

#### D0.3.2: Report on the COVRIN kick-off meeting, 31<sup>st</sup> March 2021 JIP COVRIN WP0

Responsible Partner: UoS (23) Contributing partners: All partners





#### **GENERAL INFORMATION**

| European Joint Programme full title | Promoting One Health in Europe through joint actions on foodborne zoonoses, antimicrobial resistance and emerging microbiological hazards |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| European Joint Programme<br>acronym | One Health EJP                                                                                                                            |
| Funding                             | This project has received funding from the European Union's Horizon 2020                                                                  |
|                                     | research and innovation programme under Grant Agreement No 773830.                                                                        |
| Grant Agreement                     | Grant agreement n° 773830                                                                                                                 |
| Start Date                          | 01/01/2018                                                                                                                                |
| Duration                            | 60 Months                                                                                                                                 |

#### **DOCUMENT MANAGEMENT**

| Title OHEJP deliverable                                                                                                                           | D0.3.2: Report on the COVRIN kick-off meeting, 31st March 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| WP and task                                                                                                                                       | WP0-T3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Leader                                                                                                                                            | Daniel Horton (UoS, 23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Other contributors                                                                                                                                | Wim van der Poel (WBVR, 31); WP leaders; Carlijn Bogaardt (UoS, 23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Due month of the deliverable                                                                                                                      | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Actual submission month                                                                                                                           | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Туре                                                                                                                                              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| R: Document, report<br>DEC: Websites, patent filings,<br>videos, etc.; OTHER                                                                      | Save date: 8 February 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Dissemination level<br>PU: Public (default)<br>CO: confidential, only for<br>members of the consortium<br>(including the Commission<br>Services). | PU<br>See updated Grant Agreement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| <b>Dissemination</b><br>Author's suggestion to<br>inform the following<br>possible interested parties.                                            | OHEJP WP 1       OHEJP WP 2       OHEJP WP 3         OHEJP WP 4       OHEJP WP 5       OHEJP WP 6         OHEJP WP 7       Project Management Team       Image: Communication Team         Communication Team       Scientific Steering Board       Image: Communication Team         National Stakeholders/Program Owners Committee       Image: Communication Team       Image: Communication Team         EFSA       ECDC       EEA       EMA       FAO       WHO       OIE         Other       international       stakeholder(s):       Image: Communication Team       Stakeholder(s):         Other       Image: Communication Team       Image: Communication Team       Image: Communication Team       Image: Communication Team         Other       EFSA       ECDC       EEA       EMA       FAO       WHO       OIE         Other       international       stakeholder(s):       Image: Communication Team       Image: Communication Team       Image: Communication Team         Social Media:       Image: Communication Team       Image: Communication Team       Image: Communication Team       Image: Communication Team         Other       Image: Communication Team       Image: Communication Team       Image: Communication Team       Image: Communication Team         Other       Image: Communication Team |  |  |  |  |





#### D0.3.2: REPORT ON THE COVRIN KICK-OFF MEETING, 31ST MARCH 2021

#### Introduction

COVRIN aims to integrate research by One Health EJP partner institutes on the topics of SARS-CoV-2 emergence, risk assessment and preparedness. The project has two main operational objectives: (i) to identify drivers for the emergence and spread of SARS-CoV-2, and (ii) to generate data and build models for risk assessment of SARS-CoV-2. To achieve these objectives, integrative research activities are focused on four topics: (i) research on detection of SARS-CoV-2 in animal species and the environment; (ii) research on SARS-CoV2 molecular and biological characterization; (iii) SARS-CoV-2 surveillance and risk assessment, focussed on the animal human interface; and (iv) coronavirus preparedness. The overall aim of the COVRIN project is to generate and share data of these integrative research activities, in order to increase the preparedness for future coronavirus outbreaks.

The kick-off meeting for COVRIN was held on 31<sup>st</sup> March 2021. This Deliverable consists of the minutes of this meeting, and the slide decks of the presentations given by the project coordinator and work package leaders. E-mail addresses have been removed for privacy reasons.

#### Meeting minutes (circulated to COVRIN participants in April 2021)

#### Welcome and introduction to COVRIN (Wim van der Poel, WBVR)

#### Work package overview presentations (WP leaders)

See attached slides

#### **Actions arising**

- All: Consider and provide information (inc. contact person) to COVRIN coordinators on other EU funded activities. (e.g PREZODE) that overlap or align with COVRIN (to contribute to imminent scoping exercise T0.3).
- **Project coordinators**: circulate annex requesting ethical information
- WP leaders: complete animal ethics information by return when circulated
- All: complete and return any outstanding Y5 budget templates
- All: Partners involved in other OHEJP projects relevant to COVRIN: e.g TELE-VIR (Pipeline for NGS to variant dashboard-WP2), Orion and Matrix (surveillance, WP3), should contact relevant COVRIN WP leaders to initiate communication links are in place.
- All: If partners already have any tools that could be of use in a WP, contact WP leader directly and consider presenting at ASM satellite meeting (<u>https://onehealthejp.eu/asm-satellite-workshop--</u>2021/)
- Add the following to the COVRIN OHEJP website (when available): (1) contact details of everyone involved in COVRIN (coordinators/WP leaders); (2) presentation slides (coordinators)
- All: check whether your institute is correctly stated as partner under the relevant WPs/tasks
- WP leaders: Organise WP specific launch meetings





#### To note

- Project length: A 9 month extension to EJP has been requested (still under consideration). If approved, then COVRIN will still end in Dec 22 but final deliverables can be submitted in 23 (as per the current Gantt chart). If the extension is not approved, then all deliverables will be required to be submitted before end Dec 22 and the Gantt chart will be updated accordingly. Risk of this for delivery of deliverables is noted.
- ANSES and OHEJP TELE-VIR project both have NGS based mutation detection pipelines in • development that are relevant for WP2
- OHEJP projects MATRIX and ORION are integrative projects including surveillance and are of • relevance for WP3
- STAR-IDAZs group are organising a workshop of pandemic prevention initiatives •
- Budget for Y5 requires finalisation •
- There is a Nidovirus meeting in June is a good opportunity for presentation of results and • networking: https://fems-microbiology.org/opportunities/nido2020-xvth-internationalnidovirussymposium/

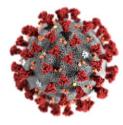






## COVRIN Joint Integrative Project 1

Wim van der Poel, WBVR Daniel Horton, UoS (PLs COVRIN)


This presentation is part of the European Joint Programme One Health EJP. This programme has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 773830.

