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The perfect fluid was already studied for the case where there is vorticity. A new

technique was developed in order to locally and covariantly diagonalize the perfect

fluid stress-energy tensor. New tetrads were introduced to this purpose. In this

manuscript we will analyze the case where there is no vorticity. We will show how

to implement for this case the diagonalization algorithm previously built for the case

with vorticity. A novel technique will be introduced based only on purely geometrical

objects. As an application, a new algorithm will be formulated with the aim of finding

Euler observers for this case without vorticity.
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I. INTRODUCTION

There are many astrophysical problems that require the use of general relativity. Funda-

mentally, problems associated to intense gravitational fields. Gravitational collapse, grav-

itational radiation, stability of different objects, ultrarelativistic flows, etc. Many of these

studies1−8 need the use of relativistic hydrodynamics, in particular ideal perfect fluids. A

relevant object to carry out these analysis is the stress-energy tensor,

Tµν = (ρ+ p) uµ uν + p gµν , (1)

where ρ is the energy-density of the fluid, p the isotropic pressure and uµ its four-velocity

field, gµν is the metric tensor. In many schemes or algorithms that confront these complicated

relativistic hydrodynamic equations, it is necessary to modify the stress-energy tensor (1)

in order to include artificial viscosity Q as4,

Tµν = (ρ+ p+Q) uµ uν + (p+Q) gµν . (2)

Our goal is to find local and covariant geometrical structures that enable a geometrical

understanding of the different problems with simplification in both, the numerical and phys-

ical fronts. To this end we carry out the program of finding new tetrads that locally and

covariantly diagonalize the stress-energy tensor (1) or the variant (2) in order to develop a

covariant algorithm for the construction of Euler observers and Cauchy surfaces9−10, always

in situations with no vorticity. A new technique was already developed in four-dimensional

Lorentzian spacetimes where electromagnetic fields are present11−14. This technique was

already analyzed for the case with vorticity15 as well. We will introduce the basic elements

needed for its development in our case without vorticity in section II. This new technique

for the case without vorticity will be novel and a relevant contribution of this paper, since

we will make use of purely geometrical objects only, when building the extremal fields.

The technique to find Eulerian observers for the Einstein-Maxwell case was introduced in

manuscript16. We will extend this technique to the perfect fluid case with no vorticity in

section III as an application of our new method to build tetrads that locally and covariantly

diagonalize the stress-energy tensor (1) or its modification (2).
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II. NEW TETRADS FOR THE CASE WITHOUT VORTICITY

The new technique implemented with the goal of finding locally and covariantly new

tetrads that diagonalize the perfect fluid stress-energy tensor in the case with vorticity was

founded on the antisymmetric nature of the fluid extremal field or the velocity curl extremal

field second rank tensor itself15. In our present case there is no velocity curl, however we can

proceed to introduce other second rank antisymmetric tensors that support the construction

of new tetrads that on one hand diagonalize locally and covariantly the perfect fluid stress-

energy tensor and on the other hand allow for the construction of Euler vector fields. Let

us consider the following objects,

Aµν = Rµνρλ g
ρσ gλτ R,σ uτ (3)

Bµν = Rµνρλ;τ g
ρσ gλτ R,σ (4)

Cµν = Rµνρλ;τ g
ρσ gλτ uσ (5)

Dµν = Rµνρλ;[τ ;σ] R
ρλτσ . (6)

Any of these four objects is an antisymmetric tensor field in spacetime. Rµνρλ is the

Riemann tensor, R the Ricci scalar. The symbol ; stands for covariant derivative with

respect to the metric tensor gµν . These are just four examples. There could be more, but

they suffice in order to proceed with our construction. The next steps are nothing but

a replica of the tetrad construction algorithm depicted in detail in manuscripts11−14. We

introduce an extremal field ξµν and a local complexion scalar α exactly as we did for instance

in manuscript15 and follow the necessary analogous steps to obtain the tetrad that locally

and covariantly diagonalizes the stress-energy tensor (1). As in manuscript15 vorticity was

present, the extremal field and the complexion found through a local duality transformation,

made use of this fact. They were found through a local duality transformation of the

velocity curl. In the present paper there is no vorticity and the duality transformation

is performed on any of the fields (3-6), instead. As an example, the extremal field could

be defined as ξµν = cosα Bµν − sinα ∗ Bµν . In this example the complexion would be

defined as tan(2α) = − (Bµν g
σµ gτν ∗Bστ ) /

(
Bλρ g

λα gρβ Bαβ

)
. This expression for the

complexion stems from the condition imposed on the extremal field ξµν ∗ ξµν = 0. It is

simple to prove using identities that hold on four-dimensional Lorentzian spacetimes that
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this extremal field condition is equivalent to ξµρ ∗ ξµλ = 0, see references11−14. The object

