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Abstract 

A new Bayesian modeling framework is proposed to account for the uncertainty in the model 

parameters arising from model and measurements errors, as well as experimental, operational, 

environmental and manufacturing variabilities. Uncertainty is embedded in the model 

parameters using a single level hierarchy where the uncertainties are quantified by Normal 

distributions with the mean and the covariance treated as hyperparameters. Unlike existing 

hierarchical Bayesian modelling frameworks, the likelihood function for each observed 

quantity is built based on the Kullback–Leibler divergence used to quantify the discrepancy 

between the probability density functions (PDFs) of the model predictions and measurements. 

The likelihood function is constructed assuming that this discrepancy for each measured 

quantity follows a truncated normal distribution. For Gaussian PDFs of measurements and 

response predictions, the posterior PDF of the model parameters depends on the lower two 

moments of the respective PDFs. This representation of the posterior is also used for non-

Gaussian PDFs of measurements and model predictions to approximate the uncertainty in the 

model parameters. The proposed framework can tackle the situation where only PDFs or 

statistical characteristics are available for measurements. The propagation of uncertainties is 

accomplished through sampling. Two applications demonstrate the use and effectiveness of the 

proposed framework. In the first one, structural model parameter inference is considered using 

simulated statistics for the modal frequencies and mode shapes. In the second one, uncertainties 

in the parameters of the probabilistic S-N curves used in fatigue are quantified based on 

experimental data.  
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1. Introduction 

The general Bayesian statistical framework proposed by Beck and Katafygiotis [ 1 ] 

provides a rigorous mathematical means to address the model updating problem with 

uncertainty. Based on this framework, there have been a lot of works for various applications, 

such as parameter estimation [2-7], model selection [8,9], damage identification [10-12], and 

robust uncertainty propagation [13,14], among which the parameter estimation application 

serving as the foundation of other applications has kept the overwhelming attention. The 

Bayesian framework embeds a probabilistic model in the Bayesian approach, where the model 

is parameterized by a parameter set to describe the model uncertainty along with the 

discrepancy between model predictions and measurements, and the Bayesian approach 

provides the formulation of the posterior distribution of the parameter set by multiplying a 

likelihood function with its prior distribution. To estimate the posterior distribution of the 

model parameters, the likelihood function is usually built based on a relation function between 
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model predictions and measurements by defining a probabilistic structure of the prediction 

error. For industrial applications, the parameter estimation results from different measurements 

show distinct variations. The variation usually arises from load uncertainty, model error, 

measurement noise, and changing environmental/operational conditions [15-17]. Variations in 

the parameters of a model introduced to simulate a population of identically manufactured 

structures are also obtained due to manufacturing variabilities [ 18 , 19 ]. Therefore, it is 

important to describe these variations. The hierarchical Bayesian modeling framework (HBM) 

[20-26] has been proposed to quantify the uncertainty in the model parameters and prediction 

errors due to the aforementioned variabilities. The core of HBM is using a parameterized prior 

distribution of model parameters by introducing an extra layer involving hyper parameters to 

describe the variation of model parameters. 

In this paper, a new probabilistic model is proposed on the basis of Bayesian framework, 

and the main difference is the principle to build the likelihood function, which is based on the 

relationship of statistics between model predictions and measurements for each model output. 

Compared with HBM, it does not require collecting datasets, and measurements can be the 

PDFs or statistics of measured quantities, so its application is more universal. It can also handle 

cases for which only the statistics like mean and variance are available from the measurements. 

In such cases it is unreasonable to build datasets in terms of samples generated from them and 

then apply existing conventional or hierarchical Bayesian modeling frameworks. To quantify 

the aforementioned discrepancy of statistics between model predictions and measurements, the 

Kullback–Leibler divergence (KL-div) [27,28] is introduced in the proposed framework. 

This paper is organized as follow. In Section 2, the new proposed Bayesian modeling 

framework is described in detail, including construction of the proposed probabilistic model, 

uncertainty quantification of parameters, and uncertainty propagation to quantities of interest 

(QoI). The application to structural dynamics based on measured modal properties is presented 

in Section 3. In Section 4, a three-DOF spring mass chain system is taken as a simulated 

example to illustrate the effectiveness of the proposed framework. The application to the 

parameter inference and uncertainty quantification of probabilistic S-N curves used in fatigue 

damage accumulation is given in Section 5. Conclusions are presented in Section 6.  

 

2. Proposed Bayesian Modeling Framework 

 

2.1 Probabilistic model 

Figure 1 shows the structure of the proposed probabilistic modeling framework. Assume a 

parameterized model of a structural system and let  kq θ , 1, , qk n  be the model 

predictions for 
qn  output quantities, where θ  is model parameter vector to be identified by 

measurements available for these output quantities. To account for model error and 

environmental/operational variabilities in the model predictions, an additive error term ke  is 

considered so that the predictions from the model are taken as  

   k k k kq q w e θ θ  (1) 

where kw  is a weighting factor that scales the error terms ke .  

Uncertainties are embedded in the model parameter set θ  by assigning to the set θ  a 

Gaussian distribution with mean vector 
θμ  and covariance matrix 

θΣ . To account for the 

unmodelled dynamics, the error term ke  is assumed to follow a Gaussian distribution 

 2| 0,k ee   with zero mean and variance 2

e , where the general notation ( | , ) x    is 

introduced to denote a multivariable normal distribution evaluated at x  with mean vector   

and covariance matrix  . It should be noted that the weights kw  introduced in Eq. (1) 
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provides the flexibility to scale differently the error term 
ke  for each quantity of interest 

 kq θ . This is needed when the intensities of the measured or response quantities involved in 

Eq. (1) have considerable differences for each k . In this case it is best to choose kw  values 

to correspond to a measure of the intensity of the respective measured or response quantity, 

such as the mean of the measured or response quantity.  