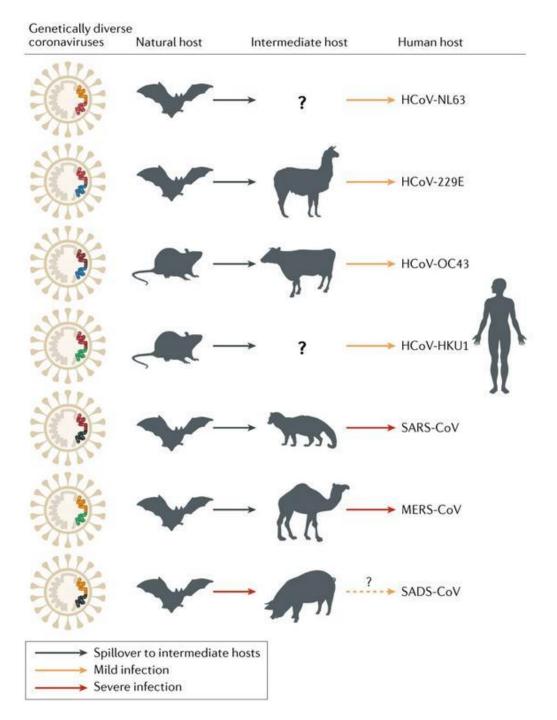
# 2019-nCoV Wuhan, China, Covid-19 Pandemic Main clinical manifestations

- fever (83%)
- Cough (82%)
- Shortness of breath (31%)
- Muscle ache (11)
- Confusion (9%)
- Headache (8%)
- Sore throat (5%)
- Rhinorrhoea (4%)



Chen et al., The Lancet, 2020












### Coronavirus hosts





100 years

## SARS-CoV2 susceptibility animals

| Animal species     | Clinical<br>signs | Virus<br>replication | Excretion<br>infectious<br>virus |
|--------------------|-------------------|----------------------|----------------------------------|
| Non human primates | $\checkmark$      | $\checkmark$         | $\checkmark$                     |
| Cats               | 1 √               | $\checkmark$         | $\checkmark$                     |
| Ferrets, Mink      | $\checkmark$      | $\checkmark$         | $\checkmark$                     |
| Raccoon dogs       |                   | $\checkmark$         | $\checkmark$                     |
| Hamsters           | $\checkmark$      | $\checkmark$         | $\checkmark$                     |
| Fruit bats 💦 🥆     |                   | $\checkmark$         | $\checkmark$                     |
| Cattle             |                   | (√)                  |                                  |
| Swine 🌱            | <b>R</b>          | (✓)                  |                                  |
| Rabbits            |                   | $\checkmark$         | $\checkmark$                     |
| Dogs               |                   | $\checkmark$         |                                  |
| Chicken            | -                 |                      |                                  |



## SARS-CoV2 in farmed mink









3.5% 3.0% MORTALITY PER 3-DAY PERIOD (%) 7.2% 1.2% 1.2% 0.5% 0.0% 9.22 MAT 22.22 MA 3-15 APR 6-10 APR 9.21 APR 3:15 MAT 6.18 MAT 25.27 MAT 0.12 498 24 APR 5.27 APR 30 494 3 MA 1.9 MAT 12 Mat 3 PPA 1.6 PP4 SAPA • NB4 (2,4%) – NB1 (3,8%) •••••• NB2 (3,1%) – NB3 (9,8%)

Molenaar et al., 2020 Vet Pathology



# Covid-19 pandemic current developments

- New diagnostics
- New variants
- New hosts
- New vaccines
- Environmental contamination
- Other







# COVRIN SARS-CoV2 Research Integration & Preparedness

- Drivers for Emergence and Spread, and Risk Assessment of SARS-CoV2
- Responsible Partners:
  - Wageningen Bioveterinary Research (WBVR)
  - University of Surrey (UoS)
- Contributing partners:
  - ANSES (P1), Ages (P2), Sciensano (P4), VRI (P8), Bfr (P9), FLI (P10), INIA (P16), UCM (P17), INRAe (P19), APHA, (P21), UoS (P23), ISS (P27), IZSAM (P28), IZSLER (P29), RIVM (P30), WBVR (P31), NVI (P33), PIWET (P34), INIAV (P35), INSA(36), SVA (P41).



# COVRIN Integrative Research project Strategic goals

- Develop common COVID-19 protocols that support OHEJP collaborations
- Develop common infrastructure for COVID-19 research
- Integrate COVRIN deliverables into the work processes of OHEJP partners
- Reduce overlaps of COVID-19 research within OHEJP
- Develop a common OHEJP structure on Coronavirus preparedness



# COVRIN Operational Objectives

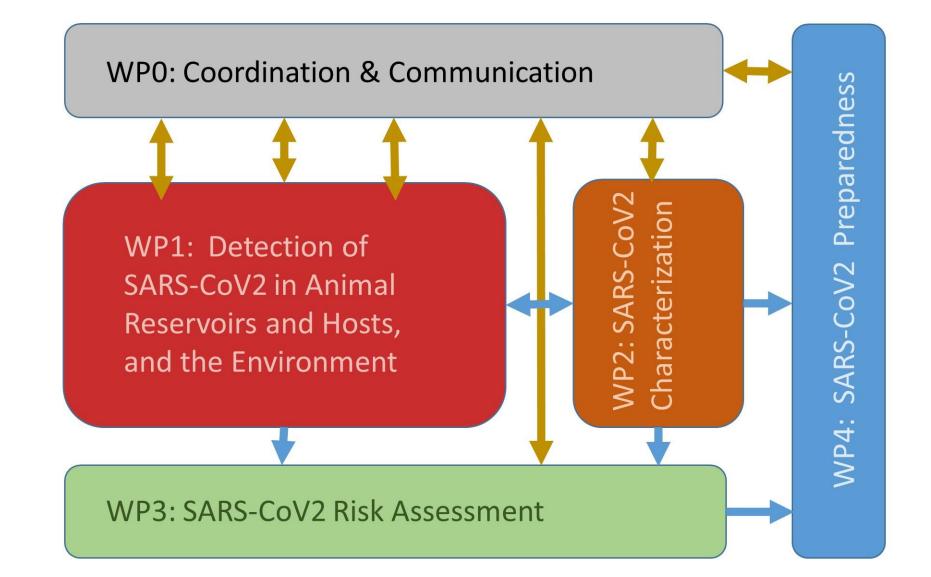
Two main integrative research objectives:

- To identify drivers for the emergence and spread of SARS-CoV2
- To generate data and build models for risk assessment of SARS-CoV2



# **COVRIN** organisation

- Coordinators: Daniel Horton (UoS); Wim van der Poel (WBVR)
- 1 March 2021 31 December 2022
- Budget 2M euro
- Joint Integrative project, WP4 EJP
- WP-, Task-, Subtask Leaders
- Webpage, OH EJP website




# **COVRIN** workpackages

- WPO: Coordination and communication
- WP1: Detection of SARS-CoV2 in animal reservoirs and hosts, and the environment
- WP2: SARS-CoV2 characterization
- WP3: Risk assessment and surveillance
- WP4: Coronavirus preparedness



### SARS-CoV2 Research Integration & Preparedness COVRIN 2.0



## Strategic focus of COVRIN integrative topics

#### **PREVENT, DETECT AND RESPOND**



EFSA, WHO, FAO, OIE)



- T0.1: Internal project organisation:
- T0.2: Communication and reporting
- T0.3: Meetings and stakeholder connection



- T0.1: Internal project organisation:
  - Management of information flows; Meetings organisation,
  - Organisation of data sharing.
  - -> <u>DMP leader:</u> Lotte Houwens (WBVR);
  - -> Regular meetings of WP-leaders (incl. deputies)
  - -> WP leaders to organise WP meetings
- T0.2: Communication and reporting
  - Periodical reports; internal and external communication
  - -> Connection with EJP Com-team
  - -> Webpage contact point



- T0.3: Meetings and stakeholder connection
  - Task Leader: Dan Horton (UoS)
  - Contributors (all):

ANSES (P1), Ages (P2), Sciensano (P4), VRI (P8), Bfr (P9), FLI (P10), INIA (P16), UCM (P17), INRAe (P19), APHA, (P21), UoS (P23), ISS (P27), IZSAM (P28), IZSLER (P29), RIVM (P30), WBVR (P31), NVI (P33), PIWET (P34), INIAV (P35), SVA (P41).

