definition 1.
To prove the invertibility of an interpolation matrix M , we
use Taylor series expansion of det(M). Note that det(M) is
a polynomial in the evaluation points zi , (xi, yi), i ∈ [1 : n].
We can write the Taylor series expansion of det(M) around
(xi, yi) by taking the evaluation point (xj , yj) as the variable,
as:

det(M) =
∑

(α1,α2)∈N2

1

α1!α2!
(xj−xi)α1(yj−yi)α2Dα1,α2

(Z̃),

(19)
where Z̃ , {(xk, yk), k ∈ [1 : n]} \ {(xj , yj)}, and

Dα1,α2
(Z̃) ,

∂α1+α2

∂xα1
j ∂yα2

j

det(M)

∣∣∣∣
xj=xi,yj=yi

. (20)

We call (xi, yi) the pivot node and (xj , yj) the variable
node in this expansion. If the monomials in the set {xα1yα2 |
(α1, α2) ∈ N2} cannot be written as a linear combination of
the other monomials in the set, then, they are said to be linearly
independent. In this sense, the monomials (xj − xi)α1(yj −
yi)

α2 in (19) are linearly independent for different (α1, α2)
pairs, as long as, there is no dependence between xi, xj and
yi, yj . Consequently, det(M) = 0 for all values of (xj , yj) ∈

12

R2, if and only if Dα1,α2
(Z̃) = 0,∀(α1, α2) ∈ N2. That is,

to show that M is non-singular, it suffices to show that there
exists an (α1, α2) pair such that Dα1,α2(Z̃) is nonzero.

Let us choose some (α1, α2) pair, and analyse Dα1,α2
(Z̃).

Notice that, Dα1,α2
(Z̃) is a polynomial in the evaluation

points, now, in Z̃. Specifically, it does not depend on xj
and yj since the derivatives were taken with respect to these
variables, and then evaluated at xj = xi, yj = yi. We call
this procedure the coalescence of the evaluation points (xi, yi)
and (xj , yj) into (xi, yi). Next, to show Dα1,α2

(Z̃) 6= 0,
we do a new coalescence, i.e. we write the Taylor series
expansion of Dα1,α2(Z̃) on a new variable point, choose a new
(α1, α2) pair, and coalescence them into (xi, yi). Our proof
technique is based on such recursive Taylor series expansions
until all evaluation points are coalesced into one. We will
present a technique to choose (α1, α2) pairs at each step,
which guarantees to obtain a non-zero polynomial at the final
coalescence step.

In the following, we first present some preliminaries which
we will need while presenting our technique for choosing
(α1, α2) at each step.

A. Preliminaries

In order to choose an (α1, α2) pair at each step, we will
need to analyze Dα1,α2

(Z̃). Since Dα1,α2
(Z̃) is derived from

the Taylor series expansion of a determinant, in some cases,
we can write it, again, in terms of the determinants of other
matrices, which turns out to be more insightful than using
its polynomial form. Before showing this, we introduce the
notions of derivative set and shift, which will be useful in
the rest of the proof.

Definition 4. Associated to every evaluation point zi ,
(xi, yi), i ∈ [1 : n], there may be one or more rows in M
each corresponding to a different derivative order of A(x)B(y)
evaluated at zi. We define the derivative set, Uzi,M , of node
zi as the multiset2 of derivative orders associated to zi in M ,
i.e., we say (dx, dy) ∈ Uzi,M , if M has a row corresponding
the evaluation ∂dxA(xi)∂dyB(yi) or equivalently the master
received the evaluation ∂dxA(xi)∂dyB(yi) from worker i.

Definition 5. Let M ∈ RKL×KL be an interpolation matrix
such that at least one of its rows depends on (xj , yj), and let
ri denote the ith row in M . We define a simple shift3 as

∂i,xj
M ,

[
rT1 , . . . ,

∂

∂xj
rTi , . . . , r

T
KL

]T
and

∂i,yjM ,

[
rT1 , . . . ,

∂

∂yj
rTi , . . . , r

T
KL

]T
.

Assume that the ith row of M corresponds to
∂di,xA(xj)∂di,yB(yj). Then, the derivative sets of node

2Here, we use multiset instead of set as we allow multiple instances for
each of its elements. The number of instances of a given element is called
the multiplicity of that element in the multiset.