 

 
Figure 1 Proposed probabilistic modeling framework 

 

To distinguish from the model parameters θ  and the error term ke , the parameters 

 , , eθ θh = μ Σ  are called hyper parameters. Given the hyper parameters, one can obtain the 

conditional PDF ( | )kp q h  of k-th model output quantity 
kq  given the values of the hyper 

parameters h  by propagating the uncertainties in the model parameters θ  and the error 

term ke .  

For a conditional PDF that can be approximated by a Gaussian distribution, one has 
2

| |( | ) ( | , )
k kk k q qp q q    h hh , where 

|kq h
 is the mean and 2

|kq h
 is the variance of kq  given 

h . In particular, a Gaussian distribution arises for the case of a linear model ( )  q θ Aθ b , 

where 1, ,
qnq q



 
 

q , 1[ , , ]
q

T T

n

A a a , 1[ , , ]
qnb b b  and ka , 1, , qk n  , is the 

k -th row (vector) of A  with the same dimension as θ . Given 
θμ , 

θΣ  and e , one 

readily derives that the mean 
|kq h

 and the variance 2

|kq h
 of the quantity kq  in terms of the 

hyperparameters h  as follows  

|kq k kb  h θa μ  (2) 
2 2 2

|kq k k k ew  h θa Σ a  (3) 

The PDF of k-th model output 
|kqP h

 can be directly obtained in the form 

2 2 2

| |( | ) ( | , ) ( | , )
k kk k q q k k k k k k ep q q q b w       h h θ θh a μ a Σ a  (4) 

For nonlinear models, the PDF ( | ) ( | , , )k k ep q p q  θ θh μ Σ  of k-th model output can be 

derived by the total probability theorem as 

     

   2( ) 2

| , , | ,  Ν | ,

1
                           | ,

s

k e k e

n
j j

k k k e

js

p q p q d

q q w
n

 





 





θ θ θ θ

θ

μ Σ θ θ μ Σ θ

θ

 (5) 
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where 
 j
θ , 1, , sj n , are sampled from  | , θ θθ μ Σ . The structure of the model error in 

Eq. (1) was used to replace conditional PDF  | ,k ep q θ  in Eq. (5) by a normal PDF 

  2 2| ,k k k eq q w  θ  with mean  kq θ  and variance 2 2

k ew  .  

Let ( )ky  denotes the PDF of k-th measured quantity ky , so that the PDFs for all the 

measurements are  ( ),  1, ,k qy k n  . For the situation where the measurements are the 

statistics of measured quantities, the ( )ky  can be directly obtained by moments-based PDF 

simulation methods, like maximum entropy method (MEM) [29,30]. For the situation where 

only measured data 
  , 1, ,
i

k k dD y i n  are available for the k-th measured quantity ky , 

where dn  denotes the number of measured data of k-th measured quantity, the kernel density 

estimation (KDE) [31,32] can be used to simulate ( )ky  for sufficient large number of 

measurements 
dn , as follows 

 
1

( )
d

in

k k
k

id

y y
y K

n h h


 
     

  (6) 

Also, if 
dn  is not big enough, ( )ky  can be assumed to be a Gaussian distribution with mean 

and variance calculated by the data set kD .  

Given ( )ky  and ( | )kp q h , the discrepancy between them is then quantified by the 

Kullback–Leibler divergence (KL-div) [27]. However, considering the asymmetry of KL-div, 

a symmetric measure of the discrepancy can be used, defined as  

   

 
 

 
 

 

 

( , | ) , ,

|1 1
                    log | log

2 | 2

k k k KL KL

x x

y q D p D p

x p x
x dx p x dx

p x x

  






 

   
       

   
 

h

h
h

h

 (7) 

For a Gaussian distribution 2

| |( | ) ( | , )
k kk k q qp q q    h hh  of kq  given h  and for k-th 

measurement that is Gaussian distributed, i.e.    2| ,
k kk k y yy y     for all k, the KL-div 

simplifies to the analytical form 
2

2 2
||

2 2 2

| |

2
2 2

||

2 2 2

|

1
( , | ) log 1

4

1
                       log 1

4

1
                   

4

k kk k

k k k

k kk k

k k k

y qq y

k k k

y q q

y qy q
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y q
  


  

  

  



          
    

          
    



hh

h h

hh

h

h

2
2 2 2

|| |

2 2 2 2

| |

1 1
1 1 1

4 4

k kk k k

k k k k

y qq y q

y q q y

  

   

                
          

hh h

h h

 (8) 

Note that the first two terms give a measure of the error between the variance of the 

experimental value and the variance predicted from the model. These two terms become zero 

when the variance 2

ky  of the experimental value equals the variance 2

|kq h
 of the model 

prediction. Also, the last term gives the error between the mean of the experimental value and 

the mean of the model predictions. When the mean of the experimental value is equal to the 

mean of the model predictions, then the third term disappears. The discrepancy as defined by 
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KL-div is a weighted sum of the discrepancies between the variances of the two PDFs and the 

means of the two PDFs. However, the KL-div measure is a rational method to assign the 

weights which otherwise one would have to select arbitrarily. 