- KO March 2021, online
- Mid-term meeting (Jan-Feb 2022 tbc) Online/hybrid
- Final meeting December 2022- In person, location TBC

## T0.3: Meetings and <u>stakeholder connection</u>

ŝ

- *Rapid reporting of relevant results is aligned with PREVENT-DETECT-RESPOND.*
- Results or information arising from activities co-funded by COVRIN, which may affect the risk posed by SARS-CoV-2 will be reported to REA by email or telephone by the COVRIN leadership group (Project leader, deputy leader, WP leaders) as soon as they are informed.
- At this stage, national authorities are also informed.
- The potential results or information to be communicated rapidly may include but is not exclusive to: new detections of SARS-CoV-2, genome or antibodies, detections in a new geographical area or an increase in detections in livestock, wildlife or environmental samples.
- Contact points from stakeholders ECDC, EMA, EFSA will be invited to meetings
- Close liaison with OHEJP WP5 (Science to Policy) team also important
- These activities are in addition to the existing OHEJP dissemination activities



- T0.3: Meetings and stakeholder connection
  - 0.3.1 Scoping exercise to avoid overlap with other EU funded COVID-19 activities
    - Literature and survey based exercise, due M45





# Thank you for your attention!





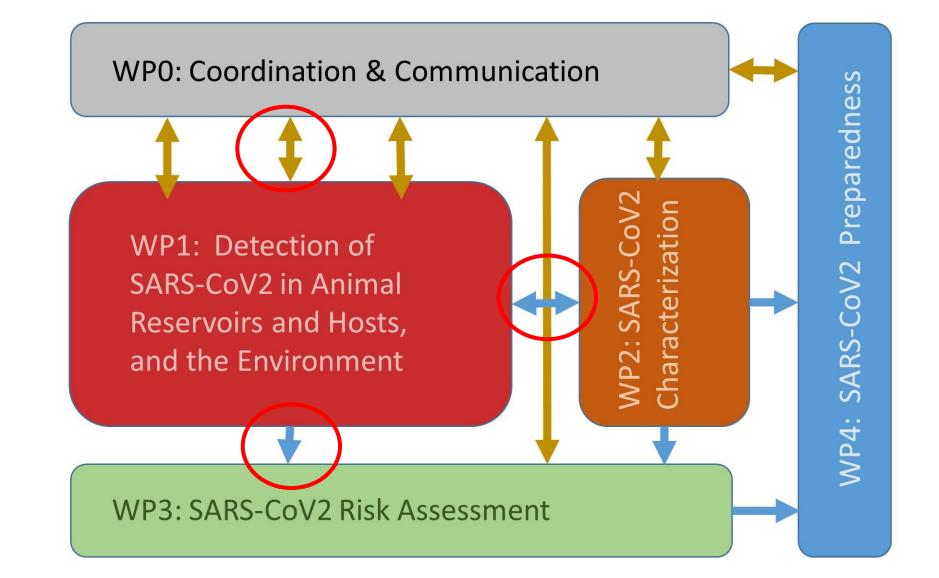
This presentation is part of the European Joint Programme One Health EJP. This programme has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 773830.







## COVRIN Joint Integrative Project Kick Off Meeting 31st March 2021


WP1

Daniel Horton, UoS Deputy Project Leader WP1 leader

This presentation is part of the European Joint Programme One Health EJP. This programme has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 773830.



### SARS-CoV2 Research Integration & Preparedness COVRIN 2.0





WP1 Detection of SARS-CoV2 in animal reservoirs and hosts, and the environment Leaders: Dan Horton (UoS), Martin Groschup (FLI)

- T1.1: SARS-CoV2 genome detection in livestock, wildlife, pets and environmental samples
- T1.2: Optimization and harmonization of immunological SARS-CoV2 antigen and antibody detection methods in domestic and wildlife animals.
- T1.3: Definition of bioavailability of virus in fomites, water, and the environment



# WP1 Detection of SARS-CoV2 in animal reservoirs and hosts, and the environment

T1.1: SARS-CoV2 genome detection in livestock, wildlife,

## pets and environmental samples

• Task leader: Mikael Leijon (SVA)

Contributors: ANSES (P1),Ages (P2), Sciensano (P4), FLI (P10), UCM (P17), APHA (P21), UoS (P23), ISS (P27), IZSAM (P28), IZSLER (P29), RIVM (P30), WBVR (P31), NVI (P33), INIAV (P35), SVA (P41)

- ST1.1.1 Report on available data from SARS-CoV-2 virus genome testing in companion animals and livestock (Lorraine McElhinney, APHA)
- ST1.1.2 Report on available data from SARS-CoV-2 virus genome testing in wildlife, (Elodie Monchatre-Leroy, ANSES)
- ST1.1.3 Report on available data from SARS-CoV-2 genome detection in environmental samples (Sandra Martin-Latil, ANSES)



# WP1 Detection of SARS-CoV2 in animal reservoirs and hosts, and the environment

T1.2: Optimization and harmonization of immunological SARS-

CoV2 antigen and antibody detection methods in domestic and wildlife animals. Task Leader: Martin Groschup, FLI

Contributors: ANSES (P1) VRI (P8) APHA (P21) UoS (P23) ISS (P27) IZSAM (P28) IZSLER (P29) RIVM (P30) WBVR (P31) NVI (P33) PIWET (P34) INIAV (P35)

- ST1.2.1 Evaluation of antigen detection methods in clinical samples from animals (Markus Keller , FLI)
- ST1.2.2 Evaluation of methods for antibody detection animals (Ana Moreno Martin, IZSLER)



# WP1 Detection of SARS-CoV2 in animal reservoirs and hosts, and the environment

T1.3: Definition of bioavailability of virus in fomites, water, and the environment (Ana Maria de Roda Husman, RIVM,) Contributors: ANSES (P1) VRI (P8) FLI (P10) APHA (P21) WBVR (P31)

• ST1.3 Report on the bioavailability of virus on fomites, water and the environment (Benoit Gassilloud ANSES)



Department for Environment Food & Rural Affairs



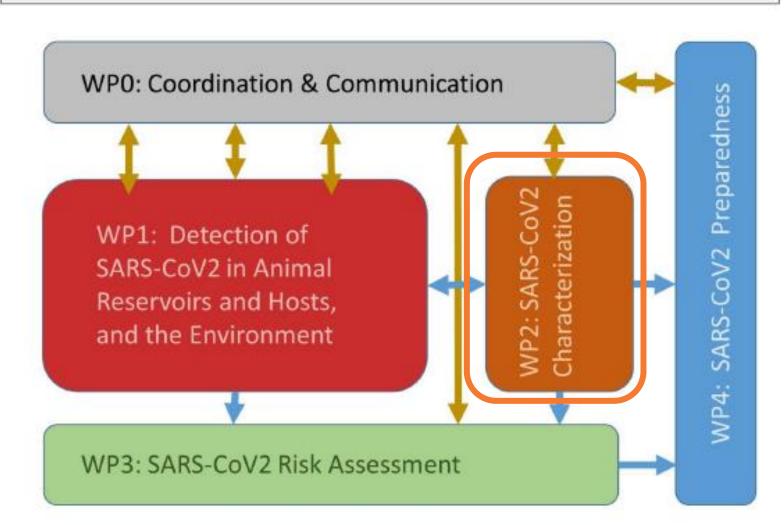




# COVRIN - CoronaVirus Research Integration

WP2 - SARS-CoV2 characterisation

Sharon Brookes – APHA P21


31 March, 2021

This presentation is part of the European Joint Programme One Health EJP. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 773830.