3The term shift to refer to derivatives of interpolation matrices highlight
the fact that derivatives applied to interpolation matrices correspond to shifts
in their derivative sets when depicted in the derivative order space, as shown
in Fig. 7

zi associated to matrices ∂i,xj
M and ∂i,yjM are shifted

versions of the ones associated to M , in the sense that,
Uzj ,∂i,xj

M = {(di,x + 1, di,y)} ∪ Uzj ,M \ {(di,x, di,y)} and
Uzj ,∂i,yjM = {(di,x, di,y + 1)} ∪ Uzj ,M \ {(di,x, di,y)}. Note
that if the multiplicity of any element in a derivative set
is greater than one, then the corresponding interpolation
matrix has at least two identical rows making the matrix
singular. ∂i,xj is called a regular simple shift, if all elements
in Uzj ,∂i,xj

M have a multiplicity of one. Similarly, ∂i,yj is
a regular simple shift if all elements in Uzj ,∂i,yjM have a
multiplicity of one. Finally, for the composition of simple
shifts, we introduce the notation ∇xj ,yj

k,l M , where the ith

entries in k and l are the total order of the derivatives taken
on the ith row of M with respect to xj and yj , respectively.
Thanks to the commutative property of the derivative, given
a pair (k, l) one can compute ∇xj ,yj

k,l M by taking derivatives
from any row, at any order, until completing the derivative
orders specified in (k, l). We refer to each of these possible
choices as a derivative path, and define those paths that only
involve regular simple shifts, i.e. after each derivative there
are not two equal rows, as regular derivative paths. The
number of regular derivative paths is denoted by Ck,l(M).

The following lemma provides an expression for the
derivatives of the determinant of an interpolation matrix in
terms of a weighted sum of determinants of other interpolation
matrices.

Lemma 1. Let k ∈ [0 : K − 1]KL, l ∈ [0 : L − 1]KL and
α1 =

∑KL
i=1 k(i) and α2 =

∑KL
i=1 l(i). Then, we have

∂α1+α2

∂xα1
j ∂yα2

j

det(M)

∣∣∣∣
xj=xi,yj=yi

(21)

=
∑

(k,l)∈RM (α1,α2)

Ck,l(M) det
(
∇xj ,yj

k,l M
) ∣∣∣∣

xj=xi,yj=yi

where RM (α1, α2) is the set of (k, l) pairs satisfying
Ck,l(M) 6= 0, i.e., there is at least one derivative path for
which ∇xj ,yj

k,l can be applied by using only regular simple
shifts.

We defer the Proof of Lemma 1 to Appendix A.

B. Choosing an (α1, α2) pair in a coalescence

Recall that our objective is to find an (α1, α2) pair for
each step in the successive coalescence procedure. Lemma 1
is an important step in this direction as it allows us to express
Dα1,α2

(Z̃) in terms of a sum of determinants of interpolation
matrices. However, it still does not provide us a clear clue on
how to choose (α1, α2), so that Dα1,α2

(Z̃) 6= 0. Next, we
define a structure over the derivative sets of the interpolation
matrices, similar to the ones defined for the computation orders
in Subsection IV-B, which will eventually help us to define the
quasi-unique shift pairs (α1, α2), which satisfy the conditions
needed for completing a coalescence procedure successfully.

Definition 6. A derivative set Uz,M is said to be N-zig-zag
ordered with parameter µB if (i, j) ∈ Uz,M implies that all
the derivatives with order (k, l) such that SN (1, 1) ≥ SN (k+

13

0
k

l

321

0

3

2

1

(a)

0
k

l

321

0

3

2

1

(b)

0
k

l

321

0

3

2

1

(c)

0
k

l

321

0

3

2

1

(d)

0
k

l

321

0

3

2

1

(e)

Fig. 7: Example sets of N-zig-zag ordered (a,b), Z-zig-zag
ordered (c,d) and neither N-zig-zag ordered nor Z-zig-zag
ordered (e).

0
k

l

21

0

5

4

3

2

1

(a)

0
k

l

21

0

5

4

3

2

1

1

2

(b)

0
k

l

21

0

5

4

3

2

1 1

2

(c)

0
k

l

21

0

5

4

3

2

1

1

2

(d)

Fig. 8: Depictions of derivative sets in Example 4.

1, l+1) ≥ SN (i+1, j+1) are also in Uz,M , where SN (k, l) =

(K−1)µB

(⌈
l
µB

⌉
− 1
)

+µB(k−1)+l as in Subsection IV-B.
Similarly, Uz,M is Z-zig-zag ordered with parameter µA if
(i, j) ∈ Uz,M implies that all (k, l) such that SZ(1, 1) ≥
SZ(k + 1, l + 1) ≥ SZ(i + 1, j + 1) are in Uz,M , where
SZ(k, l) = (L − 1)µA

(⌈
k
µA

⌉
− 1
)

+ µA(l − 1) + k as in
Subsection IV-B.

Example 3. Consider the derivative sets with K = L = 4.
The derivative sets illustrated in Fig. 7a and Fig. 7b are N-zig-
zag ordered for µB = 2, and the sets in Fig. 7c and Fig. 7d
are Z-zig-zag ordered for µA = 2. The set in Fig. 7e is neither
N-zig-zag nor Z-zig-zag ordered.

Hereafter, for brevity, we stick to the N-zig-zag order. This
will allow us to prove the part a of Theorem 1. The proof of
part b follows similarly using the Z-zig-zag order instead, and
thus we omit it here.

Definition 7. Consider (xj , yj) is the variable node and
(xi, yi) is the pivot node. Suppose that Uzj ,M obeys the N-zig-
zag order, and define M∗ , ∇xj ,yj

k∗,l∗M
∣∣
xj=xi,yj=yi

. If there is
only one (k∗, l∗) ∈ RM (α1, α2) such that Uzj ,M∗ obeys the
N-zig-zag order, then (α1, α2) is called quasi-unique.