For non-Gaussian PDFs arising from nonlinear models, Eq. (8) for the KL-div can also 

be used as an approximate measure of the discrepancy between the two PDFs in terms of the 

first two moments of the PDFs. Alternatively, for nonlinear models, the integral can be 

approximated by Monte Carlo (MC) sample estimates  
  

  
 
 

( )

( )

1 1
( , | ) log log

2 2|

i i
n n

k k

k k k ii
i i kk

y p q
y q

n n qp y






   
    

  
  

 h
h

 (9) 

where ( )i

ky  and  i
kq , 1, ,i n , are the samples distributed as  ky  and  |kp q h , 

respectively. Estimating the KL-div from Eq. (9) requires a large number of samples and can 

be a computationally very tedious procedure. Simplified approximations, such as Eq. (8), 

based on the first two moments of the non-Gaussian PDFs are preferred.  

 

2.2 Estimation of hyper parameters uncertainty 

 The first task of uncertainty quantification is to identify the hyper parameters in the 

proposed probabilistic model. This is accomplished by introducing a probabilistic model to 

represent the variables  , 1, ,k qk n    quantifying the discrepancy between the PDF of 

the model predictions and the measurements. Specifically, the variables in the set 

 , 1, ,k qk n    are assumed to follow a truncated normal distribution 

 2| 0, , 0k k     because of the non-negative values of KL-div, with the parameter   

be another hyper parameter to be inferred from the data. Thus, in the proposed probabilistic 

model, the hyper parameters can be categorized into two types: one is to describe the 

uncertainty of the prediction model, which comprises { , , }e θ θh μ Σ  and the other is  . 

According to the relationship between measurements and model predictions described by 

Eq. (7), the Bayes theorem is applied to infer the posterior distribution of hyper parameters as 

       , | | ,p p p p      h h h  (10) 

where  , |p  h  is joint posterior distribution;  p h  and  p   are the prior 

distributions assuming that h  and   are independent; and  | ,p  h  is the likelihood 

function. Assuming that k  in  , 1, ,k qk n    are independent, the likelihood function 

takes the form 

   
1

| , | ,
qn

k

k

p p    


h h  (11) 

Using the assumed truncated normal distribution for k , one has 

   
2

2

2

( , | )2
| , | 0, exp

22

k k k
k k

y q
p  




   



 
    

 

h
h  (12) 

with all 0k  . Substituting Eq. (12) and (11) into Eq. (10), the posterior distribution takes 

the form 

     2

1
, | exp ( ;{ },{ })

2q

q

k kn

n
p J y q p p 



  


 
  

 
h h h  (13) 
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where the notations { }ky  and { }kq  are defined as the sets 
1{ } { , , }

qk ny y y  and 

1{ } { , , }
qk nq q q , and  

2

1

1
( ;{ },{ }) ( , | )

qn

k k k k k

kq

J y q y q
n




 h h  (14) 

is the mean square discrepancy function formed from the individual discrepancies for each 

measurement property. It should be noted that ( ;{ },{ })k kJ y qh  stabilizes to a finite value as 

the number of output measured quantities increases. Given the prior distribution, samples 
    , ; 1, ,
i i

i n h
        , , , ; 1, ,
i i i i

e i n  
θ θ
μ Σ  of hyper parameters distributed 

proportional to the joint posterior distribution can be generated by using any sampling 

algorithm. Herein, the nested sampling algorithm [33] is used to generate samples.  

For a large number of output quantities 
qn , with the prior distribution  p h  selected to 

be uniform, Eq. (13) can be approximated as 

     2ˆ ˆ, | | ,p p      
h

h h h Σ  (15) 

where  ˆ arg min ( ;{ },{ })k kJ y q
h

h h , 
11ˆ ˆ( )

qn

hΣ H h , 
2

ˆ

( ;{ },{ })ˆ( ) k kJ y q







 
h h

h
H h

h h
. The 

derivation is given in Appendix A. Noting also that ˆ( )H h  stabilizes to a finite value as the 

number of output measured quantities increases, the uncertainty in the estimates of the 

hyperparameters h  quantified by ˆ
hΣ  is inversely proportional to the number of measured 

variables 
qn , which implies that the uncertainty decreases as the number of measured variables 

increases. For uniform prior PDF  p  , it can be readily shown using Eq. (A.1) that the 

most probable value of the parameter   is given by ˆ ( ;{ },{ })k kJ y q  h  which is an 

overall measure of discrepancy between the model predictions and the measurements.  

Note that the estimated   can be used to evaluate the accuracy of the prediction model 

quantitatively. As k , 1, , qk n , are assumed to follow a truncated Gaussian distribution 

with zero mean,   quantifies the average distance of all KL-div values from zero. So it can 

be treated as an index of prediction accuracy between the measured and model predicted PDFs. 

The smaller the value of  , the better the accuracy.  