# WP2: SARS-CoV2 characterisation

#### SARS-CoV2 Research Integration & Preparedness COVRIN 2.0



Develop common COVID-19 protocols that support OHEJP collaborations

Develop common infrastructure for COVID-19 research

Integrate COVRIN deliverables into the work processes of OHEJP partners

➢ Reduce overlaps of COVID-19 research within OHEJP

Develop a common OHEJP structure on Coronavirus preparedness



## WP2 Objectives: SARS-CoV2 characterisation

### Two main overall operational objectives of COVRIN

- > To identify drivers for the emergence and spread of SARS-CoV2
- > To generate data and build models for risk assessment of SARS-CoV2

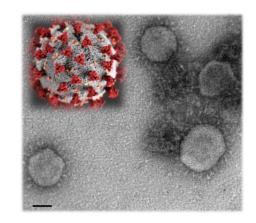
To characterize SARS-CoV-2 variants - mapping of evolutionary changes of SARS-CoV-2 viruses isolated within and across human and different animal species.

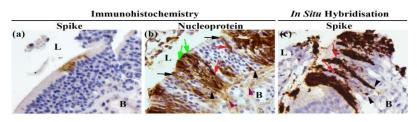
To characterise SARS-CoV-2 mutations and recombination events, particularly during adaptation to alternative hosts.

Virus characterization is a key capability that will complement virus surveillance and risk assessment of zoonotic and reverse zoonotic transmission, potential immune evasion and reinfection, and to determine impacts for vaccine development (S-gene) or antiviral medication (RdRp).



WP2 - SARS-CoV2 Characterisation Sharon Brookes, APHA (P21) Alessio Lorusso, IZSAM (P28)


- T2.1 Genome analyses
  - ST2.1.1 Protocol repository
  - ST2.1.2 Harmonisation sampling and methods NGS
  - ST2.1.3 Phylogenetic analyses


#### T2.2 In vitro and in vivo characterization of SARS-CoV2

- ST2.2.1 Cell culturing
- ST2.2.2 Antigenicity studies
- ST2.2.3 Complex cultures

#### T2.3 Development and optimization of animal models

- ST2.3.1 Animal models protocols
- ST2.3.2 Pathology toolbox
- ST2.3.4 Establishment of virus-host interaction parameters
- T2.4 Analyses of virus traits related to zoonotic transmission
  - ST2.4.1 Variant analyses species jumps
  - ST2.4.2 Identification of antigenic site modifications
  - ST2.4.3 In vivo studies virus variants





Lean, F.Z.X. *et al., Sci Rep* **10**, 21894 (2020). https://doi.org/10.1038/s41598-020-78949-0



## WP2 Tasks / Subtasks and Leads Add persons from each Partner Institute for delivery

| T2.1 Genome analyses                                           | Vitor Borges (INSA)            |  |
|----------------------------------------------------------------|--------------------------------|--|
| ST2.1.1 Protocol repository                                    | Maud Contrant (ANSES)          |  |
| ST2.1.2 Harmonisation sampling and methods NGS                 | Maud Contrant (ANSES)          |  |
| ST2.1.3 Phylogenetic analyses                                  | Alessio Lorusso (IZSAM)        |  |
| T2.2 In vitro and in vivo characterization of SARS-CoV2        | Anita Solhaug (NVI)            |  |
| ST2.2.1 Cell culturing                                         | Anita Solhaug (NVI)            |  |
| ST2.2.2 antigenicity studies                                   | Daniel Horton (UoS)            |  |
| ST2.2.3 Complex culture                                        | Stefan Finke (FLI)             |  |
| T2.3 Development and optimization of animal models             | Sharon Brookes (APHA)          |  |
| ST2.3.1 Animal models protocols                                | Elodie Monchatre Leroy (ANSES) |  |
| ST2.3.2 Pathology toolbox                                      | Fabian Lean (APHA)             |  |
| ST2.3.4 Establishment of virus-host interaction parameters     | Maria Dahle (NVI)              |  |
| T2.4 Analyses of virus traits related to zoonotic transmission | Barbara Holzer (Ages)          |  |
| ST2.4.1 Variant analyses species jumps                         | Paul Brown (ANSES)             |  |
| ST2.4.2 Identification of antigenic site modifications         | Unni Grimholt (NVI)            |  |
| ST2.4.3 In vivo studies virus variants                         | Joe James (APHA)               |  |

(P21) APHA – Tony Fooks, Falko Steinbach Lorraine McElhinney, Joe James, Alex Byrne



## Task 2.1 - Genome analyses

Lead: INSA (P36) (Vitor Borges) Participants: ANSES (P1), FLI (P10), APHA (P21), ISS (27), IZSAM (P28), IZSLER (P29), WBVR (P31), NVI (P33), PIWET (P34), INIAV (P35), SVA (P41)

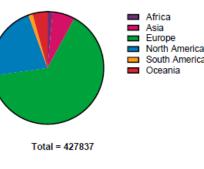
Whole genome sequences by NGS (various methods) of SARS-CoV-2 strains from humans and animals.

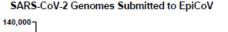
a) Methodologies exchange and harmonisation

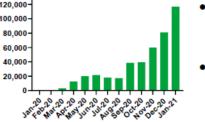
Archival samples of wild and domestic animals will be used for CoV RNA detection and NGS.

b) Sample type (clinical – field or experimental / isolate) and extraction protocols plus validation,

Phylogenetic analysis and investigation for potential virulence traits will be performed.


- c) Nucleic acid comparisons both consensus and minor variant analyses.
- d) Phylogenetic relationships among human and animal strains.
- e) Amino acid analyses receptor binding sites, antigenic sites etc


Selected strains may be also used for downstream biological characterization (T2.2 & 2.3).





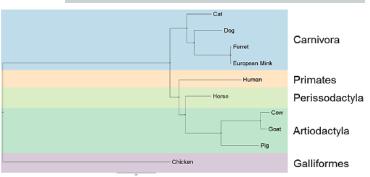












## Task 2.1 Deliverables

D2.1.1 Report on the established website protocol repository.

D2.1.2 Report on the comparisons of variants and reference sample exchange

D2.1.3 Report on the development of an algorithm for novel virus assessment.





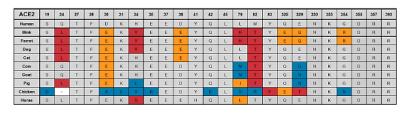





 Image: State state

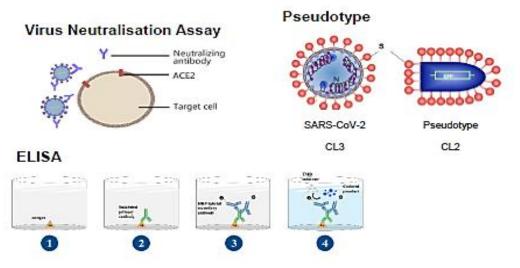
Alex Byrne, APHA



### **Task 2.2 In vitro and ex vivo biological characterisation** Lead: NVI (P33) (Anita Solhaug) Participants: FLI (P10), APHA (P21), IZSAM (P28), WBVR (P31)

### Assessment of in vitro systems for characterization of SARS-CoV-2 strains.

Including live virus (infectious) recovery sensitivity and species specificity.


a) Cell lines of species origin,

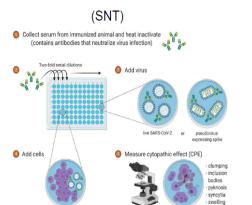
b) Virus Neutralisation Assays optimisation – wild type and pseudotypes

Ex vivo explants and air-liquid interphase cultures of several animal species will be infected with SARS-CoV-2.