Example 4. Let (α1, α2) = (2, 2) and K = 3, L = 6,
µB = 3. We assume the derivative sets of the pivot and
variable nodes are as depicted in the derivative order space
in Fig. 8a and Fig. 8b, respectively. We observe that the
interpolation matrix has two rows that depend on the variable
node and four rows that depend on the pivot node. Without
loss of generality, we assume rows 1 and 2 depend on the
variable node. In this example, we stick to the definition
in (20), i.e., we take derivatives of the interpolation matrix
first with respect to the y component of the variable
node and then the x component. Therefore, RM (2, 2) =
{([1, 1,0KL−2], [1, 1,0KL−2]) , ([2, 0,0KL−2], [0, 2,0KL−2])},
where 0KL−2 is the all-zero vector with dimension KL− 2.
Note that there is no other (k, l) pair such that ∇xj ,yj

k,l can be
applied by using only regular simple shifts. When we apply
∇xj ,yj

k,l with (k, l) = ([1, 1,0KL−2], [1, 1,0KL−2]), we obtain
a derivative set as depicted in Fig. 8c, and obtain the one in
Fig. 8d with (k, l) = ([2, 0,0KL−2], [0, 2,0KL−2]). Note that
the derivative set in Fig. 8c obeys the N-zig-zag order while
the one in Fig. 8d does not. Since there is only one (k, l)
pair resulting in an N-zig-zag ordered derivative set, (α1, α2)
is quasi-unique.

Next we describe, in detail, the first two iterations of the
recursive coalescence procedure, and then generalize the result
to any iteration. Without loss of generality, we choose (xn, yn)
as the pivot node for all the coalescences in the recursion, and
coalesce it with the variable node zi in the ith coalescence
from i = 1 to n− 1. Let us define the set of remaining nodes
before applying the jth coalescence as Zj , {(xi, yi) | i ∈
[j : n]}. For the first coalescence, let M1 = M , and suppose
we find a quasi-unique shift for order (α∗1, α

∗
2). We denote by

M2 , Ck∗,l∗(M1)∇x1,y1
k∗,l∗M1

∣∣
x1=xn,y1=yn

the unique matrix
such that Uzn,M2 satisfies the N-zig-zag order, and define the
set of matrices containing the rest of the interpolation matrices
as

Φ2 ,
{
Ck,l(M1)∇x1,y1

k,l M1

∣∣
x1=xn,y1=yn

(22)

|(k, l) ∈ RM1(α∗1, α
∗
2) \ (k∗, l∗)} .

Then, from (21), we can write

D2(Z2) =
∂α

∗
1+α∗

2

∂x
α∗

1
1 ∂y

α∗
2

1

det(M1)

∣∣∣∣
x1=xn,y1=yn

= det (M2) +
∑
M̄∈Φ2

det
(
M̄
)
. (23)

For the second coalescence, taking (xn, yn) as the pivot
node and (x2, y2) as the variable node, we write the Taylor
series expansion of D2(Z2) as

D2(Z2) =
∑

(α1,α2)∈N2

1

α1!α2!
(x2−xn)α1(y2−yn)α2Dα1,α2(Z3)

(24)
where

Dα1,α2
(Z3) =

∂α1+α2

∂xα1
2 ∂yα2

2

det(M2)

∣∣∣∣
x2=xn,y2=yn

(25)

+
∑
M̄∈Φ2

∂α1+α2

∂xα1
2 ∂yα2

2

det
(
M̄
) ∣∣∣∣
x2=xn,y2=yn

.

14

Next, we apply (21) to (25). This time, we find a quasi-
unique shift (α∗1, α

∗
2) by only considering matrix M2. Note

that, the (α∗1, α
∗
2) pair is different for each recursion but for

a clearer notation, we omit the recursion index. Since the
choice of (α∗1, α

∗
2) only considers M2, it does not imply the

existence of quasi-unique shifts for all the other matrices in
Φ2. We denote by M3 , Ck∗,l∗(M2)∇x1,y1

k∗,l∗M2

∣∣
x2=xn,y2=yn

the unique matrix satisfying that Uzn,M3
follows the N-zig-

zag order, and define the set of matrices containing the rest of
weighted interpolation matrices, originated from M2 or from
M̄ ∈ Φ2, as

Φ3 ,
{
Ck,l(M2)∇x2,y2

k,l M2

∣∣
x2=xn,y2=yn

(26)

|(k, l) ∈ RM2(α∗1, α
∗
2) \ (k∗, l∗)}

∪
{
Ck,l(M̄)∇x2,y2

k,l M̄
∣∣
x2=xn,y2=yn

|(k, l) ∈ RM2
(α∗1, α

∗
2), M̄ ∈ Φ2

}
.

Then, we can write

D3(Z3) = Dα∗
1 ,α

∗
2
(Z3) = det (M3) +

∑
M̄∈Φ3

det
(
M̄
)
. (27)

We follow the same procedure until all nodes are coalesced
with the pivot node and we reach Dn(Zn). In general,
the expressions in this procedure are defined recursively as
follows.

