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Abstract—The integration of distributed battery energy storage
systems has started to increase in power systems recently, as
they can provide multiple services to the system operator, i.e.
frequency regulation, system peak shaving, backup power etc.
Additionally, batteries can be installed even in facilities where
the installation of renewable energy sources are impossible, such
as apartments within urban areas. Consequently, an aggregator
could deploy distributed battery systems to households under
his portfolio, utilising them to capitalize on Demand Response
services while sharing benefits of electricity cost reduction with
them. To enable that, this paper provides an integrated solution
for monitoring, scheduling, and controlling a residential battery
energy storage system. The proposed system has been realised
in the context of inteGRIDy project to a pilot site that consist of
4 different dwellings that are located in Northern Greece. The
analysis of the pilot results revealed that battery systems could
exploit the variation in electricity price in order to succeed some
profit alongside with the provided energy services.

Index Terms—battery energy storage system, optimisation,
demand side management, battery scheduling

I. INTRODUCTION

Towards the transition from current power systems to Smart
Grid, one of the aspects that has drawn the attention of both
the industry and the scientific community is the integration
of Renewable Energy Sources (RESs), with Photovoltaics and
Wind Generators being the most prevalent among them [1].
One of the ways to achieve even greater penetration of RESs is
the utilization of Demand-Side Management (DSM) strategies
[2], and as part of the latter is the utilization of Battery Energy
Storage Systems (BESS). The latter can perform and aid in the
new era of Distribution Networks in a lot of different ways,
such as Frequency Control [3], Voltage Control [4], and other
ancillary services in general [5]. There is also a great variety
of installation schemes available for BESS, such as either near
or next to the Medium to Low Voltage (MV/LV) Substation
[6] therefore choosing a more decentralized approach, or near
the final end-user [7], choosing a more distributed approach.

Buildings have been identified as a source of enormous
untapped efficiency potential, with 40% of global energy
consumption and one third of Green-House-Gas emissions
[8]. Thus, by optimally rearranging their energy consumption,

especially from on-peak to off-peak load hours, this could
prove rather beneficial to the end-user, the utility provider
and the Distribution System Operator (DSO) [9]. BESS can
aid towards that end [10]. In [11] a deterministic approach is
proposed. However, a peaking interval is foretold empirically,
and the BESS is charged to its full capacity prior to this
interval. This could not necessarily lead to a global optimal
result. Another approach could be, as proposed in [12], to
monitor the energy consumption and discharge the BESS at
its full rate when a peak occurs. However, this may lead to
a premature depletion of the BESS due to the deep discharge
of the BESS. Moreover, it can be considered not a sufficiently
realistic approach, since it does not necessarily take into
account the uncertainties of the energy consumption. The
proposed work in [13], and [14], taken into consideration
uncertainties in energy consumption. In [15] a stochastic
optimization is proposed in order to incorporate the energy
consumption uncertainties and therefore provide more realistic
and accurate results improving the final outcome. The results
have been retrieved by conducting simulations using real data.

In this paper however, an integrated BESS installation along
with a Battery Management System (BMS) is examined. The
integrated system is installed in either single or three phase
residential facilities and its performance in real-life situations
is presented. The system is auto-guided via an optimization
engine aiming at minimizing operation cost, while considering
the BESS’ constraints, therefore overcoming any dangers of
depleting the BESS, while providing optimized results.

The remaining of the paper is organised as follows: In
Section II is analysed the system architecture. In Section III a
detailed presentation of the experimental setup and the tested
scenario are given, while Section IV presents the experimental
results under real-life conditions. Finally Section V is devoted
to conclusions and future work.