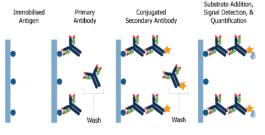
c) Ex vivo organ cultures,
d) Air liquid interface
Viruses replicating in these systems
will be characterized with respect to genome analysis,

viral growth and host responses




Joe James et al., APHA

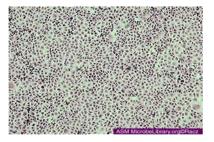


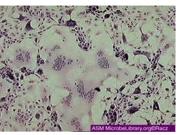

## Task 2.2 Deliverables

D2.2.1 Report on cell line sensitivities – species and virus growth characteristics.D2.2.2 Report on assessment of VNA techniques and comparison with ELISAD2.2.3 Report on complex culture viral characterisation.






Enzyme-Linked Immunosorbent Assay (ELISA)






Delahay et al., "Assessing the Risks of SARS-CoV-2 in Wildlife" https://www.preprints.org/manuscript/202012. 0283/v3

• 179 Human sera and 260 cats and dog sera tested for validation.





Uninfected cells

Infected cells (CPE)



### Task 2.3 - Development, optimization and harmonization of animal models for SARS-CoV2 characterization Lead: APHA (P21) (Sharon Brookes) Participants: ANSES (P1), FLI (P10), IZSAM (P28), WBVR (P31), NVI (P33)

Animal models; species type for veterinary health and animal models for human disease including zoonoses.

a) Exchange of protocols and experimental designs (infection, transmission, therapeutic intervention etc)

b) Explore and share pathology parameters (virus, receptors etc).

c) Undertake host response and cellular biomarkers analyses – innate and adaptive (humoral and cellular).





Covid 19 in farmed mink, Netherlands Research objectives

Spread of the infection in the minks
 Spread of the infection in the farms and between the farms

- Viruscontamination in the farms and the environment (exposure assessment)
- Association between the infections in the mink and infections in humans
- Association between the infections in the mink and other animals, in particlar stray cats.







## Task 2.3 Deliverables


Functional analysis

D2.3.1 Catalogue of animal models in use, pros and cons, and designed protocol sharing and harmonisation.

D2.3.2 Report on pathology per species and investigative toolboxes.

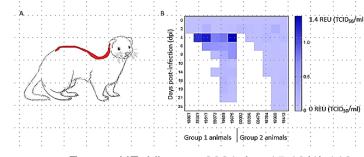
D2.3.3 Report on virus-host interaction parameters across susceptible species.

- Review the literature and perform in silico analysis for susceptible host species range.
- Use in vitro assessments of susceptibility.
- Aim to bridge knowledge gaps relevant to reverse-zoonotic reservoir risk.



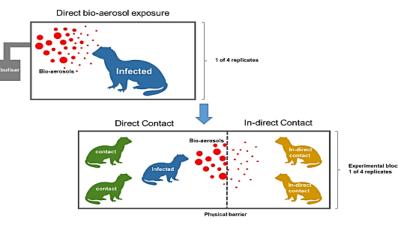





### Task 2.4 Analyses of virus traits related to zoonotic and/or reverse zoonotic transmission Lead: AGES (P2) (Barbara Holzer) Participants: ANSES (P1), FLI (P10), APHA (P21), UoS (P23), IZSAM (P28), WBVR (P31), NVI (P33)

Outcomes and materials from this and other WPs will allow:

- a) Variant analyses on host species change progeny viruses
- b) Host cell ACE2 receptor virus interaction analyses.


c) Antigenic site modifications determination including cartography.

d) A variant virus in vivo investigation.

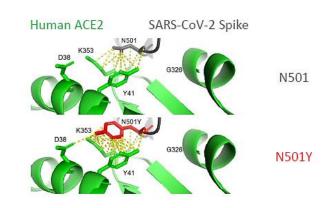


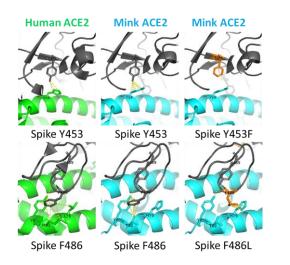
Everett HE, Viruses. 2021 Jan 15;13(1):113. doi: 10.3390/v13010113. PMID: 33467732; PMCID: PMC7830262.

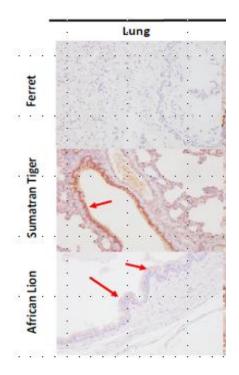
Investigate bio-aerosol infection parameters and zoonotic and reverse-zoonotic transmission using ferret infection models.






## Task 2.4 Deliverables


D2.4.1 Collated partner outcomes of virus trait change as a result of species change including cell receptor affinity.


D2.4.2 Report on in silico and antigenic cartography analysis of antigenic site adaptation traits.

D2.4.3 Undertake and report on a virus variant in vivo follow-up study.

|      | 1      |      |     |       |     |       |     |      |       | SAF  | R5-CoV-2 | Spike Pri | otein |       |     |      |      |       |     |      |      |
|------|--------|------|-----|-------|-----|-------|-----|------|-------|------|----------|-----------|-------|-------|-----|------|------|-------|-----|------|------|
|      |        | 417  |     |       |     |       |     | 53   | 484   |      |          |           | 501   |       |     |      |      |       |     |      |      |
|      |        | K417 |     | K417T |     | K417N |     | Y453 | Y453F | E434 |          | E484K     |       |       | N   | 101  |      | N501Y |     |      |      |
| н    | unan   | D30  | H34 | D30   | H34 | D30   | H34 | H34  | H34   | K31  | E35      | K31       | E35   | ¥41 - | D38 | G326 | K353 | Y41   | DGB | G326 | K35  |
| 1    | Mink   | E30  | ¥34 | E30   | Y34 | E30   | 134 | Y34  | Y34   | K31  | E35      | K31       | E35   | Y41   | E38 | G326 | K353 | Y41   | E38 | G326 | K35  |
| F    | erret  | E30  | ¥34 | E30   | Y34 | E30   | 334 | Y34  | Y34   | K31  | E35      | K31       | E35   | Y41   | E38 | G326 | K353 | Y41   | E38 | G325 | K35  |
| -    | Dog    | E30  | Y34 | E30   | Y34 | E30   | 134 | Y34  | Y34   | K31  | E35      | K31       | E35   | Y41   | E38 | E326 | K353 | Y41   | E38 | E326 | K353 |
| 1cts | Cat    | D30  | H34 | D30   | H34 | D30.  | H34 | H34  | H34   | K31  | E35      | K31       | E35   | Y41   | E38 | G326 | K353 | Y41   | E38 | 0326 | K353 |
| 2    | Fig    | E30  | L34 | E30   | L34 | E30   | L34 | L34  | L34   | K31  | E35      | K31       | E35   | Y41   | D38 | G326 | K353 | Y41   | 036 | G326 | K35  |
| Y H  | iorse  | E30  | 834 | E30   | 834 | E30   | 834 | 834  | 834   | K31  | E35      | K31       | E35   | H41   | E38 | G326 | K353 | H41   | E38 | G325 | K35  |
| N    | louse  | N30  | Q34 | N30   | Q34 | N30   | 034 | Q34  | Q34   | N31  | E35      | N31       | E35   | Y41   | D36 | G326 | H353 | Y41   | 000 | G325 | Has  |
| 3.6  | Rat    | N30  | Q34 | NOD   | Q34 | N30   | Q34 | Q34  | Q34   | K31  | E35      | K31       | E35   | Y41   | D38 | G326 | H363 | Y41   | D38 | G326 | Has  |
| Ct   | hicken | 630  | V24 | A30   | V24 | ADD   | ¥34 | V24  | V34   | K21  | R35      | K31       | R35   | Y41   | D36 | G326 | K353 | Y41   | 036 | G326 | 635  |