According to the nonnegative property of k , a number of alternative distributions can be 

used to replace the truncated normal distribution. The exponential distribution, serving as a 

commonly used nonnegative distribution, is an interesting alternative distribution. For k  

following an exponential distribution, one has  

   
( , | )1

| , EXP | exp k k k
k k

y q
p  

 


   

 

 
   

 

h
h  (16) 

where   is the parameter of the exponential distribution. The posterior distribution of hyper 

parameters turns into the form 

     
1

, | exp ( ;{ },{ })
q

q

k kn

n
p J y q p p 



  


 
  

 
h h h            (17) 

which is almost same as Eq. (13), where 

1

1
( ;{ },{ }) ( , | )

qn

k k k k k

kq

J y q y q
n




 h h  (18) 
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is the mean discrepancy function formed from the individual discrepancies for each 

measurement property. This mean discrepancy function should be compared with the mean-

square discrepancy function obtained for a truncated Gaussian distribution in Eq. (14). It is 

evident that both TN and EXP distributions lead to similar results for the posterior distributions 

[34,35].   

 

2.3 Uncertainty quantification of structural model parameters and error term  

The posterior distribution of model parameters can be derived using the total probability 

theorem 

     | = | ,  , , , |     

e

e ep p d d d d



 

 

        
θ θ

θ θ θ θ θ θ

μ Σ

θ θ μ Σ μ Σ Σ μ
 (19) 

where use was made of the fact that conditional PDF    | , , , , | ,ep     θ θ θ θθ μ Σ θ μ Σ  

depends only on the values of 
θμ  and 

θΣ . Based on the samples of 
θμ  and 

θΣ , the integral 

can be approximated as 

      1
| | ,

n
i i

i

p
n

   θ θθ θ μ Σ  (20) 

Similarly, the posterior distribution of the error term is 

     2| = | 0, , , , |     

e

k k e e ep e e p d d d d



 

 

         
θ θ

θ θ θ θ

μ Σ

μ Σ Σ μ
 (21) 

where use was made of the fact that    2| , , , , | 0,k e k ep e e    θ θμ Σ  depends only on 

the values of 2

e . The integral can be approximated by the following sample estimate 

    
21

| | 0,
n

i

k k e

i

p e e
n

   
   (22) 

 

2.4 Uncertainty propagation to output QoI 

Let   jz θq , 1, , tj n  be an output QoI that depends on the quantities 

     1{ , , }
qnq qθ θ θq . For example,  θq  can be related to the modal frequencies and 

mode shape components and    , 1, ,j tz j nθq  can be the response time histories 

(displacement, acceleration, strain, stresses) that are computed from the modal properties using 

modal analysis. Using samples 
( )l
θ  and ( )l

ke  generated from the PDFs defined in Eq. (20) 

and (22), respectively, then the samples of   jz θq  can be obtained as

  ( ) ( ) ( )l l l

jz  θq w e  from which the %  to 1 %  quantiles of the response QoI can be 

estimated, where 
( ) ( )l lw e  expresses element-wise product. Also the statistics of the 

response QoI, such as mean and higher moments, can be predicted by the following Monte 

Carlo estimates  

     

      

  ( ) ( ) ( )

1

E E

                      =  |  |   

1
                     

m m

j j

m

j

n
m l l l

j

l

z z

z p p d d

z
n

 



        

 

  

 



θ

θ θ

θ θ θ

θ

e

q q w e

q w e e e

q w e

 (23) 
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The mean is given by   E
jz jz     θq w e  and the variance by 

  2 2 2= E
j jz j zz     θq w e . Note that for   jz  θq w e  j j jq w e θ , 1, , qj n , 

one obtains the predictions of the observed QoI.  

 

3. Application to Structural Dynamics using Measured Modal Properties 

For a linear system with n  degrees of freedom (DOF), the PDF of measured modal 

properties are expressed as  , 0
ˆ ˆ( ),  ( ),  1,2, , ;  1,2, ,r r jf r R j n     , where ˆ

rf  

represents the r-th modal frequency, 
0 ,1 ,2 ,

ˆ ˆ ˆ ˆ, , ,r r r r n       is the r-th normalized mode 

shape vector at 0n  measured locations, and R  is the number of contributed modes. Treating 

each modal property to be a model output, as there are R  modal frequencies and 0R n  

mode shapes, the number of model outputs is  0 1R n  . Consider a model parameterized by 

θ , the model outputs corresponding to the measurements are      , , 1, 2, ,r rf r Rθ θ , 

and the predictions from the model that take into account model errors are defined as 

   r r r rf f w e θ θ  

   , , , ,r j r j r j r jw e  θ θ  
(24) 

where re  and 
,r je  are assigned to follow an identical Gaussian distribution  20, e . To 

take into account the different intensities of the modal frequencies and the mode shape 

components, the weight factors rw  and 
,r jw  are respectively selected to be the mean of ˆ

rf  

and 
,

ˆ
r j .  

Based on the measurements and probabilistic model described above, the proposed 

probabilistic modeling framework can be implemented. The posterior distribution of hyper 

parameters is given by Eq. (13) where the discrepancy function in Eq. (14) becomes 
0

2 2

, , ,

1 1 10

1 ˆ ˆ( ;{ },{ }) ( , | ) ( , | )
( 1)

nR R

k k r r r r j r j r j

r r j

J y q f f
R n

   
  

 
  

  
 h h h  (25) 

and 
0( 1)qn R n  . Approximating the PDFs ˆ( )rf  and 

,
ˆ( )r j   by Gaussian distributions, 

the formula of KL-div can be simplified using Eq. (8), so that the expressions 
ˆ({ },{ } | )r r rf f h  and 

, , ,
ˆ({ },{ }| )r j r j r j   h  depend on the mean and variances of the model 

predictions conditional on the values of the hyperparameters h , given by 

   

   