II. SYSTEM ARCHITECTURE

The design architecture for the installation, operation and
monitoring of a residential DSM scheme based on small BESS
is shown in Fig. 1. It constitutes of both software and hardware
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Fig. 1: System Architecture.

elements that enable the production of the necessary timeseries
which are in turn applied to the distributed assets. First,
the core components of the solution, namely the household
consumption forecast and optimised BESS scheduling engines
are installed on a server that interacts with web-based cloud
services which provide the necessary input variables for both
(i.e., the day-ahead pricing scheme and weather forecast). The
server contains dedicated databases upon which all necessary
variables are stored. At household level, a small computing
device, coupled with the BESS and a smart meter, is respon-
sible for the monitoring of the BESS operation and household
consumption and whenever applicable, it controls directly the
BESS in order to dispatch the optimised setpoints in regards
to charging and discharging. In the following paragraphs, the
system architecture components are described in detail.

A. Optimal BESS Scheduling Engine

An optimisation algorithm was developed based on an
optimal microgrid energy management (shortly OptiMEMS)
engine developed by the authors [16]. This component analy-
ses and optimally schedules (in a day-ahead horizon) the dis-
/charging of the BESS in order to modify dynamically the
overall customer’s energy consumption profile. This battery
schedule is optimised towards operating cost minimization
(including battery Levelized Cost Of Energy - LCOE) that
eventually promotes the discharging of the BESS during high-
price hours and charging during low-priced hours. Those
periods coincide evidently with the peak and low load hours,
promoting in this way a load shifting scheme, and providing
the aggregator the ability to offer this as a service to the DSO,
showcasing a scenario of potential participation in an intra-day
market. It should be noted however that the latter is not yet
possible for demonstration, since this market branch is not
open for competition in Greece.

This optimisation tool is solving an adjusted version of the
classic Unit Commitment Problem (a-UCP) in semi-real time,
which is modelled as a Mixed-Integer Linear Programming
(MILP) algorithm. The modelling of the problem takes into
consideration dynamic constraints regarding the forecasted en-
ergy provided to the household loads, the last recorded State-
of-Charge (SoC) of the BESS and the technical specifications
of the battery module along with its interfacing inverter (i.e.,
nominal inverter power, maximum/ minimum SoC, Depth-

of-Discharge (DoD), nominal charge and discharge C-rates).
Furthermore, the OptiMEMS engine receives as input a day-
ahead dynamic pricing scheme. Given the fact that currently
there are no commercially available dynamic pricing schemes
for aggregators (i.e., Real-Time Pricing - RTP) in Greece,
the day-ahead System Marginal Price (SMP) from wholesale
market is being used. An example of the input timeseries (load
forecast and RTP) and output BESS setpoints are shown in
Fig. 2. The most prominent dynamic constraints included in
the mathematical model of the a-UCP are:

e Energy Consumption equal to grid import or battery
discharge,

« Battery setpoints (translated both in power and energy
terms) within the battery module’s limitation (i.e., DoD,
C-rate),

« Physical constraints of the inverter (i.e., binary operation
of charge/discharge modes, power setpoint below the
inverter’s nominal power),

o Legal constraints based on national regulations (e.g.
shared supply of loads by grid and battery prohibited).

Given the highly stochastic nature of residential load con-
sumption, the probability of mismatches between the expected
(forecasted) and measured consumption timeseries can be
prohibitively high, especially in case there are not enough
data to train the forecasting models properly -e.g., in the
beginning of the system running in a household. As a result,
the produced optimal BESS scheduling will not be able to
be applied given that the system’s economic operation will
not be guaranteed. To tackle this issue, in case significant
deviations between forecasted and measured consumption are
detected, the system demands a re-calculation of the optimal
BESS schedule starting from the upcoming timeslot for the
remainder of the day. As input the updated short-term load
forecast is used. This operation attempts to achieve profit even
in case of deviations, making thus the overall system more
robust. For detailed description and analysis of the OptiMEMS
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Fig. 2: Optimal Day-ahead BESS Scheduling result as a
function of load forecast and day-ahead dynamic pricing.



Secondary
Switchboard .