### Fabian Lean, APHA



## Deliverable time lines

|       |       | 20    | 21     |        |        | 20     | 2023   |        |       |        |
|-------|-------|-------|--------|--------|--------|--------|--------|--------|-------|--------|
| Task  | 37-39 | 40-42 | 43-45  | 46-48  | 49-51  | 52-54  | 55-57  | 58-60  | 61-63 | 64-66  |
| Т 2.1 |       |       | D2.1.1 | D2.1.2 |        | D2.1.3 |        |        |       |        |
| Т 2.2 |       |       |        | D2.2.1 | D2.2.2 |        | D2.2.3 |        |       |        |
| T2.3  |       |       | D2.3.1 |        | D2.3.2 |        |        | D2.3.3 |       |        |
| T2.4  |       |       |        |        |        | D2.4.1 | D2.4.2 |        |       | D2.4.3 |

### Deliverables

- WP deliverable reports
- Reporting Year Annual Reports: 1st Jan to 31st Dec.
- Annual Scientific Meeting 2021, 2022, 2023
- Partner(s) peer-review publications
- OHEJP and Partner blogs

### Other collaborative funding opportunities:

Horizon Europe or International partner country grants



### Main Challenges:

- variable COVID restrictions in partner countries
- virtual / live networking
- other disease outbreaks e.g. AIV, ASFV etc

### Draw backs:

- Two years, reduced budgets (STM)
- Additional partners one year



# Stakeholders & Connections

REGIONAL OFFICE FOR Europe

European

Agency

Environment

In country partner support



World Organisation for Animal Health

World Health

Organization

\*\*\*\*\***ne** HEALTHE







International Veterinary Vaccinology Network







BSL4ZNet



#APHAscience

EUROPEAN CENTRE FOR DISEASE PREVENTION AND CONTROL

EUROPEAN MEDICINES AGENCY

SCIENCE MEDICINES HEALTH



@APHAgov in company/aphagovuk

ompare



Department for Environment Food & Rural Affairs



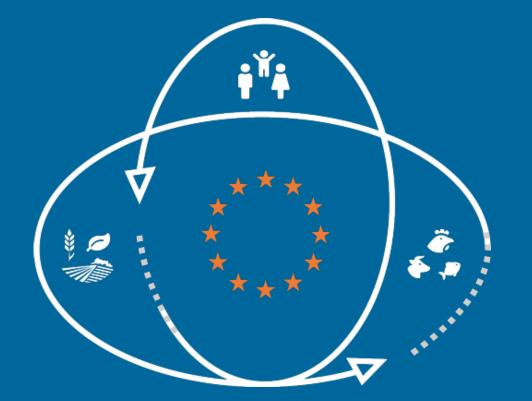


# Thank you for your attention!





@OneHealthEJP
 in /company/h2020-One-Health-EJP
 OneHealthEJP.eu


This presentation is part of the European Joint Programme One Health EJP. This programme has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 773830.



National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport







COVRIN CoronaVirus Research Integration WP3 - SARS-CoV2 Risk assessment and surveillance

> Joaquin Prada Mirjam Kretzschmar

This presentation is part of the European Joint Programme One Health EJP. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 773830.



# WP3 Objectives

• Main goal

1)Integration of data into an aligned One-Health surveillance system for SARS-CoV-2.

- 2)This aligned surveillance will be combined with WP1/WP2 outputs to inform risk assessment.
  - Outcomes of WP3 will provide evidence for decision-makers and other stakeholders to understand risk from a OH perspective.



## WP3 Tasks

- Tasks
- 1. T3.1 Integration of surveillance activities
- 2. T3.2 Mapping of surveillance data
- 3. T3.3 Risk factors for virus transmission
- 4. T3.4 Models for transmission routes and risk assessment (in a OH perspective)



## WP3 Workplan

|                                                                | Project | Months |        |        |        |        |        |        |        |        |
|----------------------------------------------------------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                                                                | 2021    |        |        |        | 2022   |        |        |        | 2023   | é      |
|                                                                | M37-39  | M40-42 | M43-45 | M46-48 | M49-51 | M52-54 | M55-57 | M58-60 | M61-63 | M64-66 |
| WP3, Risk Assessment&Surveillance                              |         |        |        |        |        |        |        |        |        |        |
| T3.1 Integration of surveillance activities                    |         |        |        |        |        |        |        |        |        |        |
| ST3.1.1 Design format/procedure for surveillance data          |         | D3.3.1 |        |        |        |        |        |        |        |        |
| ST3.1.2 Collection of surveillance data                        |         |        |        |        |        | D3.3.2 |        |        |        |        |
| ST3.1.3 Identification additional sources of surveillance data |         |        |        |        |        |        | D3.3.3 |        |        |        |
| T3.2 Mapping of surveillance data                              |         |        |        |        |        |        |        |        |        |        |
| ST3.2.1 Evaluation of current surveillance activities          |         |        |        | D3.2.1 |        |        |        |        |        |        |
| ST3.2.2 Identification of key stakeholders                     |         |        |        |        |        |        |        |        | D3.2.2 |        |
| T3.3 Identification of risk factors for virus transmission     |         |        |        |        |        |        |        |        |        |        |
| ST3.3.1 Analyses of transmission in pets                       |         |        |        |        |        | D3.3.1 |        |        |        |        |
| ST3.3.2 Study of epidemiology and risk factors in pets         |         |        |        |        |        |        |        |        | D3.3.2 |        |
| T3.4 Models for transmission routes and risk assessment        |         |        |        |        |        |        |        |        |        |        |
| ST3.4.1 Listing of existing models                             |         |        | D3.4.1 |        |        |        |        |        |        |        |
| ST3. 4.2 Reviewing transmission parameters                     |         |        |        |        |        | D3.4.2 |        |        |        |        |
| ST3.4.3 Listing of susceptible hosts and relative risks        |         |        |        |        |        |        |        | D3.4.3 |        |        |
| ST3. 4.4 Reviewing of chalenge experiments                     |         |        |        |        |        |        |        |        |        | D3.4.4 |
| ST3.4.5 Description of transmission characteristics in mink    |         |        |        |        | D3.4.5 |        |        |        |        |        |



1.T3.1 Integration of surveillance activities

D.3.1.1. Report on the format and procedure for data integration.

D.3.1.2. Database on sampling on wildlife, food producing animals, pets, and the environment.

D.3.1.3. Report on data sources and possibilities of integration into a common framework.