   
,

||

2 2
2 2 2

|| |

| , , , , ,

 ( | ) ( | ) ( | )

 ( | ) ( | ) ( | )

( | ) ( | ) ( | )

rr

rr r

r j

r r r r r ff

r r r r r f r ef f

r j r j r j r j r j

f w e p p e d f p d

f w e p p e d f p d w

w e p p e d p d 

 

   

   

     

          

     

 

 

 

hh

h h

hh h

h h

h

h h

θ θ h h h θ θ h h

θ θ h h h θ θ h h

θ θ h h h θ θ h h

 

 

,

, ,

,

|

2
2

| , , , | ,

2
2 2

, | ,

( | ) ( | )

        ( | )

r j

r j r j

r j

r j r j r j r j

r j r j e

w e p p e d

p d w

 



  

  

   
 

   
 





h

h h

h

h

h

θ θ h h h

θ θ h h

 

(26) 

To calculate the multi-dimensional integrals efficiently, the univariate dimension reduction 
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method (UDRM) [36] is introduced to approximate them. The UDRM involves an additive 

decomposition of a multivariate response function into multiple univariate functions, so the 

multi-dimensional integral required by response moments are approximated by a series of one-

dimensional integral of these univariate functions. According to UDRM,  rf θ  and  ,r j θ  

can be approximated as 

       
1

1 + ,
i

n

r r r i

i

f n f f 


   θ θθ μ μ  

       , , ,

1

1 + ,
i

n

r j r j r j i

i

n   


   θ θθ μ μ  

(27) 

where 
iθμ  represents the mean vector of 

nθ  that excludes the component 
i

 , and 

 ,
ir if 

θ
μ  is defined as    

1 2 1 1
, , , , , , , ,

i i i nr i r if f           
 


θ
μ . Substituting Eq. 

(27) into Eq. (26), the mean and variance can be approximated into a series of one-dimensional 

integral of univariate functions in Eq. (27) [36], which can be easily solved by numerical 

integral methods, hereby a lot of computation can be saved. 

 

4. Simulated Example 

A population of 3-DOF linear systems manufactured to be identical is taken as a simulated 

example. Due to manufacturing variabilities, the properties of the system, such as stiffness vary 

for each member in the population. The modal properties of the members of the population are 

chosen as measured quantities to study the effectiveness of the proposed probabilistic modeling 

framework. 

 

4.1 Model description 

Consider a three DOF model, shown in Figure 2, introduced to represent each member in 

the population. The nominal values of the mass for the model DOFs are set to be 1 6kgm  , 

2 5kgm   and 3 5kgm  , while the nominal values of the stiffness of each link are set to 

10 22kN/mk  , 20 21kN/mk   and 30 20kN/mk  . With these assumptions, the modal 

properties of the nominal model are listed in Table 1. 

 

 
Figure 2 3-DOF spring mass chain system 
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Table 1 Modal properties 

 Frequency (Hz) 
Mode shape  

at DOF 1 

Mode shape  

at DOF 2 

Mode shape  

at DOF 3 

Mode 1 4.59 0.324 0.587 0.741 

Mode 2 12.2 0.740 0.281 -0.611 

Mode 3 17.9 -0.498 0.787 -0.362 

 

4.2 Uncertainty quantification  

The properties of each member in the population are simulated as follows. To consider the 

variation of model parameters from member to member due to manufacturing variability, the 

stiffness of the link i  of each member is generated from a Gaussian distribution 

    2

0 0| , 0.03i i ik x N x k k  , 1,2,3i  , corresponding to approximately 3% variation of the 

stiffness parameters about their nominal values. The modal properties are then simulated from 

Eq. (24) using 
310  MCs samples. The error terms defined in Eq. (24) are assumed to follow 

the Normal distribution with zero mean and standard deviation equals to 0.05, corresponding 

to a 5% model error. The mean and variance of modal properties are then computed and listed 

in Table 2 serving as known statistics of measurements. Then the uncertainty quantification for 

the stiffness parameters can be conducted according to the methodology presented in Section 

3.  

 

Table 2 Mean and variance of simulated modal properties 

 

Frequency 
Mode shape  

at DOF 1 

Mode shape  

at DOF 2 

Mode shape  

at DOF 3 

mean variance mean variance mean variance mean variance 

Mode 1 4.59 0.015 0.324 43.1 10
 

0.587 48.8 10
 

0.741 31.4 10
 

Mode 2 12.2 0.106 0.740 31.5 10
 

0.281 45.4 10
 

-0.611 49.8 10
 

Mode 3 17.9 0.233 
-

0.498 
48.3 10

 
0.787 31.6 10

 -

0.362 
45.2 10
 

 

The 3-DOF model shown in Figure 2 is used to represent each member in the group. To 

take into account the variation in the model properties, the stiffness of each link is 

parameterized by  1 2 3    


θ  such as   0i i i ik k   , where θ  are model parameters to 

be identified. Assuming the prior distributions of all the hyper parameters to be uniform 

distributions with their upper and lower boundaries listed in Table 3, the nested sampling 

algorithm [33] is implemented to generate samples of hyper parameters. The results are shown 

in Figure 3, while the mean and standard deviation of the posterior distributions of hyper 

parameters are summarized in Table 4. As expected, the estimated mean values of all the hyper 

parameters θμ  and θΣ  (defined to be diagonal), as well as the prediction error parameter 
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e , show good agreement with the nominal values used to simulate the measurements. The 

standard deviations of the hyperparameters are small, which means the uncertainty of identified 

results is small. Also, the values of the samples for   are very small, which means the 

prediction results have a good accuracy compared with measurements. The closeness of the 

results to the values used to simulate the measurements also demonstrates that the Gaussian 

approximation of modal properties assumed in Section 3 is reasonable. 