∗Bµν = 1
2
εµνστ g

σρ gτλ Bρλ is the dual tensor of Bµν . The normalized version of this local

tetrad is,

Uα = uα (7)

V α = ξαλ uλ / (
√
uµ ξµσ ξνσ uν ) (8)

Zα = ∗ξαλ uλ / (
√
uµ ∗ ξµσ ∗ ξνσuν ) (9)

Wα =
(
V α
(4) (V ρ

(1) uρ)− V
α
(1) (V ρ

(4) uρ)
)
/

√
V β
(5) V(5)β , (10)

where, V β
(5) V(5)β = (V β

(4) V(4)β) (V ρ
(1) uρ)

2 +(V β
(1) V(1)β) (V ρ

(4) uρ)
2. In turn V α

(4) = ∗ξαλ ∗ ξρλ uρ.

We just followed the same method as in papers11−14, in particular using the same notation

as in reference15. The only variant so far is the initial antisymmetric field used to find

the extremal field and the complexion through a local duality transformation like ξµν =

cosα Bµν − sinα ∗Bµν . In manuscript15 it was the velocity curl, in our present manuscript

it is any of the antisymmetric tensors (3-6). These vectors (7-10) satisfy,

Uα T β
α = −ρ Uβ (11)

V α T β
α = p V β (12)

Zα T β
α = p Zβ (13)

Wα T β
α = p W β . (14)

The proof can be followed in manuscript15. It would be redundant to repeat it in this

section. Nonetheless we have the results we need in order to find the Euler vector fields in

the next section. These surface forming vector fields along with coordinate observers allow

to study spacetime evolution in astrophysical problems of present interest17−51.

III. APPLICATION: EULER VECTOR FIELDS

We are going to proceed in this section in a very similar way to the analogous section in

paper16. We introduce the equations satisfied by the hypersurface orthogonal16,17,18,19 unit

vector fields nµ n
µ = −1,
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nα nβ;γ + nβ nγ;α + nγ nα;β − nα nγ;β − nγ nβ;α − nβ nα;γ = 0 . (15)

We are going to name Ûµ the Euler unit timelike vector field that satisfies equation (15).

We are going to name the other three vectors in the new orthonormal tetrad as V̂ µ, Ẑµ and

Ŵ µ. Then, the hypersurface orthogonal vector Ûµ must satisfy the equation,

Ûα Ûβ;γ + Ûβ Ûγ;α + Ûγ Ûα;β − Ûα Ûγ;β − Ûγ Ûβ;α − Ûβ Ûα;γ = 0 . (16)

Next, when we project equation (16) using the four tetrad vectors (Ûα, V̂ α, Ẑα, Ŵα) we

get only three meaningful equations,

Û[α;β] V̂
α Ẑβ = 0 (17)

Û[α;β] V̂
α Ŵ β = 0 (18)

Û[α;β] Ẑ
α Ŵ β = 0 . (19)

Equations (17-19) are three conditions on the vector field Ûα. Our intention is to use the

tetrad (7-10) that locally and covariantly diagonalizes the perfect fluid stress-energy tensor,

and introduce three local scalars that are going to solve the three equations (17-19). To this

end, first we perform a rotation on the local plane determined by (V α,Wα) using the local

scalar φ,

V α
(φ) = cos(φ) V α − sin(φ)Wα (20)

Wα
(φ) = sin(φ) V α + cos(φ)Wα . (21)

Second, we perform another local rotation in the plane (Zα,Wα
(φ)) by the local angle ϕ,

Zα
(ϕ) = cos(ϕ) Zα − sin(ϕ)Wα

(φ) (22)

Wα
(ϕ) = sin(ϕ) Zα + cos(ϕ)Wα

(φ) . (23)

Finally a boost by the local angle ψ in the plane (Uα,Wα
(ϕ)),
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Ûα = cosh(ψ) Uα + sinh(ψ)Wα
(ϕ) (24)

Ŵα = sinh(ψ) Uα + cosh(ψ)Wα
(ϕ) . (25)

Three local scalars (φ, ϕ, ψ) become through these succession of local Lorentz transfor-

mations in three local variables that are going to be the solution to the system (17-19). The

final orthonormal tetrad that has as a timelike vector field Ûα the hypersurface orthogonal

vector field that will function as an input for our evolution algorithms is given by,