Mi+1 , Ck∗,l∗(Mi)∇xi,yi
k∗,l∗Mi

∣∣
xi=xn,yi=yn

, i ∈ [1 : n− 1]
(28)

Di(Zi) , Dα∗
1 ,α

∗
2
(Zi) = det(Mi) +

∑
M̄∈Φi

det(M̄). (29)

Di(Zi) (30)

=
∑

(α1,α2)∈N2

1

α1!α2!
(xi − xn)α1(yi − yn)α2Dα1,α2(Zi+1).

Φi+1 ,
{
Ck,l(Mi)∇xi,yi

k,l Mi

∣∣
xi=xn,yi=yn

(31)

|(k, l) ∈ RMi
(α∗1, α

∗
2) \ (k∗, l∗)}

∪
{
Ck,l(M̄)∇xi,yi

k,l M̄
∣∣
xi=xn,yi=yn

|(k, l) ∈ RMi
(α∗1, α

∗
2), M̄ ∈ Φi

}
.

Lemma 2. Consider the recursive Taylor series expansion
procedure on a fixed pivot, (xn, yn). If, for every step i ∈
[1 : n], we can find a quasi-unique shift (α∗1, α

∗
2) for Mi in

(28) , then
Dn(Zn) = det(Mn), (32)

where Mn depends only on Zn = {(xn, yn)}. Therefore,
the associated interpolation matrix Mn, and hence, M1 are
invertible for almost all choices of evaluation points.

The proof of Lemma 2 is given in Appendix B.
In the next lemma, we present a set of situations for which a

quasi-unique shift exits in a coalescence step between a pivot
node and a variable node. These are not the only situations
for which quasi-unique shifts exit but are sufficient to derive

the recovery threshold presented in Theorem 1, as we show
in the next subsection.

Lemma 3. Assume that in the ith coalescence step we have the
variable node zi = (xi, yi) and the pivot node zn = (xn, yn).
Define rf , |Uzi,Mi

|(mod µB) and le , µB − |Uzn,Mi
|(

mod µB). That is, when depicted in the derivative order
space, rf is the number of elements in the rightmost partially-
occupied column of the derivative set of the variable node, and
le is the number of empty places in the rightmost partially-
occupied column of the derivative set of the pivot node. Then,
if |Uzi,Mi

| + |Uzn,Mi
| > µBK and one of the following

conditions is satisfied:
1) rf = 0,
2) rf = le,
3) le = 0,

or
4) |Uzi,Mi

|+ |Uzn,Mi
| ≤ µBK,

then there exists a quasi-unique shift for the coalescence of
these nodes.

The proof of Lemma 3 is given in Appendix C.

C. Derivation of the Recovery Threshold Expression

The existence of a quasi-unique shift depends on the
joint structure of the derivative sets of the pivot and the
variable nodes. If the derivative sets of the pivot node and
the variable node satisfy the conditions in Lemma 3, then,
in a coalescence step, i.e., recursive Taylor series expansion,
it is possible to find a quasi-unique shift for this recursive
step and we can proceed to the next recursion. Otherwise,
by simply ignoring specific computations provided by the
worker whose evaluation point corresponds to the variable
node under consideration, we can have the structure of the
remaining computations satisfy the conditions in Lemma 3.
This adds an overhead of ignored computations to the recovery
threshold expression. In the following lemma, we provide an
upper bound on the total number of computations we may need
to ignore throughout the whole recursion process by analysing
the worst-case scenario.

Lemma 4. Assume that the conditions of Lemma 3 hold
in none of the coalescences in the recursive Taylor series
expansion process. Then, in the worst case, by ignoring at most
(µB − 2)(L

µB
− 1) computations throughout all the recursion

steps suffices to guarantee decodability for almost all choices
of evaluation points.

Proof: Assume that none of the conditions of Lemma 3
hold. If rf > le, we can satisfy condition 2, i.e., rf = le, in
Lemma 3 by ignoring rf − le computations received from the
worker whose evaluation point is the variable node. Thus, in
the worst case, we ignore max(rf − le) = (µB − 1) − 1 =
µB − 2 computations. Note that the minimum value of le is
1. Otherwise, condition 3 in Lemma 3 would be satisfied.
Moreover, the maximum value of rf is µB − 1. Otherwise,
condition 1 in Lemma 3 would be satisfied. On the other hand,
if rf < le, we can ignore rf computations and satisfy the
condition 1 in Lemma 3. Since rf < le < µB , in the worst

15

case, we need to ignore max(rf) = µB − 2 computations.
Thus, in either case, the maximum number of computations
we ignore is µB − 2. Observe that generating a new block
in the derivative order space as a result of a coalescence
and not satisfying any of the conditions in Lemma 3 are
possible only if when |Uzi,Mi

| + |Uzn,Mi
| > µBK. Given

that there are L/µB blocks in the whole derivative order
space, the maximum number of coalescences for which
|Uzi,Mi | + |Uzn,Mi | > µBK is at most (L/µB − 1). Thus,
in the worst-case, the total number of ignored computations is
(µB − 2)(L

µB
− 1).