 

Table 3 Upper and lower boundaries of hyper parameters 

 
1

  
1

  
2

  
2

  
3

  
3

  e    

Upper 

boundary 
0.8 0 0.8 0 0.8 0 0 0 

Lower 

boundary 
1.2 0.1 1.2 0.1 1.2 0.1 0.1 1 

 

 
Figure 3 Samples of joint posterior distribution of hyper parameters 

 

Table 4 Estimates of mean and standard deviation of hyper parameters  

 
1

  
2

  
3

  
1

  
2

  
3

  e  

Nominal 

value 
1 1 1 0.03 0.03 0.03 0.05 

Mean 1.0001 1.0002 1.0001 0.0305 0.0299 0.0301 0.0500 

Standard 

deviation 
42.1 10

 42.2 10
 42.1 10

 46 10
 47 10

 43 10
 55 10
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Based on Eq. (19) and (21), the posterior distributions of θ  and 
,,r r je e  are computed 

using sampling and shown in Figure 4. As 
,,r r je e  are identically distributed, there is only one 

figure for their posterior distribution. The estimated statistics of θ  and e  are summarized 

in Table 5. The values are compared with the nominal values assigned to simulate the 

measurements. It can be seen that the mean and standard deviation of posterior distributions of 

model parameters and error terms are very close to the nominal values. The samples of   are 

close to zeros, which indicates that the discrepancy between the PDFs of measurements and 

predictions is small enough. 

 

Figure 4 Samples of posterior distribution of θ ,  , 0, ;, 1,2, , ;, 1,2, ,r r je e e r R j n    

and   
 

Table 5 Estimates of mean and standard deviation of model parameters and error terms 

 1  2  3  e  

Mean 1.0010 1.0010 1.0000 -0.0012 

Standard deviation 0.0307 0.0293 0.0301 0.0494 

 

4.3 Uncertainty propagation  

Using the samples of θ , re  and 
,r je , the mean and variance of modal properties are 

predicted and listed in Table 6. These values should be compared with the mean and variance 

of the measurements in Table 2. The predicted results are of good accuracy, and the maximum 

relative error is less than 4%. The predicted PDFs of modal properties are also computed and 

compared with Gaussian PDFs of the measurements in Figure 5. A very good agreement is also 

observed, validating the effectiveness of the proposed methodology in identifying the model 

parameters. Such good agreements are under the condition where the model is good enough to 
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provide acceptable fits between the model predictions and the simulated data for the overall 

quantities simultaneously. It should be noted that such uncertainty bounds are expected to be 

thin for classical Bayesian framework based on multiple datasets used for the modal properties 

[37]. The level of uncertainty is expected in classical Bayesian approaches to decrease as the 

number of data increases.  

 

Table 6 Predicted mean and variance of the modal properties 

 

Frequency 
Mode shape  

at DOF 1 

Mode shape  

at DOF 2 

Mode shape  

at DOF 3 

mean variance mean variance mean variance mean variance 

Mode 1 4.59 0.015 0.324 43.1 10
 

0.587 48.8 10
 

0.743 31.4 10
 

Mode 2 12.2 0.107 0.741 31.5 10
 

0.280 45.7 10
 

-0.611 49.7 10
 

Mode 3 17.9 0.225 -0.498 48.4 10
 

0.787 31.6 10
 

-0.363 45.0 10
 

 
 

 
Figure 5 Comparison between measured and predicted PDFs for the modal properties 
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Figure 6 Base excitation 

 

Furthermore, based on the identified modal properties, the response time history of 

displacement or acceleration or velocity can also be predicted. For this, a zero mean discrete 

Gaussian white noise base excitation with standard deviation 1, shown in Figure 6, is applied 

and the mean and variance of time history response of displacement of the third DOF is 

estimated taking into account the uncertainties in the model parameters and error terms 

assumed to simulate the measurements in Section 4.2. The modal analysis is used to perform 

the corresponding predictions based on the predicted modal properties with error terms taken 

into consideration. To make a comparison, the mean and 90% credible interval boundaries 

obtained respectively from measurements and predictions are shown in Figure 7. As we can 

see, the model prediction results match very well the measurements. For the situation that the 

error terms of modal properties are not considered in the predictions the predicted uncertainty 

intervals are smaller than that of measurement uncertainty intervals, as shown in Figure 8, 

signifying that the error terms are necessary to be included in the propagation analysis for 

accurate model predictions.  

 



15 

 
Figure 7 Comparison between measured and predicted results for the displacement time 

history at DOF 3 

 

 
Figure 8 Comparison between measured and predicted results for the displacement time 

history at DOF 3 without consideration of error terms in prediction 

 

5. Estimation of S-N Curve Model Parameters using Fatigue Data 

 In this section, the experimental data from fatigue tests are used to infer the uncertainties 

in the model parameters of the S-N curves. As the S-N data is usually modelled by a linear 

model, the equations derived for the linear model in Section 2.1 are directly applicable. 