Ûα = cosh(ψ) Uα + sinh(ψ)Wα
(ϕ) (26)

V̂ α = V α
(φ) (27)

Ẑα = Zα
(ϕ) (28)

Ŵα = sinh(ψ) Uα + cosh(ψ)Wα
(ϕ) . (29)

The algorithm would not work if the vector that involves the three local Lorentz trans-

formations and therefore the three local scalars (φ, ϕ, ψ), were not Ûα. If we would have

considered Lorentz transformations only involving the original vectors (V α, Zα,Wα) then

we would only have produced combinations of the original equations (17-19) and since these

can be algebraically decoupled, we would not have introduced any new information. It is

through the inclusion of the three local scalars (φ, ϕ, ψ) inside the derivatives of the vector

Ûα that we get equations (17-19) to be meaningful. Next, we contract the tetrad vectors

(Ûα, V̂ α, Ẑα, Ŵα) with the stress-energy tensor (1),

Ûα T β
α = −ρ cosh(ψ) Uβ + p sinh(ψ)W β

(ϕ) (30)

V̂ α T β
α = p V̂ β (31)

Ẑα T β
α = p Ẑβ (32)

Ŵα T β
α = −ρ sinh(ψ) Uβ + p cosh(ψ)W β

(ϕ) . (33)

Therefore, the only non-zero components of the stress-energy tensor in terms of the new

tetrad are,
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Ûα T β
α Ûβ = ρ cosh2(ψ) + p sinh2(ψ) (34)

V̂ α T β
α V̂β = p (35)

Ẑα T β
α Ẑβ = p (36)

Ŵα T β
α Ŵβ = ρ sinh2(ψ) + p cosh2(ψ) (37)

Ûα T β
α Ŵβ =

(ρ+ p)

2
sinh(2ψ) . (38)

By performing the three local Lorentz transformations in our algorithm we have the fol-

lowing result. First, we ended up with a new local tetrad that adds only one off-diagonal

component to the stress-energy tensor, the minimum possible. Second, we found the Euler

hypersurface orthogonal congruence. We have found an algorithm that provides both a hy-

persurface orthogonal congruence and a maximum simplification of the stress-energy tensor

given that the tetrad that diagonalized the tensor underwent three Lorentz transformations.

When we take the limit ψ → 0 it can be readily seen from expressions (34-38) that we

recover the results for the old tetrad that diagonalizes the stress-energy tensor.

IV. CONCLUSIONS

Many relativistic hydrodynamical problems1−8 consist of a system of coupled differential

equations that possess as a source term a stress-energy tensor of the perfect fluid nature as

in equation (1). The resolution of a problem involving artificial viscosity in a relativistic

consistent way as in equation (2) would involve similar techniques and we just focus on

equation (1). Eulerian observers have proved to be useful in numerous dynamical problems

and we set out to find a local and covariant technique to produce them in a geometrical

fashion. Using the tensors that play a fundamental role in these schemes. This search is

synthesized in the construction of local extremal fields through local duality transformations

of second rank antisymmetric tensors as with (3-6). In previous works these second rank

antisymmetric tensors have been the electromagnetic field, the velocity curl, etc. Therefore,

this new way of building extremal fields by using purely geometrical objects like in equations

(3-6) is a decisive contribution of this manuscript. These new tetrads enjoy several useful

properties due to its very construction. They diagonalize the stress-energy tensor locally

and covariantly. They allow through three local Lorentz transformations to find the Euler
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hypersurface orthogonal vector fields, minimizing the number of non-zero stress-energy ten-

sor additional components just to one more. They allow in a natural way to find Cauchy

surfaces and study the dynamical evolution of a myriad of astrophysical problems. We

quote from4 “With the exception of the vacuum two-body problem (i.e. the coalescence of

two black holes), all realistic astrophysical systems and sources of gravitational radiation

involve matter. Not surprisingly, the joint integration of the equations of motion for matter

and geometry was in the minds of theorists from the very beginning of numerical relativity.

Nowadays there is a large body of numerical investigations in the literature dealing with

hydrodynamical integrations in static background spacetimes. Most of those are based on

Wilson’s Eulerian formulation of the hydrodynamic equations and use schemes based on

finite differences with some amount of artificial viscosity ”. Our new Euler observers built

with the tetrads that locally and covariantly diagonalize the stress-energy tensors point into

this direction of research.
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