Main
Switchboard

-
Li-ion Battery

Fig. 3: BESS residential single-phase installation.

engine along with its experimental demonstration results from
a real-life microgrid, the readers are kindly redirected to [16].

B. Load Forecasting

The Load forecasting tool was developed based on the
requirements of the optimization engine. Thus, two different
forecasts in terms of forecast horizons are utilized, namely
a day-ahead and a complementary short-term load forecast.
Both, are considered a multi-step time series forecasting
problems, as multiple time horizons have to be forecasted [17]
following either the recursive or the direct strategy, where in
our case the direct strategy was adopted. In most cases, short-
term is associated with the concept of forecasting one step
ahead, but for the needs of the optimization engine it goes one
step further by forecasting until the end of the day. Both fore-
casts use the same models with the only difference lies on the
different inputs that they utilize. In particular, the day-ahead
forecast is based on the historical load of the previous day, in
contrast to the short-term, that is using the most recent load
consumption values and it is calculated hourly. Additionally,
external features that influence the outcome are integrated into
the model, such as time and weather variables, regarding which
third-party weather forecasting service is employed. The time
features, the so-called cyclical features, are important in order
to capture the seasonality included within load consumption
time series (time, day of week, month, etc). As for the
weather features, after a correlation analysis was conducted,
the outdoor temperature was the most influential among all the
other weather variables and was included in the model as well.
Finally, regarding the training of the models several methods
were deployed and experimented, ending up that Extreme
Gradient Boosting (XGBoost) regressor [18], based on the
gradient boosting framework, had the best performance in
terms of accuracy and execution speed. Extended description
about load forecasting algorithm is out of the scope of this
paper and it will be presented in future publication.

III. EXPERIMENTAL SETUP AND SCENARIO

The initial theoretical study of the system was based on
the connection of the BESS in parallel with the distribution
grid. This type of connection makes the BESS somewhat
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Fig. 4: BESS residential three-phase installation.

independent of the characteristics of each house, enabling the
selection of an inverter-battery system with a size that is not
related to the loads of the consumer. In addition, the system
may be disabled for maintenance or other purposes without
affecting the normal operation of the house as it will continue
to be supplied by the electricity grid.

Nevertheless, as mentioned in a previous chapter, the pro-
posed system should be installed in real dwellings in northern
Greece. Unfortunately by the time this paper is written,
the Greek legal framework does not permit the in-parallel
connection of a BESS to the distribution grid, unless it is
combined with a RES, i.e. PV, Wind Turbine etc. Therefore,
BESS utilized within the inteGRIDy project pilot should be
controlled in such manner to avoid injecting power to the
grid, and supply only the load of the facility where they are
installed. This condition could not be ensured by some kind
of software implementation that would monitor the central
energy meter of the installation and properly control the
inverter. Therefore the in-series connection of the BESS with
the distribution grid was selected for all facilities.

This pilot case involves a set of different types of residential
buildings with various customer profiles. Therefore a proper
BESS sizing and separation of the BESS powered loads had
to be performed. All houses are equipped with a smart meter,
allowing real-time monitoring of power flow. The presented
single-phase house is equipped with an EM111 smart meter
from Carlo Gavazzi company, a 5 kWh Li-ion battery from
Sunlight company and a single phase Sunny Island 4.4M-
12 inverter from SMA company or its equivalent three phase
model as shown in Figures 3 and 4 respectively. The inverter
supports Modbus TCP/IP protocol and has a number of
registries to enable monitoring and perform fully control upon
battery dis-/charge rate.