1.T3.2 Mapping of surveillance data

2.T3.3 Risk factors for virus transmission

**3.**T3.4 Models for transmission routes and risk assessment (in a OH perspective)



### 1.T3.1 Integration of surveillance activities

- 2.T3.2 Mapping of surveillance data
  - 1.D.3.2.1. Review of surveillance activities carried out by member countries.
  - 2.D.3.2.2. Report on key stakeholders across member countries and opportunities for alignment of One Health surveillance activities.
- 3.T3.3 Risk factors for virus transmission
- 4.T3.4 Models for transmission routes and risk assessment (in a OH perspective)



- 1.T3.1 Integration of surveillance activities
- 2.T3.2 Mapping of surveillance data
- 3.T3.3 Risk factors for virus transmission
  - 1.D.3.3.1. Report on epidemiological survey design and clinical data (including anamnesis and lab results).
  - 2.D.3.3.2. Report on the epidemiological survey results and risk factor assessment for pet-human SARS-Cov-2 transmission.
- 4.T3.4 Models for transmission routes and risk assessment (in a OH perspective)



- 1.T3.1 Integration of surveillance activities
- 2.T3.2 Mapping of surveillance data
- 3.T3.3 Risk factors for virus transmission
- 4.T3.4 Models for transmission routes and risk assessment (in a OH perspective)
  - 1.D.3.4.1 List of existing models and required parameters that need quantification.
  - 2.D.3.4.2 Systematic review report and quantification of transmission parameters for different animal species.
  - **3.**D.3.4.3 List of susceptible hosts and relative risk ranking of susceptibility.
  - 4.D.3.4.4 Report on the review of challenge experiments across different host species.
  - 5.D3.4.5 Report describing the transmission characteristics of the mink outbreaks for the countries where data was available.



### WP3 Team

- Lead: Joaquin Prada (UoS)
- Deputy: Mirjam Kretzschmar (RIVM)
- Task Leads:
- 1. T3.1 Integration of surveillance activities: Cecilia Mia Wolff (NVI)
- 2. T3.2 Mapping of surveillance data: Joaquin Prada (UoS)
- 3. T3.3 Risk factors for virus transmission: Irene Iglesias (INIA)
- 4. T3.4 Models for transmission routes and risk assessment (in a OH perspective): Jose Gonzalez (WBVR)
- 1. Sub-Task leads: ST3.1.2 Franz Conrath (FLI)
  - ST3.1.3 and ST3.2.2 Lapo Mughini Gras (RIVM)
  - Other partner institutes: ANSES, Ages, Sciensano, VRI, UCM, APHA, ISS, IZSAM, IZSLER, PIWET, INIAV, SVA



## WP3 Stakeholder and collaborations

### The tripartite





World Organisation for Animal Health



European authorities



EUROPEAN CENTRE FOR DISEASE FREVENTION

Overlap with past/ongoing OHEJP projects such as MATRIX and ORION





# WP3 Challenges and Opportunities

- Challenges
- Short project
- Ensure fluid communication (and stakeholder engagement)
- Quick turnover for some deliverables
- Opportunities
- Existing links to other projects (i.e. with MATRIX)
- Teams in place with multidisciplinary expertise



National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport





# Thank you for your attention!





@OneHealthEJP
/company/h2020-One-Health-EJP
OneHealthEJP.eu

This presentation is part of the European Joint Programme One Health EJP. This programme has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 773830.







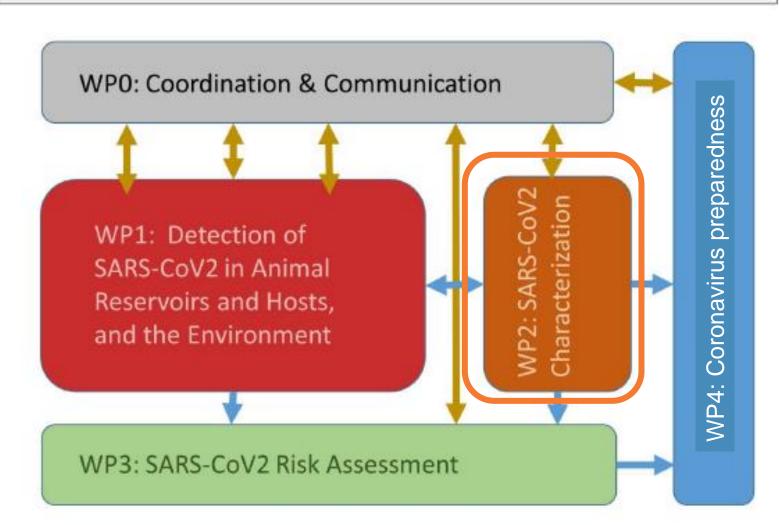


# COVRIN - CoronaVirus Research Integration

WP4 – Coronavirus preparedness

Nicolas Eterradossi – Anses P1

Wim van der Poel – WBVR P31


March, 2021

This presentation is part of the European Joint Programme One Health EJP. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 773830.



# WP4: Coronavirus preparedness

### SARS-CoV2 Research Integration & Preparedness COVRIN 2.0



Develop common COVID-19 protocols that support OHEJP collaborations

Develop common infrastructure for COVID-19 research

Integrate COVRIN deliverables into the work processes of OHEJP partners

➢ Reduce overlaps of COVID-19 research within OHEJP

Develop a common OHEJP structure on Coronavirus preparedness



# WP4 Objectives: Coronavirus preparedness

- i) to enhance preparedness for future novel coronavirus emergence from animal populations,
- ii) to understand the drivers for such emergence
- iii) to integrate results from the different WPs and modelize the risk of coronavirus emergence in different virus host interaction situations
- Study virus host interactions of non-Sars-Cov-2 coronaviruses to better understand which determinants are critical for infection of humans or susceptible animal species, (*Felidae*, *Mustelidae*, *Cricetidae* etc...)
- Investigate under natural and experimental conditions the adaptive potential of relevant animal CoVs, and identify possible molecular mechanisms of evolution and host adaptation
- Analyze the phylodynamics of coronaviruses to assess which ones have the greatest potential for cross-species interactions, to identify early zoonotic and reverse zoonotic adaptations and to highlight ecological opportunities and human practices that have a direct impact on coronaviruses evolution
- Integrate the results to model coronavirus emergence risks in different virus-host interaction situations.



WP4 – Coronavirus preparedness Nicolas Eterradossi, Anses (P1) Wim van der Poel, WBVR (P31)

### T4.1 Virus host interactions

- ST4.1.1 In vivo and in vitro studies
- ST4.1.2 In vitro and ex vivo studies
- ST4.1.3 Virus isolation from wildlife (i.e. hedgehogs)

### • T4.2 Drivers of virus emergence

- ST4.2.1 Global time and geographical scales phylodynamics
- ST4.2.2 Trace relevant virus mutations and recombinations
- ST4.2.3 Evaluate the impact of ecological factors and human interventions

### T4.3 Virus emergence risk modelling

- ST4.3.1 Follow coronavirus contamination in bats
- ST4.3.2 Follow coronavirus contamination in cats
- ST4.3.3 Follow coronavirus contamination in wildlife (hedgehogs)
- ST4.3.4 Risk assessment and modelling



## WP4 Tasks / Subtasks and Leads

#### T4.1 Virus-Host interactions

- ST4.1.1 Perform in vivo and in vitro studies
- ST4.1.2 Perform in vitro and ex vivo studies
- ST4.1.3 Isolate virus from wildlife (hedgehogs)

#### T4.2 Drivers of virus emergence

- ST4.2.1 Global time and geographical scale phylodynamics
- ST4.2.2 Trace relevant virus mutations and recombinations
- ST4.2.3 Evaluate the impact of ecological factors and human interventions