Since the polynomial we need to interpolate, A(x)B(y),
has KL coefficients, in the worst case the recovery threshold
becomes KL+(µB−2)(L

µB
−1). Since this number guarantees

the existence of a quasi-unique shift in every recursive
Taylor series expansion, by Lemma 2, we can conclude that
our original interpolation matrix is invertible for almost all
choices of the evaluation points. This completes the proof of
Theorem 1.

VII. CONCLUSION

In this work, we studied the memory-efficient exploitation
of stragglers in distributed matrix multiplication where
workers are allowed to have heterogeneous computation
and storage capacities. We proposed bivariate polynomial
coding schemes allowing efficient use of workers’ memories.
Bivariate polynomial coding poses the problem of invertibility
of an interpolation matrix, which is highly non-trivial, unlike
univariate polynomial codes. We first proposed a coding
scheme based on the fact that the interpolation matrix of
bivariate interpolation is always invertible if the evaluation
points form a rectangular grid. However, in this scheme, some
computations received by the master may not be useful since
the information they provide is already obtained from previous
responses. In order to tackle this problem, we showed that as
long as the workers follow a specific computation order, the
interpolation matrix is invertible for almost every choice of
the interpolation points. Based on this, we proposed BPC-VO
and BPC-HO solving the problem of redundant computations.
However, the constraints imposed by the computation orders
in BPC-VO and BPC-HO harm the average computation time
when the storage capacities of the workers are limited. To
overcome this, in BPC-NZO and BPC-ZZO, we relax these
constraints by allowing a few redundant computations, which
are still much less than those of B-PROC. The ability of the
proposed schemes to exploit the workers’ storage capacities
is close to the optimal. For different storage capacities, we
numerically showed that in terms of the average computation
time, the proposed schemes in the paper outperform existing
schemes in the literature.

The proof of the almost regularity of bivariate polynomial
coding schemes is itself a theoretically interesting one, and it
may guide proofs of other multivariate interpolation schemes
for distributed matrix multiplication in more general situations.
Another interesting line of work is the application of bivariate
polynomial coding to private matrix multiplication.

APPENDIX A
PROOF OF LEMMA 1

Proof: Given an interpolation matrix M , we first prove

∂

∂xj
det (M) =

KL∑
i=1

det(∂i,xj
M), (33)

and
∂

∂yj
det (M) =

KL∑
i=1

det(∂i,yjM). (34)

They follow directly from the chain rule. Let mi,j’s denote
the elements of M , and SKL the set of all permutations
of the columns of M . We use the fact det(M) =∑
π∈SKL

sgn(π)
∏KL
i=1mi,π(i) [23, Definition 7.4], where π is

a permutation, and sgn(π) is its parity. Then,

∂

∂xj
det(M) =

∑
π∈SKL

sgn(π)
∂

∂xj

KL∏
i=1

mi,π(i)

=
∑

π∈SKL

sgn(π)

KL∑
i=1

(
∂

∂xj
mi,π(i)

) ∏
j∈[1:KL]\{i}

mj,π(j)

=

KL∑
i=1

∑
π∈Sn

sgn(π)

(
∂

∂xj
mi,π(i)

) ∏
j∈[1:KL]\{i}

mj,π(j)

=

KL∑
i=1

det(∂i,xj
M). (35)

The proof of (34) can be done similarly. Next, consider part
of a derivative path s , ∂il,yj · · · ∂i2,yj∂i1,yj of length l <
α2 such that it has two identical rows or at least one zero
row, resulting in det(sM) = 0. Now let us consider the other
sequences having s as the suffix. Applying (34) m ≤ α2 − l
times,

∂

∂ymj
det(sM) =

KL∑
il+m=1

· · ·
KL∑

il+1=1

det(∂il+m,yj · · · ∂il+1,yjsM).

(36)
However, ∂

∂ymj
det(sM) = 0 since det(sM) = 0. The

same applies to x directional derivatives. That is, while
taking the derivatives of det(M), i.e., applying ∇xj ,yj

k,l , if we
encounter a sub-sequence s such that det(sM) = 0, then
the sum of determinants of all matrices having sM as suffix,
i.e., ∂il+m,yj · · · ∂il+1,yjsM , adds up to zero. Thus, only the
sequences in which all simple shifts are regular contribute
to (21), while applying ∇xj ,yj

k,l . Given a (k, l) pair, if Ck,l

denotes the number of sequences composed of only regular
simple shifts, we obtain (21).

APPENDIX B
PROOF OF LEMMA 2

We first present another lemma that will be useful in the
proof.

Lemma 5. No derivative set corresponding to the evaluation
points zi in Φi+1,∀i ∈ [1 : N − 1], defined in (31) obeys
N-zig-zag order.