Regarding the proposed software package, it is separated
in a central system and in many distributed ones. The central
system is a Linux based server located in aggregator’s premises
and incorporates the optimization engine, the machine learning
load forecasting tool and the databases. On the other hand
the monitoring and control system of the distributed BESS is
developed on Raspberry Pi 4, installed at each household.
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Fig. 5: Optimal BESS operation on 08/03/2021

IV. EXPERIMENTAL RESULTS

JIn order to demonstrate the efficient operation of the
proposed integrated system Fig. 5a, 5b, Sc and 5d present the
scheduling and the actual operation of the BESS for the day
08/03/2021. The data are extracted from a house that has quite
low daily load consumption. Its average daily consumption
ranges between 5kWh and 10kWh, while this specific day is
6kWh. As mentioned again in the corresponding section, the
scheduling of the battery’s operation depends on the day-ahead
load consumption forecast and the electricity prices.Fig, Sa
shows in black dashed line the schedule that was calculated at
the beginning of the day (at midnight). It is obvious that after
the first vertical red line the black dashed line is separated from
the orange one that is related to the rescheduling of the BESS.
From this point on the control system sends set-points to the
battery inverter according to the updated schedule. Observing
this graph as a whole, it is evident that the actual operation
of the battery follows very closely the scheduling that the
optimisation algorithm has proposed. At this point it should
be noted that the distinctive ability of this inverter in terms of
the set-points it receives is of the order of 100 W. Therefore in
cases where the algorithm proposes discharging for the battery
but the load consumption of the house is less than 100 W, then
no command for discharge is sent to the inverter.

Fig. 5b depicts the load forecast as it is calculated at the
beginning of the day (black dashed line) and as it is recal-
culated every one hour (green line). The load consumption
in residential facilities shows high variance as it depends a
lot on consumer’s behaviour. Consequently the prediction in
many steps ahead could lead in high deviations. In order to
alleviate these errors the short term forecast is calculated every
one hour. It is evident that the actual consumption (blue line)
is close enough with the short term forecast. Each time the
monitoring system detects a high deviations it triggers (red
vertical lines) the optimisation module to calculate an updated
schedule based on the updated short term load forecast.

The examined day based on the SMP and without using the
BESS the aggregator would have paid 0.42€ for purchasing
the electricity energy for this customer in the exchange market.
Nonetheless, due to the optimal scheduling and operation of
the BESS they save 0.13€ that corresponds to approximately
31% reduction. Based only on the results of this day the
final conclusion would be misleading, as observing Fig. 5d
the battery started fully charged and at the end of the day
reached at 60% SoC. A more representative graph is in Fig.
6 that depicts the results of 72 hours of system operation,
during which the battery discharges up to 60% and recharges
again up to 100%. The economic result of these days is
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Fig. 6: BESS operation for 72 hours.

only 0.01€ profit compared to 0.90 €cost. This is caused
as the operation of the system is inextricably linked to the
household’s consumption. Therefore the system can not fully
discharge at the lowest price but it is also discharged at times
when the price is higher leading to lower daily profits or even
negative in cases where the battery charges but there isn’t
enough load consumption to discharge again. In addition, on
days that the load is quite low, the self-consumption of the
system i.e. the energy needed for the 24-hour operation of the
inverter, BMS and control devices, becomes comparable to the
total consumption.

V. CONCLUSION & FUTURE WORK

This paper presents the design and the implementation of
an integrated system that monitors, schedules and controls a
BESS for residential building purposes. The proposed system
exploits the variable electricity price in the markets to provide
additional income to an aggregator and consequently to their
customers. The results showed that the benefits of the proposed
installation cannot yet be yield. Therefore, the proposed solu-
tion cannot be considered yet financially viable in its current
configuration and the considered circumstances, current vari-
ations of electricity prices of the particular electricity market
considered, current procurement and installation costs of BESS
etc. Perhaps a more volatile variation of the electricity price
could provide the necessary revenue for such a solution to be
considered as sustainable, especially in case that it could reach
negative values as well. Thus, it could be argued that another
market, e.g Germany, or in future markets, this solution could
be made viable. Furthermore, it should be stated that apart
from participating in the day-ahead market, no other revenue
has been taken into account. If this were to be changed and
the participation in other markets was available, perhaps by
providing ancillary services during the intra-day market, this
could also provide some additional income.
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