README

Dataset for "Mass loss of the Greenland ice sheet until the year 3000 under a sustained late-21st-century climate"

16 model experiments

- hist: historical simulation 1990–2015.
- ctrl_proj: constant-climate projection control experiment 2015–3001.
- exp05–10, expa01–a03, expb01–b05: future-climate experiments 2015–3001 (see Table 1 of the paper).

Zip archives

- hist.zip, ctrl_proj_long.zip, exp05_long.zip, exp06_long.zip, ..., expb05_long.zip: netCDF output files for the 16 experiments (one file for each variable).
- run_specs_headers.zip
 SICOPOLIS run-specs headers for the 16 experiments.

Scalar state variables

lim	 Total ice mass (kg)
limnsw	 Mass above floatation (kg)
iareagr	 Grounded ice area (m²)

These variables are provided as yearly snapshots for the full years 2016–3001 [hist: 1991–2015]. Time variable: 'time'.

Scalar flux variables

dlimdt	_	Total ice mass change (kg a ⁻¹)
tendacabf	-	Total surface mass balance flux (kg a ⁻¹)
tendlibmassbf	_	Total basal mass balance flux (kg a ⁻¹)
tendlicalvf	_	Total calving flux (kg a ⁻¹)

These variables are provided as yearly averages over the intervals bounded by the years 2015–3001 [hist: 1990–2015]. Time variables: 'time', 'time_bnds'.

2D state variables

lithk	-	Ice thickness (m)
orog	-	Surface elevation (m)
base	-	Ice base elevation (m)
topg	_	Bedrock elevation (m)

xvelsurf	_	Surface velocity in x (m a^{-1})
yvelsurf	_	Surface velocity in y (m a^{-1})
zvelsurf	_	Surface velocity in z (m a^{-1})
horvelsurf	_	Horizontal surface velocity (m a ⁻¹)
xvelbase	_	Basal velocity in x (m a^{-1})
yvelbase	_	Basal velocity in y (m a^{-1})
zvelbase	_	Basal velocity in z (m a^{-1})
horvelbase	_	Horizontal basal velocity (m a ⁻¹)
xvelmean	_	Mean velocity in x (m a^{-1})
yvelmean	_	Mean velocity in y (m a ⁻¹)
horvelmean	_	Horizontal mean velocity (m a^{-1})
litemptop	_	Surface temperature (K)
litempbot	_	Basal temperature (K)
strbasemag	_	Basal drag (Pa)
sftgif	_	Land ice area fraction (–)

These variables are provided as snapshots for the years 2020 (5) 2100 (25) 3000, 3001 [hist: yearly snapshots for 1991–2015]. Time variable: 'time'.

2D flux variables

acabf	_	Surface mass balance flux (kg m ⁻² a ⁻¹)
libmassbf	_	Basal mass balance flux (kg m ⁻² a ⁻¹)
licalvf	_	Calving flux (kg m ⁻² a ⁻¹)
dlithkdt	_	Ice thickness imbalance (m a^{-1})
hfgeoubed	_	Geothermal heat flux (W m ⁻²)

These variables are provided as averages over the intervals bounded by the years 2015 (5) 2100 (25) 3000, 3001 [hist: yearly averages bounded by 1990–2015]. Time variables: 'time', 'time_bnds'.

Notes

- The variable names follow closely the ISMIP6 convention (e.g., Table A1 of https://tinyurl.com/ismip6-wiki-gris). However, years are used instead of seconds as the time unit (1 a = 31,556,926 s).
- For further details, see the metadata in the netCDF files (e.g., by Linux command 'ncdump –h' or MATLAB command 'ncdisp') and the paper.