16

Proof: From the definition of quasi-unique shift, it is clear
that no elements of the first set in (31) obeys N-zig-zag order.
To show the same for the second set, consider the elements
of the variable node at the coalescence step i. (α∗1, α

∗
2) is

chosen such that there is only one (k∗, l∗) such that when
the elements of the variable node are shifted according to
(k∗, l∗), and evaluated at (xn, yn), the resulting derivative
set obeys the N-zig-zag order. Assume now that no element
in Φi obeys the N-zig-zag order. Take any M̄ ∈ Φi and
apply ∇xi,yi

k,l M̄ for some (k, l). If (k, l) 6= (k∗, l∗), then
at least one of the elements of the variable node will be
placed to a location whose priority score is larger than those
of all the locations to which the elements of the variable node
would be placed if (k∗, l∗) were applied. This is because
∃j such that k(j) > k∗ or ∃j such that l(j) > l∗(j). In
∇xi,yi

k,l M̄ |xi=xn,yi=yn , if the derivative set of (xn, yn) obeyed
the N-zig-zag order, the variable node would have to have
more elements than it originally had since the largest priority
score whose corresponding location is occupied is larger for
∇xi,yi

k,l M̄ |xi=xn,yi=yn than ∇xi,yi
k∗,l∗Mi|xi=xn,yi=yn . Therefore,

it is not possible that the derivative set of the pivot node
for ∇xi,yi

k,l M̄ |xi=xn,yi=yn obeys the N-zig-zag order when
(k, l) 6= (k∗, l∗). On the other hand, if (k, l) = (k∗, l∗), since
we assume that no element of Φi obeys the N-zig-zag order,
the derivative set of the pivot node for ∇xi,yi

k∗,l∗M̄ |xi=xn,yi=yn

does not obey the N-zig-zag order. Since we know that no
element in Φ2 obeys the N-zig-zag order by definition, by
induction, we conclude that none of the elements in Φi+1,∀i ∈
[2 : N] obeys the N-zig-zag order.

The rows of Mn only depend on the pivot node (xn, yn),
and thus, the derivative set associated to (xn, yn) has KL
elements and satisfies the N-zig-zag order. Similarly, for all
matrices in Φn, the derivative sets of the pivot node have KL
elements. However, as Lemma 5 suggests, in this case, no
elements of Φn satisfies the N-zig-zag order. This implies that
all matrices in Φn have at least one duplicate row, or a zero
row. Therefore,

∑
M̄∈Φn

det(M̄)|xn−1=xn,yn−1=yn = 0. This
proves (32). The proof of det(Mn) 6= 0 follows, directly,
from the fact that, for Mn, the derivative set of the pivot
node obeys the N-zig-zag order. This means that each row
of Mn corresponds to ∂kA(xn)∂lB(yn), ∀k ∈ [0 : K − 1],
∀l ∈ [0 : L − 1]. Therefore, Mn can be written as an
upper triangular matrix, and therefore, invertible, implying
Dn(Zn) 6= 0. Remember that Di+1(Zi+1) 6= 0 implies
Di(Zi) 6= 0 for all i ∈ [0 : n − 1] due to the linear
independence between (xi − xn)α1(yi − yn)α2 for different
(α1, α2) pairs. Thus, Dn(Zn) 6= 0 implies D1(Z1) 6= 0
recursively, and thus, M1 is invertible. This proves the claim
of the lemma. �

APPENDIX C
PROOF OF LEMMA 3

First, note that the existence of a quasi-unique shift is only
related to the structure of the uppermost blocks of the pivot and
variable nodes’ derivative sets. Therefore, even if the derivative
sets of the pivot and variable nodes occupy more than one
block, in the derivative order space, it is sufficient to consider

only the uppermost blocks since the fully occupied blocks can
be handled only by additional y-directional derivatives. Thus,
we proceed as if there exist only the uppermost blocks of the
derivative sets of the pivot and variable nodes.

Our proof is based on determining some sufficient
conditions for the existence of a quasi-unique shift, which will
reduce to the conditions claimed in the lemma. We first state
our problem visually in the derivative order space in terms
of the derivative sets and the derivatives of the evaluations,
then we find the sufficient conditions on this visual problem
statement.

In this part of the proof, we take all the y-directional
derivatives before the x-directional ones. We depict the
elements in the derivative set of the pivot node, zn = (xn, yn),
in the derivative order space by filled circles in Fig. 9a. Since
the sum of the elements in the derivative sets of the pivot
and variable nodes is larger than the size of one block, i.e.,
|Uzn,Mi

|+ |Uzi,Mi
| > µBK, the coalescence generates a new

block. The unfilled circles in Fig. 9a represent the locations of
the elements of the variable node to be coalesced with the pivot
node after the coalescence. Their locations are determined such
that, after the coalescence, the resulting derivative set obeys
the N-zig-zag order. Therefore, from the structure in the figure,
we write |Uzi,Mi

| = le + (ce,b + ce,u)µB + re.
Since, after determining the locations to which the elements

of the variable node are placed, we no longer need the elements
of the pivot node. Therefore, in Fig. 9b, we remove the
elements of the pivot node from the picture, and, instead, we
depict the elements of the variable node in their original places
such that they obey N-zig-zag order. Note that in this proof,
our goal is to find a quasi-unique shift (α∗1, α

∗
2) such that there

is only one unique placement, characterized by (k∗, l∗), of
the elements of the variable node along with the elements of
the pivot node. Therefore, we need to track the final location
of each element of the variable node and make sure that
to the location each element is placed, it is not possible to
place another element from the variable node. Therefore, we
denote the elements of the variable node by Greek letters and
their subscripts. Note that the letters used for this purpose
should not be mixed with the other uses of the Greek letters
throughout the paper.