### T4.3 Virus emergence risk modelling

- ST4.3.1 Follow coronavirus contamination in bats (colony)
- ST4.3.2 Follow coronavirus contamination in cats (breeding center)
- ST4.3.3 Follow coronavirus contamination in wildlife (hedgehog shelter)
- ST4.3.4 Risk assessement and modelling

Paul Brown (ANSES); Marcin Smreczak (PIWET) Paul Brown (ANSES) Falko Steinbach (APHA) Elodie Monchatre-Leroy (ANSES) Wim van der Poel (WBVR); Paul Brown (ANSES)

Paul Brown (ANSES)

Maud Contrant (ANSES)

### Wim van der Poel (WBVR)

### Alessio Lorusso (IZSAM); Elodie Monchatre-Leroy (ANSES)

Marcin Smreczak (PIWET) Sophie Le Poder (ANSES) Davide Lelli (IZSLER) Matthias Filter (BfR)



### Task 4.1 – Virus-host interactions

Lead: Anses (P1) (Paul BROWN), Co-lead : PIWET (P34) (Marcin SMRECZAK) Participants: ANSES (P1), VRI (P8), FLI (P10), APHA (P21), ISS (27), IZSAM (P28), IZSLER (P29), WBVR (P31), PIWET (P34)

Experimental infections under controlled conditions *in vivo*, *in vitro* and *ex-vivo*, using different coronaviruses from domestic and wild animals, to assess the evolutionary and adaptative potential of animal coronaviruses.

- Animal coronaviruses will be passaged *in vitro* and *in vivo* (Paul Brown, Anses) or *in vitro* and *ex-vivo* (F. Steinbach, APHA), in their homologous host or in alternate animal hosts, cells or tissues.
  - ➔ Genetic changes in virus populations (consensus and minor variants) associated with propagation in heterologous hosts will be determined by NGS.
- b) Experimental co-infections will be performed in vitro or ex-vivo and the genetic make-up of viral progeny will be investigated by deep sequencing

→ Frequency and possible strain specificity of recombination events will be reported

c) Isolation of hedgehog coronavirus will be attempted and zoonotic potential of possible isolates will be assessed experimentally using animal models of Covid19 (Hamster / ferrets)

➔ Zoonotic potential of hedgehog betacoronavirus will be precised

# DELIVERABLES : Reports on animal experiments / full length genomes of viruses from a, b and c.



## Task 4.2 – Drivers of virus emergence

Lead: WVBR (P31) (Wim VAN DER POEL); Co-Lead: Anses (P1) (Paul BROWN) Participants: ANSES (P1), FLI (P10), APHA (P21), ISS (27), IZSLER (P29), WBVR (P31), PIWET (P34), INIAV (P35) + Associated partner (own budget) : CHU Caen, FR

Improve our understanding of factors affectinc coronavirus genetic diversity and evolution in domestic animals and wildlife,

- a) Global time and geographical phylodynamics of animal coronaviruses
  - Phylogenetic relationships between coronaviruses will be analyzed between animal species, and within one coronavirus species in different breeding facilities or operations
- b) Detect relevant mutations and recombination events
  - → Insights into genetic variation under "natural" conditions (as compared with 4.1.a and 4.1.b)
- c) Investigate how the observed genetic changes may correlate with ecological factors (species interactions, habitat...) and human interventions (vaccination, trading of animals), and how factors may impact on coronavirus evolution (evolution rates, composition of recombinants, possible contribution of vaccine viruses).
  - ➔ Role of ecological factors and human interventions
- DELIVERABLES : Report on most relevant sample types and populations (metanalysis) / Harmonized methods for detection – metagenomics – Phylogenetics / Report on correlation between CoV evolution and environment (ecological factors – human interventions)



### Task 4.3 – Virus emergence risk modelling

Lead IZSAM (P28) (Alessio LORUSSO), Co-lead : Anses (P1) (Elodie MONCHATRE-LEROY) Participants: ANSES (P1), BfR (P9), FLI (P10), APHA (P21), ISS (27), IZSAM (P28), IZSLER (P29), WBVR (P31), PIWET (P34)

Specific animal communities will be followed over a predefined period of time (RT-PCR, NGS) to monitor intra-community CoV genetic variation. Data from other WPs and other WP4 tasks will be used to assess the potential of CoV genetic variation on future emergences (for animal species and humans).

- a) High frequency sampling of bat colonies in natura, and of cats in domestic environment.
  - Longitudinal study of genetic variation under 'natural' conditions (to be compared with 4.1 ad 4.2).
- b) Monthly fecal sampling of cats and kittens under breeding farm conditions
  - → Impact of human interventions (link with 4.2.c)
- c) Frequent sampling of animals hosted for prolonged periods in wildlife shelters (incl. hedgehogs)
  - → Impact of modified interactions on the evolution of wildlife coronaviruses (link with 4.2.c)
- d) Integrating data from WPs 1, 2, 3 and WP4 tasks to model which animal species / conditions offer the highest potential for future emergences.

DELIVERABLES : Reports on best techniques for long term community monitoring Reports on coronavirus contamination in studied communities Report on relevance of the studied animal models in assessing the risk for CoV emergence



### WP4 time line

| T4.1 Virus-host interactions                                                  |     |        |  |        |        |        |        |        |
|-------------------------------------------------------------------------------|-----|--------|--|--------|--------|--------|--------|--------|
| ST4.1.1 Perform in vivo and in vitro studies                                  |     |        |  |        | D4.1.1 |        |        |        |
| ST4.1.2 Perform in vitro and ex vivo studies                                  |     |        |  |        |        |        | D4.1.2 |        |
| ST4.1.3 Virus isolation from wildlife (i.e.hedgehogs)                         |     |        |  |        |        |        |        | D4.13  |
| T4.2 Drivers of virus emergence                                               |     |        |  |        |        |        |        |        |
| ST4.2.1 Analyse coronavirus phylodynamics at global time and geographical sca | les | D4.2.1 |  |        |        |        |        |        |
| ST4. 2.2 Trace relavant virus mutations and recombinations                    |     |        |  | D4.2.2 |        |        |        |        |
| ST4.2.3 Evaluate the impact ecological factors and interventions              |     |        |  |        |        |        | D4.2.3 |        |
| T4.3 Virusemergence risk modelling                                            |     |        |  |        |        |        |        |        |
| ST4.3.1 Follow coronavirus contamiantion in bats                              |     |        |  |        |        | D4.3.1 |        |        |
| ST4.3.2 Follow coronavirus contamianations in cats                            |     |        |  |        |        |        | D4.3.2 |        |
| ST4.3.3 Follow Coronavirus contamination in wildlife (i.e. hedgehogs)         |     |        |  |        |        |        |        | D4.3.3 |
| ST4.3.4 Risk assessment and modelling of animal coronavirus evolution         |     |        |  |        |        |        |        | D4.3.4 |

### Main challenges :

- Covid crisis with related expertise burden
- Duration (2 years) : short for longitudinal community studies
- Many partners with expressed interest (very good), need to bring in content (simil. COST)
- Need for additional budget to complete the work programme
- Indeed other concomittent animal disease crises



## Stakeholders & Connections

### Cf. Sharon's slide

+

### **PREventing ZOonotic Diseases Emergence, PREZODE**







# Thank you for your attention!





@OneHealthEJP
/company/h2020-One-Health-EJP
OneHealthEJP.eu

This presentation is part of the European Joint Programme One Health EJP. This programme has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 773830.