 

5.1 Model description 

Materials fatigue performance is commonly characterized in the form of an S-N curve, 
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which is usually simulated by the Basquin’s relation [38] 
B

k kN AS 
 (28) 

where 
kN  expresses the fatigue life at the k -th stress level, 

kS  expresses corresponding 

stress level, while 0A   and 0B   are material parameters to be estimated using 

experimental data. For the laboratory fatigue tests, the fatigue life dispersion always exists due 

to many factors, such as uncertainties of mechanical properties of structure and material, 

changing environmental factors in laboratory, and random error in observations, etc. Taking 

the variability into consideration, Eq. (28) can be expressed as 
B

k k kN AS 
 (29) 

where 
k  quantifies the randomness of fatigue life in stress level 

kS . For the sake of 

simplicity, Eq. (29) is usually rewritten in log scale as [39]  

+k k kq x e  
 (30) 

where  10logk kq N , 10 10

1

1
log log

n

k k j

j

x S S
n 

   ,  10 10

1

1
log log

n

j

j

A B S
n




   , B  , 

and lnk ke   is assumed to follow a zero mean normal distribution with dispersion  .  

Eq. (30) is usually adopted as a probabilistic model to estimate probabilistic S-N curves. 

To consider the variability of the model parameter set { , } θ  for different specimens, the 

parameters   and   are respectively assumed to follow Gaussian distributions as 

 2| ,     and  2| ,    , where  , 
 , 

  and 
 are the hyperparameters. 

To avoid unidentifiability issues with respect to the model parameters   and   due to the 

presence of the additive terms ke   in Eq. (30), the term ke  and its uncertainty is absorbed 

in   by replacing Eq. (30) with the model  

k kq x  
 (31) 

Based on this model, both the variability of different specimens in one stress level and across 

stress levels can be comprehensively considered in   and 
 .  

 

5.2 Uncertainty quantification using fatigue tests 

The data listed in Table 7, taken from [40], are used to infer the model parameters. Fatigue 

tests were conducted with standard plate specimens of aluminum alloy 2524-T3 under four 

stress levels with about 15 observations each. The data from each stress level is assumed to 

follow a Gaussian distribution, and the mean and standard deviation are solved as measured 

statistics. Based on the probabilistic model described above, the proposed probabilistic 

modeling framework can be implemented. Given the prior distributions of all the hyper 

parameters as uniform distribution with their upper and lower bounds listed in Table 8, the 

nested sampling algorithm is implemented to generate samples of the hyper parameters 

 , , ,        as shown in Figure 9. Moreover, the most probable values of 

 , , ,        computed according to Eq. (A.3), as well as the standard deviation of the 

estimates of the hyper-parameters computed using the samples, are listed in Table 9. Based on 

Eq. (20), the posterior distribution of   and   are shown in Figure 10. Using the samples 

in Figure 9, the uncertainties in the estimates of the hyperparameters are of the order of 0.83% 

and 12% for the hyper-mean parameters  ,    and of the order of 46% and 70% for the 

hyper-standard deviation parameters  ,   . Also, from Table 9 the coefficient of variation 
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of the parameters   and   based on the mean values of the hyper parameters are 

ˆ ˆ/ 1.7%     and ˆ ˆ/ 21%    , respectively. It can be seen that there is considerable 

uncertainty in the values of the parameters   and   that can affect fatigue predictions.  

 

Table 7 Fatigue life test data of aluminum alloy 2524-T3 

 MPaiS
 10log iN

 

200 
5.603, 5.544, 5.528, 5.630, 5.594, 5.540, 5.581, 5.548, 

5.426, 5.567, 5.554, 5.627, 5.630, 5.596, 5.626 

300 
5.028, 5.074, 5.016, 4.894, 4.993, 5.071, 5.024, 5.035, 

4.954, 5.039, 5.098, 5.057, 5.092, 5.082, 5.005 

350 
4.784, 4.842, 4.776, 4.813, 4.813, 4.860, 4.798, 4.776, 

4.758, 4.770, 4.755, 4.837, 4.736, 4.842, 4.796 

400 
4.477, 4.400, 4.426, 4.462, 4.592, 4.411, 4.447, 

4.402, 4.665, 4.475, 4.458, 4.551, 4.525, 4.641 

 

Table 8 Upper and lower bounds of hyper parameters 

           

Upper bound -30 -30 0 0 0 

Lower bound 30 30 10 10 10 

 
Figure 9 Samples of joint posterior distribution of hyper parameters 
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Table 9 Most probable values of hyper parameters 

           

MPV 4.984 -3.435 0.511 0.372 0.387 

Standard 

deviation 
0.0127 0.1533 0.0166 0.1958 0.1367 

 

 
Figure 10 Samples of posterior distribution of  ,   and   

 

5.3 Uncertainty propagation  

Using the samples of   and   generated by Eq. (20), the samples of kq  for various 

stress levels are predicted and the 90% credible interval is estimated. Results are shown in 

Figure 11 and compared with measured data available for the four stress levels. Predictions of 

the 90% credible intervals take into account the uncertainty in the hyper-parameters. Results 

are also presented for the 90% credible intervals estimated by ignoring the uncertainties in the 

hyper-parameters. This is achieved by drawing samples from the distribution  ˆˆ| ,
θ θ

θ μ Σ  

and propagating these samples for predicting the fatigue life for different stress levels in Figure 

11. It can be seen that the 90% uncertainty intervals considering the uncertainties in the hyper 

parameters are narrow enough and contain the fatigue data available at the four stress levels. 