Given the depictions in Fig. 9b, the next step is to determine
y-directional shifts such that all elements of the variable
node are placed to the correct row in the derivative order
space. Since, according to Lemma 1, only regular simple
shifts are considered, while taking y-directional derivatives,
the sequence of the elements having the same x-directional
derivative order cannot change. Therefore, for example, αµB

stays always above the elements denoted by αi, i ∈ [1 : µB −
1]. Thanks to this property, filling the locations determined
to be filled in the new block is straightforward. Shifting the
block composed of the variable node’s elements with the same
shape as the locations to be filled towards y-direction uniquely
determines the elements to be moved to the new block.
The remaining y-directional shifts will be of the remaining
elements of the variable node in the lower block. In Fig. 9c,
we depict the shifted elements to the upper new block and
the remaining elements together. To have y-directional shifts

17

0
k

l

K

0

µB − 1

2µB − 1

1

...
...

...

...
...

...

...
...

...

...

...

...

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

ce,u

re

ce,b

le

(a)

0
k

l

Kcf

0

µB − 1

2µB − 1

rf − 1

...

...

...

...

...

...

...

...
...
...

...

...

...
...

...

...

...

...

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

ce,u

re

ce,b

le

α1

αµB

ψ1

ψµB

ω1

ωrf

(b)

0
k

l

Kcf

0

µB − 1

2µB − 1

rf − 1

...

...

...

...

...

...

...

...

...
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

ce,b

le

α1

α2

αµB

ψ1

ψµB

ω1

ωrf

θ1

θ2

θµB

λrf

λrf+1

λµB

λ1

λl̃f

φ1

φµB

l̃f

ce,u

re

c̃f

(c)

Fig. 9: Visualization of the derivative sets of the pivot and variable nodes.

which generate quasi-unique shifts, whenever we fill a row in
the locations determined to be filled in the lower block, the
elements to be placed there must be uniquely determined. For
example, while filling the top le rows, for each row, there must
be exactly ce,b+1 columns among the elements of the variable
node that are available to provide their top-most element. After
filling top le rows, in the remaining rows, there must be exactly
ce,b columns of the elements of the variable node that can
provide their top-most element. Therefore, to guarantee this, a
sufficient condition is that the shape of the remaining elements
of the variable node and the shape of the remaining empty
locations match. That is, c̃f = ce,b and the remaining elements
of the variable node have only one partially-occupied column
with le elements. There might be several structures satisfying
this condition. One of them is when rf = 0 since this implies
le+(ce,b+ce,u)µB+re ≡ 0 mod µB . Therefore, l̃f = le. This
proves condition 1 of the lemma. Another structure satisfying
the sufficient condition is that rf = le. When this is the case,
le + (ce,b + ce,u)µB + re = rf + (ce,b + ce,u)µB + re =
rf + cfµB , implying l̃f = 0. This proves condition 2 of
the lemma. For completeness, note that after the elements
are aligned with their final rows via y-directional derivatives,
necessary x-directional shifts can be easily applied such that
the elements of the variable node are finally placed to their
intended locations. Again, due to Lemma 1, we consider only
regular simple shifts and therefore, while taking x-directional
derivatives, the sequence of the elements having the same y-
directional derivative order cannot change.

In the remaining of the proof, we take all x-directional
derivatives before y-directional derivatives. In this case, Fig. 9a
and Fig. 9b are still valid. However, since we are taking x-
directional derivatives first, we first align all the elements
of the variable node that are to stay in the lower block
with their intended columns. We start with the rightmost
column of the lower block, which is column K. When
|Uzn,Mi

|+|Uzi,Mi
| ≤ µBK, this column are not intended to be

fully occupied, let us say only l̃e of them will be filled, but the

empty locations start from the bottom and they are consecutive
until the end. Therefore, the rows of the elements of the
variable node that will provide elements to these locations
are uniquely determined, namely the rows [0 : l̃e − 1] of the
elements of the variable node from the bottom. Note that,
if |Uzn,Mi | + |Uzi,Mi | > µBK, then l̃e = µB , which does
not break our argument. After the rightmost elements from
the rows [0 : l̃e − 1] of the elements of the variable node
are shifted to the Kth column via x-directional shifts, next,
we fill the columns starting from column K − 1 to column
K−ce,b−1. Note that since each of these columns are intended
to be fully occupied, they are directly filled with the rightmost
elements of each row via x-directional shifts. Finally, we fill
the column K − ce,b, which has le locations intended to be
occupied after the coalescence. If |Uzn,Mi

|+ |Uzi,Mi
| ≤ µBK,

then the upper block is not generated and the number of
remaining elements of the variable node is equal to le, each
on different rows. Thanks to the property that the sequence of
the elements having the same y-directional derivative orders
cannot change by x-directional shifts, the elements to be
placed to the le empty locations are uniquely determined. This
proves condition 4 of the lemma. On the other hand, when
|Uzn,Mi | + |Uzi,Mi | > µBK, a new block is generated, so
there will be always more than le remaining elements of the
variable node. Therefore, to have a unique shift, in this case,
we need le = 0, which proves condition 3 of the lemma. �

REFERENCES

[1] B. Hasırcıoğlu, J. Gómez-Vilardebó, and D. Gündüz, “Bivariate
polynomial coding for straggler exploitation with heterogeneous
workers,” in 2020 IEEE International Symposium on Information Theory
(ISIT). IEEE, 2020, pp. 251–256.

[2] ——, “Bivariate hermitian polynomial coding for efficient distributed
matrix multiplication,” in GLOBECOM 2020-2020 IEEE Global
Communications Conference. IEEE, 2020, pp. 1–6.

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE
Transactions on Information Theory, vol. 64, no. 3, pp. 1514–1529,
2017.

18

[4] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes:
An optimal design for high-dimensional coded matrix multiplication,”
in Proc. Int’l Conf. on Neural Information Processing Systems, 2017,
pp. 4406–4416.

[5] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix
multiplication,” IEEE Transactions on Information Theory, vol. 66,
no. 1, pp. 278–301, 2019.

[6] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” IEEE Transactions on Information Theory, vol. 66, no. 3, pp.
1920–1933, 2020.

[7] S. Dutta, Z. Bai, H. Jeong, T. M. Low, and P. Grover, “A unified coded
deep neural network training strategy based on generalized polydot codes
for matrix multiplication,” arXiv preprint arXiv:1811.10751, 2019.

[8] Z. Jia and S. A. Jafar, “Cross subspace alignment codes for coded
distributed batch computation,” arXiv preprint arXiv:1909.13873, 2019.

[9] M. Fahim and V. R. Cadambe, “Numerically stable polynomially coded
computing,” IEEE Transactions on Information Theory, vol. 67, no. 5,
pp. 2758–2785, 2021.

[10] A. Ramamoorthy and L. Tang, “Numerically stable coded matrix
computations via circulant and rotation matrix embeddings,” arXiv
preprint arXiv:1910.06515, 2019.

[11] A. M. Subramaniam, A. Heidarzadeh, and K. R. Narayanan,
“Random khatri-rao-product codes for numerically-stable distributed
matrix multiplication,” in 2019 57th Annual Allerton Conference on
Communication, Control, and Computing (Allerton). IEEE, 2019, pp.
253–259.

[12] A. B. Das, A. Ramamoorthy, and N. Vaswani, “Efficient and robust
distributed matrix computations via convolutional coding,” 2020.

[13] N. Ferdinand and S. C. Draper, “Hierarchical coded computation,” in
2018 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2018, pp. 1620–1624.

[14] M. M. Amiri and D. Gündüz, “Computation scheduling for distributed
machine learning with straggling workers,” IEEE Transactions on Signal
Processing, vol. 67, no. 24, pp. 6270–6284, 2019.

[15] S. Kiani, N. Ferdinand, and S. C. Draper, “Exploitation of stragglers
in coded computation,” in 2018 IEEE International Symposium on
Information Theory (ISIT). IEEE, 2018, pp. 1988–1992.

[16] E. Ozfatura, S. Ulukus, and D. Gündüz, “Straggler-aware distributed
learning: Communication–computation latency trade-off,” Entropy,
vol. 22, no. 5, p. 544, 2020.

[17] S. Kiani, N. Ferdinand, and S. C. Draper, “Hierarchical coded matrix
multiplication,” in 2019 16th Canadian Workshop on Information Theory
(CWIT). IEEE, 2019, pp. 1–6.

[18] R. A. Lorentz, Multivariate Birkhoff Interpolation. Springer, 2006.
[19] K. E. Atkinson, An Introduction to Numerical Analysis, Second Edition.

John Wiley & Sons, 1988.
[20] T. Sauer and Y. Xu, “On multivariate hermite interpolation,” Advances

in Computational Mathematics, vol. 4, no. 1, pp. 207–259, 1995.
[21] T. Sauer, “Computational aspects of multivariate polynomial

interpolation,” Advances in Computational Mathematics, vol. 3,
no. 3, pp. 219–237, 1995.

[22] G. Liang and U. C. Kozat, “Tofec: Achieving optimal throughput-delay
trade-off of cloud storage using erasure codes,” in IEEE INFOCOM
2014-IEEE Conference on Computer Communications. IEEE, 2014,
pp. 826–834.

[23] J. Liesen and V. Mehrmann, Linear Algebra. Springer Undergraduate
Mathematics Series, 2015.