Moreover, these uncertainty intervals are comparable to uncertainty intervals obtained by 

methods based on HBM [41,42]. The uncertainty intervals computed using the MPV of the 

hyper parameters, ignoring the uncertainties in the hyper parameters, are narrower and contain 

well a large percentage of fatigue data. It is evident, however, that propagation based on the 

MPV of the hyper parameters fail to fully contain all the data. The discrepancy between the 
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two credible intervals is expected to decrease as one includes fatigue data from more than four 

stress levels.  

 
Figure 11 Predicted 90% credible intervals and comparison with measured fatigue data 

 

Finally, from the results in Figure 9, it is observed that the values of   are not close to 

zero, which means there are some discrepancies between predicted PDFs and the measured 

PDFs. This is also depicted in Figure 11, as well as in Figure 12 comparing, for each stress 

level, the prediction of the Gaussian PDF of kq  based on the model to the Gaussian PDF based 

on the measurements. For the model predictions, the PDF corresponding to the most probable 

values of the hyperparameters is presented along with the PDF taking into account the 

uncertainties in the hyper parameters. It can be seen that the most probable values of two PDFs 

in each figure are consistent, while the uncertainty predicted using only MPV is narrower than 

that considering uncertainties of hyper parameters. The reason for the discrepancies between 

measured and model predicted PDFs is that the variation of the available fatigue data from the 

four stress levels deviates from the linear model, so that the predictions from the linear model 

cannot exactly account for the mean and variance of experimental data for all four stress levels 

simultaneously.  
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Figure 12 Comparison of PDF of experimental data and model predicted PDFs for the four 

stress levels  

 

6. Conclusion  

The new Bayesian inference method proposed in this work addresses the issue of 

underestimation of the uncertainty in the model parameters due to model error, mentioned in 

[24], arising from multiple measurements available for a structure or measurements available 

for members of a population of identically manufactured structures [18,19]. The proposed 

method offers an alternative to HBM methods recently proposed in the literature [21,25] to 

correctly address the uncertainty in the model parameters. Based on the proposed framework, 

uncertainties are embedded in the model parameters by assigning a Normal distribution with 

mean and covariance constituting the hyperparameters to be estimated using Bayesian 

inference. The posterior distribution of hyper parameters of the model parameters is directly 

computed by Bayes theorem applied on KL-div measures between the model predicted PDF 

and the PDF of the experimental data. In particular, the proposed framework is applicable for 

the case where the full datasets are not available and only the PDF/statistics of the 

measurements are available. Therefore, its application is more universal than HBM in a sense 

of the availability of PDFs or statistics of the measurements. Computationally efficient and 

insightful analytical expressions for the posterior distribution of the hyperparameters were 

developed for the case for which the PDFs are approximated by Normal distributions. In 

particular, Normal distributions for the predictions arise when the output QoI depend linearly 

on the model parameters. In this case the posterior PDF of the model parameters depends on 

the lower two moments of the respective PDFs. This representation of the posterior is also used 

for non-Gaussian PDFs to approximate the uncertainty in the model parameters. For nonlinear 

relations between the output QoI and the model parameters, the univariate dimension reduction 

method (UDRM) is used to efficiently estimate the involved multi-dimensional integrals for 

the lower two moments of model predicted PDF.  

An application to structural dynamics based on measured modal properties from a group 

of identically manufactured 3-DOF systems is presented based on simulated data to illustrate 

the proposed framework. The effectiveness of the methodology is demonstrated by noting that 
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the estimates of hyperparameters, model parameters, and uncertainties recover the values used 

to simulate the data. Also, the method is applied to the quantification of uncertainties of the 

parameters of S-N curves based on the experimental data from fatigue tests, demonstrating that 

the proposed framework can also obtain competitive results to alternative methods based on 

HBM.  

The proposed framework can also be extended to handle response time history 

measurements or frequency response function data for either a linear or a nonlinear model of a 

structure, provided the statistics of such measurements are available. In particular, for response 

time history measurements, the computation of the mean and variance of the model predictions 

required for each time instant in the formulation for the KL-div may substantially increase the 

computational burden.  
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Appendix A 

Introduce the function  ,L h  defined as the negative of the logarithm of the posterior 

distribution in Eq. (13)  

    2
, ln , | = ln ( ;{ },{ })

2

q

q k k

n
L p n J y q  



   


  h h h  (A.1) 

where the prior PDF  p h  is assumed to be uniform. Using quadratic Taylor approximation 

with respect to variables h  about the most probable value ĥ  of  , |p  h , given by  

 ˆ arg min ( ;{ },{ })k kJ y q
h

h h  (A.2) 

the posterior PDF     , | exp ,p L    h h  can be approximated as (valid for larger 

number of output quantities)  

     2ˆ ˆ, | ,p p      
h

h h | h Σ  (A.3) 

where the covariance matrix 2 ˆ
 hΣ  equals to the inverse of Hessian matrix ˆ( , )H h  of the 

function  ,L h  evaluated at ĥ  and given by 
2

ˆ( )
qn


H h , where 

2

ˆ

( ;{ },{ })ˆ( ) k kJ y q







 
h h

h
H h

h h
 (A.4) 

So the covariance matrix ˆ
hΣ  is given by 

11ˆ ˆ( )
qn

hΣ H h . The MPV can be directly 

computed using an optimization tool, while the hessian matrix can be computed numerically 

or analytically [43,44]. 
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